| Copyright | (c) Galois Inc 2015-2020 |
|---|---|
| License | BSD3 |
| Maintainer | jhendrix@galois.com |
| Safe Haskell | None |
| Language | Haskell2010 |
What4.Expr.WeightedSum
Description
Declares a weighted sum type used for representing sums over variables and an offset in one of the supported semirings. This module also implements a representation of semiring products.
Synopsis
- type Tm f = (HashableF f, OrdF f, HasAbsValue f)
- data WeightedSum (f :: BaseType -> Type) (sr :: SemiRing)
- sumRepr :: WeightedSum f sr -> SemiRingRepr sr
- sumOffset :: Lens' (WeightedSum f sr) (Coefficient sr)
- sumAbsValue :: OrdF f => WeightedSum f sr -> AbstractValue (SemiRingBase sr)
- constant :: Tm f => SemiRingRepr sr -> Coefficient sr -> WeightedSum f sr
- var :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> WeightedSum f sr
- scaledVar :: Tm f => SemiRingRepr sr -> Coefficient sr -> f (SemiRingBase sr) -> WeightedSum f sr
- asConstant :: WeightedSum f sr -> Maybe (Coefficient sr)
- asVar :: WeightedSum f sr -> Maybe (f (SemiRingBase sr))
- asWeightedVar :: WeightedSum f sr -> Maybe (Coefficient sr, f (SemiRingBase sr))
- asAffineVar :: WeightedSum f sr -> Maybe (Coefficient sr, f (SemiRingBase sr), Coefficient sr)
- isZero :: SemiRingRepr sr -> WeightedSum f sr -> Bool
- traverseVars :: forall k j m sr. (Applicative m, Tm k) => (j (SemiRingBase sr) -> m (k (SemiRingBase sr))) -> WeightedSum j sr -> m (WeightedSum k sr)
- traverseCoeffs :: forall m f sr. (Applicative m, Tm f) => (Coefficient sr -> m (Coefficient sr)) -> WeightedSum f sr -> m (WeightedSum f sr)
- add :: Tm f => SemiRingRepr sr -> WeightedSum f sr -> WeightedSum f sr -> WeightedSum f sr
- addVar :: Tm f => SemiRingRepr sr -> WeightedSum f sr -> f (SemiRingBase sr) -> WeightedSum f sr
- addVars :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> f (SemiRingBase sr) -> WeightedSum f sr
- addConstant :: SemiRingRepr sr -> WeightedSum f sr -> Coefficient sr -> WeightedSum f sr
- scale :: Tm f => SemiRingRepr sr -> Coefficient sr -> WeightedSum f sr -> WeightedSum f sr
- eval :: (r -> r -> r) -> (Coefficient sr -> f (SemiRingBase sr) -> r) -> (Coefficient sr -> r) -> WeightedSum f sr -> r
- evalM :: Monad m => (r -> r -> m r) -> (Coefficient sr -> f (SemiRingBase sr) -> m r) -> (Coefficient sr -> m r) -> WeightedSum f sr -> m r
- extractCommon :: Tm f => WeightedSum f sr -> WeightedSum f sr -> (WeightedSum f sr, WeightedSum f sr, WeightedSum f sr)
- fromTerms :: Tm f => SemiRingRepr sr -> [(f (SemiRingBase sr), Coefficient sr)] -> Coefficient sr -> WeightedSum f sr
- transformSum :: (Applicative m, Tm g) => SemiRingRepr sr' -> (Coefficient sr -> m (Coefficient sr')) -> (f (SemiRingBase sr) -> m (g (SemiRingBase sr'))) -> WeightedSum f sr -> m (WeightedSum g sr')
- reduceIntSumMod :: Tm f => WeightedSum f SemiRingInteger -> Integer -> WeightedSum f SemiRingInteger
- data SemiRingProduct (f :: BaseType -> Type) (sr :: SemiRing)
- traverseProdVars :: forall k j m sr. (Applicative m, Tm k) => (j (SemiRingBase sr) -> m (k (SemiRingBase sr))) -> SemiRingProduct j sr -> m (SemiRingProduct k sr)
- nullProd :: SemiRingProduct f sr -> Bool
- asProdVar :: SemiRingProduct f sr -> Maybe (f (SemiRingBase sr))
- prodRepr :: SemiRingProduct f sr -> SemiRingRepr sr
- prodVar :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> SemiRingProduct f sr
- prodAbsValue :: OrdF f => SemiRingProduct f sr -> AbstractValue (SemiRingBase sr)
- prodMul :: Tm f => SemiRingProduct f sr -> SemiRingProduct f sr -> SemiRingProduct f sr
- prodEval :: (r -> r -> r) -> (f (SemiRingBase sr) -> r) -> SemiRingProduct f sr -> Maybe r
- prodEvalM :: Monad m => (r -> r -> m r) -> (f (SemiRingBase sr) -> m r) -> SemiRingProduct f sr -> m (Maybe r)
- prodContains :: OrdF f => SemiRingProduct f sr -> f (SemiRingBase sr) -> Bool
Utilities
Weighted sums
data WeightedSum (f :: BaseType -> Type) (sr :: SemiRing) Source #
A weighted sum of semiring values. Mathematically, this represents an affine operation on the underlying expressions.
