yam-app-0.1.3: Yam App

Safe HaskellSafe
LanguageHaskell2010

Yam.Import

Synopsis

Documentation

data Text :: * #

A space efficient, packed, unboxed Unicode text type.

Instances

Hashable Text 

Methods

hashWithSalt :: Int -> Text -> Int #

hash :: Text -> Int #

ToJSON Text 
KeyValue Pair 

Methods

(.=) :: ToJSON v => Text -> v -> Pair #

ToJSONKey Text 
FromJSON Text 
FromJSONKey Text 
Chunk Text 
ToLogStr Text 

Methods

toLogStr :: Text -> LogStr #

PersistFieldSql Text 

Methods

sqlType :: Proxy * Text -> SqlType #

PersistField Text 
ConvertibleStrings String StrictText 
ConvertibleStrings StrictByteString StrictText 
ConvertibleStrings LazyByteString StrictText 
ConvertibleStrings StrictText String 
ConvertibleStrings StrictText StrictByteString 
ConvertibleStrings StrictText LazyByteString 
ConvertibleStrings StrictText StrictText 
ConvertibleStrings StrictText LazyText 
ConvertibleStrings LazyText StrictText 
FromPairs Value (DList Pair) 

Methods

fromPairs :: DList Pair -> Value

ToJSON v => GKeyValue v (DList Pair) 

Methods

gPair :: String -> v -> DList Pair

PersistFieldSql v => PersistFieldSql (Map Text v) 

Methods

sqlType :: Proxy * (Map Text v) -> SqlType #

PersistField v => PersistField (Map Text v) 
type State Text 
type State Text = Buffer
type ChunkElem Text 
type Item Text 
type Item Text = Char

pack :: String -> Text #

O(n) Convert a String into a Text. Subject to fusion. Performs replacement on invalid scalar values.

cs :: ConvertibleStrings a b => a -> b #

showText :: Show a => a -> Text Source #

lift :: MonadTrans t => forall (m :: * -> *) a. Monad m => m a -> t m a #

Lift a computation from the argument monad to the constructed monad.

class Monad m => MonadIO (m :: * -> *) where #

Monads in which IO computations may be embedded. Any monad built by applying a sequence of monad transformers to the IO monad will be an instance of this class.

Instances should satisfy the following laws, which state that liftIO is a transformer of monads:

Minimal complete definition

liftIO

Methods

liftIO :: IO a -> m a #

Lift a computation from the IO monad.

Instances

MonadIO IO

Since: 4.9.0.0

Methods

liftIO :: IO a -> IO a #

MonadIO m => MonadIO (MaybeT m) 

Methods

liftIO :: IO a -> MaybeT m a #

MonadIO m => MonadIO (ListT m) 

Methods

liftIO :: IO a -> ListT m a #

MonadIO m => MonadIO (NoLoggingT m) 

Methods

liftIO :: IO a -> NoLoggingT m a #

MonadIO m => MonadIO (LoggingT m) 

Methods

liftIO :: IO a -> LoggingT m a #

MonadIO m => MonadIO (ResourceT m) 

Methods

liftIO :: IO a -> ResourceT m a #

(Monoid w, MonadIO m) => MonadIO (WriterT w m) 

Methods

liftIO :: IO a -> WriterT w m a #

(Monoid w, MonadIO m) => MonadIO (WriterT w m) 

Methods

liftIO :: IO a -> WriterT w m a #

MonadIO m => MonadIO (StateT s m) 

Methods

liftIO :: IO a -> StateT s m a #

MonadIO m => MonadIO (StateT s m) 

Methods

liftIO :: IO a -> StateT s m a #

(Error e, MonadIO m) => MonadIO (ErrorT e m) 

Methods

liftIO :: IO a -> ErrorT e m a #

MonadIO m => MonadIO (ExceptT e m) 

Methods

liftIO :: IO a -> ExceptT e m a #

MonadIO m => MonadIO (IdentityT * m) 

Methods

liftIO :: IO a -> IdentityT * m a #

MonadIO m => MonadIO (ReaderT * r m) 

Methods

liftIO :: IO a -> ReaderT * r m a #

MonadIO m => MonadIO (ConduitM i o m) 