Instances
| OrdF f => TestEquality (WeightedSum f :: SemiRing -> Type) Source # | |
Defined in What4.Expr.WeightedSum Methods testEquality :: forall (a :: k) (b :: k). WeightedSum f a -> WeightedSum f b -> Maybe (a :~: b) # | |
| OrdF f => Hashable (WeightedSum f sr) Source # | |
Defined in What4.Expr.WeightedSum | |
sumRepr :: WeightedSum f sr -> SemiRingRepr sr Source #
Runtime representation of the semiring for this sum.
sumOffset :: Lens' (WeightedSum f sr) (Coefficient sr) Source #
Retrieve the constant addend of the weighted sum.
sumAbsValue :: OrdF f => WeightedSum f sr -> AbstractValue (SemiRingBase sr) Source #
constant :: Tm f => SemiRingRepr sr -> Coefficient sr -> WeightedSum f sr Source #
Create a sum from a constant coefficient value.
var :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> WeightedSum f sr Source #
Create a weighted sum corresponding to the given variable.
scaledVar :: Tm f => SemiRingRepr sr -> Coefficient sr -> f (SemiRingBase sr) -> WeightedSum f sr Source #
This returns a variable times a constant.
asConstant :: WeightedSum f sr -> Maybe (Coefficient sr) Source #
Attempt to parse a weighted sum as a constant.
asVar :: WeightedSum f sr -> Maybe (f (SemiRingBase sr)) Source #
Attempt to parse a weighted sum as a single expression.
asVar w = Just r when denotation(w) = r
asWeightedVar :: WeightedSum f sr -> Maybe (Coefficient sr, f (SemiRingBase sr)) Source #
Attempt to parse weighted sum as a single expression with a coefficient.
asWeightedVar w = Just (c,r) when denotation(w) = c*r.
asAffineVar :: WeightedSum f sr -> Maybe (Coefficient sr, f (SemiRingBase sr), Coefficient sr) Source #
Attempt to parse a weighted sum as a single expression with a coefficient and offset.
asAffineVar w = Just (c,r,o) when denotation(w) = c*r + o.
isZero :: SemiRingRepr sr -> WeightedSum f sr -> Bool Source #
Return true if a weighted sum is equal to constant 0.
traverseVars :: forall k j m sr. (Applicative m, Tm k) => (j (SemiRingBase sr) -> m (k (SemiRingBase sr))) -> WeightedSum j sr -> m (WeightedSum k sr) Source #
Traverse the expressions in a weighted sum.
traverseCoeffs :: forall m f sr. (Applicative m, Tm f) => (Coefficient sr -> m (Coefficient sr)) -> WeightedSum f sr -> m (WeightedSum f sr) Source #
Traverse the coefficients in a weighted sum.
add :: Tm f => SemiRingRepr sr -> WeightedSum f sr -> WeightedSum f sr -> WeightedSum f sr Source #
Add two sums, collecting terms as necessary and deleting terms whose coefficients sum to 0.
addVar :: Tm f => SemiRingRepr sr -> WeightedSum f sr -> f (SemiRingBase sr) -> WeightedSum f sr Source #
Add a variable to the sum.
addVars :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> f (SemiRingBase sr) -> WeightedSum f sr Source #
Create a weighted sum that represents the sum of two terms.
addConstant :: SemiRingRepr sr -> WeightedSum f sr -> Coefficient sr -> WeightedSum f sr Source #
Add a constant to the sum.
scale :: Tm f => SemiRingRepr sr -> Coefficient sr -> WeightedSum f sr -> WeightedSum f sr Source #
Multiply a sum by a constant coefficient.
Arguments
| :: (r -> r -> r) | Addition function |
| -> (Coefficient sr -> f (SemiRingBase sr) -> r) | Scalar multiply |
| -> (Coefficient sr -> r) | Constant evaluation |
| -> WeightedSum f sr | |
| -> r |
Evaluate a sum given interpretations of addition, scalar multiplication, and a constant rational.