Methods

liftIO :: IO a -> ConduitM i o m a #

MonadIO m => MonadIO (ContT * r m) 

Methods

liftIO :: IO a -> ContT * r m a #

(Monoid w, MonadIO m) => MonadIO (RWST r w s m) 

Methods

liftIO :: IO a -> RWST r w s m a #

(Monoid w, MonadIO m) => MonadIO (RWST r w s m) 

Methods

liftIO :: IO a -> RWST r w s m a #

MonadIO m => MonadIO (Pipe l i o u m) 

Methods

liftIO :: IO a -> Pipe l i o u m a #

liftIO :: MonadIO m => forall a. IO a -> m a #

Lift a computation from the IO monad.

when :: Applicative f => Bool -> f () -> f () #

Conditional execution of Applicative expressions. For example,

when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

unless :: Applicative f => Bool -> f () -> f () #

The reverse of when.

void :: Functor f => f a -> f () #

void value discards or ignores the result of evaluation, such as the return value of an IO action.

Examples

Replace the contents of a Maybe Int with unit:

>>> void Nothing
Nothing
>>> void (Just 3)
Just ()

Replace the contents of an Either Int Int with unit, resulting in an Either Int '()':

>>> void (Left 8675309)
Left 8675309
>>> void (Right 8675309)
Right ()

Replace every element of a list with unit:

>>> void [1,2,3]
[(),(),()]

Replace the second element of a pair with unit:

>>> void (1,2)
(1,())

Discard the result of an IO action:

>>> mapM print [1,2]
1
2
[(),()]
>>> void $ mapM print [1,2]
1
2

(<>) :: Monoid m => m -> m -> m infixr 6 #

An infix synonym for mappend.

Since: 4.5.0.0

myThreadId :: IO ThreadId #

Returns the ThreadId of the calling thread (GHC only).

data ThreadId :: * #

A ThreadId is an abstract type representing a handle to a thread. ThreadId is an instance of Eq, Ord and Show, where the Ord instance implements an arbitrary total ordering over ThreadIds. The Show instance lets you convert an arbitrary-valued ThreadId to string form; showing a ThreadId value is occasionally useful when debugging or diagnosing the behaviour of a concurrent program.

Note: in GHC, if you have a ThreadId, you essentially have a pointer to the thread itself. This means the thread itself can't be garbage collected until you drop the ThreadId. This misfeature will hopefully be corrected at a later date.

killThread :: ThreadId -> IO () #

killThread raises the ThreadKilled exception in the given thread (GHC only).

killThread tid = throwTo tid ThreadKilled

fromMaybe :: a -> Maybe a -> a #

The fromMaybe function takes a default value and and Maybe value. If the Maybe is Nothing, it returns the default values; otherwise, it returns the value contained in the Maybe.

Examples

Basic usage:

>>> fromMaybe "" (Just "Hello, World!")
"Hello, World!"
>>> fromMaybe "" Nothing
""

Read an integer from a string using readMaybe. If we fail to parse an integer, we want to return 0 by default:

>>> import Text.Read ( readMaybe )
>>> fromMaybe 0 (readMaybe "5")
5
>>> fromMaybe 0 (readMaybe "")
0

maybe :: b -> (a -> b) -> Maybe a -> b #

The maybe function takes a default value, a function, and a Maybe value. If the Maybe value is Nothing, the function returns the default value. Otherwise, it applies the function to the value inside the Just and returns the result.

Examples

Basic usage:

>>> maybe False odd (Just 3)
True
>>> maybe False odd Nothing
False

Read an integer from a string using readMaybe. If we succeed, return twice the integer; that is, apply (*2) to it. If instead we fail to parse an integer, return 0 by default:

>>> import Text.Read ( readMaybe )
>>> maybe 0 (*2) (readMaybe "5")
10
>>> maybe 0 (*2) (readMaybe "")
0

Apply show to a Maybe Int. If we have Just n, we want to show the underlying Int n. But if we have Nothing, we return the empty string instead of (for example) "Nothing":

>>> maybe "" show (Just 5)
"5"
>>> maybe "" show Nothing
""

mapMaybe :: (a -> Maybe b) -> [a] -> [b] #

The mapMaybe function is a version of map which can throw out elements. In particular, the functional argument returns something of type Maybe b. If this is Nothing, no element is added on to the result list. If it is Just b, then b is included in the result list.

Examples

Using mapMaybe f x is a shortcut for catMaybes $ map f x in most cases:

>>> import Text.Read ( readMaybe )
>>> let readMaybeInt = readMaybe :: String -> Maybe Int
>>> mapMaybe readMaybeInt ["1", "Foo", "3"]
[1,3]
>>> catMaybes $ map readMaybeInt ["1", "Foo", "3"]
[1,3]

If we map the Just constructor, the entire list should be returned:

>>> mapMaybe Just [1,2,3]
[1,2,3]

catMaybes :: [Maybe a] -> [a] #

The catMaybes function takes a list of Maybes and returns a list of all the Just values.

Examples

Basic usage:

>>> catMaybes [Just 1, Nothing, Just 3]
[1,3]

When constructing a list of Maybe values, catMaybes can be used to return all of the "success" results (if the list is the result of a map, then mapMaybe would be more appropriate):

>>> import Text.Read ( readMaybe )
>>> [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[Just 1,Nothing,Just 3]
>>> catMaybes $ [readMaybe x :: Maybe Int | x <- ["1", "Foo", "3"] ]
[1,3]

finally :: MonadMask m => m a -> m b -> m a #

Perform an action with a finalizer action that is run, even if an exception occurs.

class MonadCatch m => MonadMask (m :: * -> *) #

A class for monads which provide for the ability to account for all possible exit points from a computation, and to mask asynchronous exceptions. Continuation-based monads, and stacks such as ErrorT e IO which provide for multiple failure modes, are invalid instances of this class.

Note that this package does provide a MonadMask instance for CatchT. This instance is only valid if the base monad provides no ability to provide multiple exit. For example, IO or Either would be invalid base monads, but Reader or State would be acceptable.

Instances should ensure that, in the following code:

f `finally` g

The action g is called regardless of what occurs within f, including async exceptions.

Minimal complete definition

mask, uninterruptibleMask

Instances

MonadMask IO 

Methods

mask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #

uninterruptibleMask :: ((forall a. IO a -> IO a) -> IO b) -> IO b #

(~) * e SomeException => MonadMask (Either e)

Since: 0.8.3

Methods

mask :: ((forall a. Either e a -> Either e a) -> Either e b) -> Either e b #

uninterruptibleMask :: ((forall a. Either e a -> Either e a) -> Either e b) -> Either e b #

MonadMask m => MonadMask (NoLoggingT m) 

Methods

mask :: ((forall a. NoLoggingT m a -> NoLoggingT m a) -> NoLoggingT m b) -> NoLoggingT m b #

uninterruptibleMask :: ((forall a. NoLoggingT m a -> NoLoggingT m a) -> NoLoggingT m b) -> NoLoggingT m b #

MonadMask m => MonadMask (LoggingT m) 

Methods

mask :: ((forall a. LoggingT m a -> LoggingT m a) -> LoggingT m b) -> LoggingT m b #

uninterruptibleMask :: ((forall a. LoggingT m a -> LoggingT m a) -> LoggingT m b) -> LoggingT m b #

MonadMask m => MonadMask (ResourceT m) 

Methods

mask :: ((forall a. ResourceT m a -> ResourceT m a) -> ResourceT m b) -> ResourceT m b #

uninterruptibleMask :: ((forall a. ResourceT m a -> ResourceT m a) -> ResourceT m b) -> ResourceT m b #

(MonadMask m, Monoid w) => MonadMask (WriterT w m) 

Methods

mask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b #

uninterruptibleMask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b #

(MonadMask m, Monoid w) => MonadMask (WriterT w m) 

Methods

mask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b #

uninterruptibleMask :: ((forall a. WriterT w m a -> WriterT w m a) -> WriterT w m b) -> WriterT w m b #

MonadMask m => MonadMask (StateT s m) 