Arguments
| :: Monad m | |
| => (r -> r -> m r) | Addition function |
| -> (Coefficient sr -> f (SemiRingBase sr) -> m r) | Scalar multiply |
| -> (Coefficient sr -> m r) | Constant evaluation |
| -> WeightedSum f sr | |
| -> m r |
Evaluate a sum given interpretations of addition, scalar
multiplication, and a constant. This evaluation is threaded through
a monad. The addition function is associated to the left, as in
foldlM.
extractCommon :: Tm f => WeightedSum f sr -> WeightedSum f sr -> (WeightedSum f sr, WeightedSum f sr, WeightedSum f sr) Source #
Given two weighted sums x and y, this returns a triple (z,x',y')
where x = z + x' and y = z + y' and z contains the "common"
parts of x and y. We only extract common terms when both
terms occur with the same coefficient in each sum.
This is primarily used to simplify if-then-else expressions to preserve shared subterms.
fromTerms :: Tm f => SemiRingRepr sr -> [(f (SemiRingBase sr), Coefficient sr)] -> Coefficient sr -> WeightedSum f sr Source #
Produce a weighted sum from a list of terms and an offset.
transformSum :: (Applicative m, Tm g) => SemiRingRepr sr' -> (Coefficient sr -> m (Coefficient sr')) -> (f (SemiRingBase sr) -> m (g (SemiRingBase sr'))) -> WeightedSum f sr -> m (WeightedSum g sr') Source #
Apply update functions to the terms and coefficients of a weighted sum.
Arguments
| :: Tm f | |
| => WeightedSum f SemiRingInteger | The sum to reduce |
| -> Integer | The modulus, must not be 0 |
| -> WeightedSum f SemiRingInteger |
Reduce a weighted sum of integers modulo a concrete integer. This reduces each of the coefficients modulo the given integer, removing any that are congruent to 0; the offset value is also reduced.
Ring products
data SemiRingProduct (f :: BaseType -> Type) (sr :: SemiRing) Source #
A product of semiring values.
Instances
| OrdF f => TestEquality (SemiRingProduct f :: SemiRing -> Type) Source # | |
Defined in What4.Expr.WeightedSum Methods testEquality :: forall (a :: k) (b :: k). SemiRingProduct f a -> SemiRingProduct f b -> Maybe (a :~: b) # | |
| OrdF f => Hashable (SemiRingProduct f sr) Source # | |
Defined in What4.Expr.WeightedSum | |
traverseProdVars :: forall k j m sr. (Applicative m, Tm k) => (j (SemiRingBase sr) -> m (k (SemiRingBase sr))) -> SemiRingProduct j sr -> m (SemiRingProduct k sr) Source #
Traverse the expressions in a product.
nullProd :: SemiRingProduct f sr -> Bool Source #
Returns true if the product is trivial (contains no terms).
asProdVar :: SemiRingProduct f sr -> Maybe (f (SemiRingBase sr)) Source #
If the product consists of exactly on term, return it.
prodRepr :: SemiRingProduct f sr -> SemiRingRepr sr Source #
Runtime representation of the semiring for this product
prodVar :: Tm f => SemiRingRepr sr -> f (SemiRingBase sr) -> SemiRingProduct f sr Source #
Produce a product representing the single given term.
prodAbsValue :: OrdF f => SemiRingProduct f sr -> AbstractValue (SemiRingBase sr) Source #
prodMul :: Tm f => SemiRingProduct f sr -> SemiRingProduct f sr -> SemiRingProduct f sr Source #
Multiply two products, collecting terms and adding occurrences.
Arguments
| :: (r -> r -> r) | multiplication evalation |
| -> (f (SemiRingBase sr) -> r) | term evaluation |
| -> SemiRingProduct f sr | |
| -> Maybe r |
Evaluate a product, given a function representing multiplication and a function to evaluate terms.
Arguments
| :: Monad m | |
| => (r -> r -> m r) | multiplication evalation |
| -> (f (SemiRingBase sr) -> m r) | term evaluation |
| -> SemiRingProduct f sr | |
| -> m (Maybe r) |
Evaluate a product, given a function representing multiplication and a function to evaluate terms, where both functions are threaded through a monad.
prodContains :: OrdF f => SemiRingProduct f sr -> f (SemiRingBase sr) -> Bool Source #
Returns true if the product contains at least on occurrence of the given term.