Methods

mask :: ((forall a. StateT s m a -> StateT s m a) -> StateT s m b) -> StateT s m b #

uninterruptibleMask :: ((forall a. StateT s m a -> StateT s m a) -> StateT s m b) -> StateT s m b #

MonadMask m => MonadMask (StateT s m) 

Methods

mask :: ((forall a. StateT s m a -> StateT s m a) -> StateT s m b) -> StateT s m b #

uninterruptibleMask :: ((forall a. StateT s m a -> StateT s m a) -> StateT s m b) -> StateT s m b #

MonadMask m => MonadMask (IdentityT * m) 

Methods

mask :: ((forall a. IdentityT * m a -> IdentityT * m a) -> IdentityT * m b) -> IdentityT * m b #

uninterruptibleMask :: ((forall a. IdentityT * m a -> IdentityT * m a) -> IdentityT * m b) -> IdentityT * m b #

MonadMask m => MonadMask (ReaderT * r m) 

Methods

mask :: ((forall a. ReaderT * r m a -> ReaderT * r m a) -> ReaderT * r m b) -> ReaderT * r m b #

uninterruptibleMask :: ((forall a. ReaderT * r m a -> ReaderT * r m a) -> ReaderT * r m b) -> ReaderT * r m b #

(MonadMask m, Monoid w) => MonadMask (RWST r w s m) 

Methods

mask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b #

uninterruptibleMask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b #

(MonadMask m, Monoid w) => MonadMask (RWST r w s m) 

Methods

mask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b #

uninterruptibleMask :: ((forall a. RWST r w s m a -> RWST r w s m a) -> RWST r w s m b) -> RWST r w s m b #

class Monad m => MonadThrow (m :: * -> *) #

A class for monads in which exceptions may be thrown.

Instances should obey the following law:

throwM e >> x = throwM e

In other words, throwing an exception short-circuits the rest of the monadic computation.

Minimal complete definition

throwM

Instances

MonadThrow [] 

Methods

throwM :: Exception e => e -> [a] #

MonadThrow Maybe 

Methods

throwM :: Exception e => e -> Maybe a #

MonadThrow IO 

Methods

throwM :: Exception e => e -> IO a #

MonadThrow Q 

Methods

throwM :: Exception e => e -> Q a #

MonadThrow STM 

Methods

throwM :: Exception e => e -> STM a #

(~) * e SomeException => MonadThrow (Either e) 

Methods

throwM :: Exception e => e -> Either e a #

MonadThrow m => MonadThrow (MaybeT m)

Throws exceptions into the base monad.

Methods

throwM :: Exception e => e -> MaybeT m a #

MonadThrow m => MonadThrow (ListT m) 

Methods

throwM :: Exception e => e -> ListT m a #

MonadThrow m => MonadThrow (NoLoggingT m) 

Methods

throwM :: Exception e => e -> NoLoggingT m a #

MonadThrow m => MonadThrow (LoggingT m) 

Methods

throwM :: Exception e => e -> LoggingT m a #

MonadThrow m => MonadThrow (ResourceT m) 

Methods

throwM :: Exception e => e -> ResourceT m a #

(MonadThrow m, Monoid w) => MonadThrow (WriterT w m) 

Methods

throwM :: Exception e => e -> WriterT w m a #

(MonadThrow m, Monoid w) => MonadThrow (WriterT w m) 

Methods

throwM :: Exception e => e -> WriterT w m a #

MonadThrow m => MonadThrow (StateT s m) 

Methods

throwM :: Exception e => e -> StateT s m a #

MonadThrow m => MonadThrow (StateT s m) 

Methods

throwM :: Exception e => e -> StateT s m a #

(Error e, MonadThrow m) => MonadThrow (ErrorT e m)

Throws exceptions into the base monad.

Methods

throwM :: Exception e => e -> ErrorT e m a #

MonadThrow m => MonadThrow (ExceptT e m)

Throws exceptions into the base monad.

Methods

throwM :: Exception e => e -> ExceptT e m a #

MonadThrow m => MonadThrow (IdentityT * m) 

Methods

throwM :: Exception e => e -> IdentityT * m a #

MonadThrow m => MonadThrow (ReaderT * r m) 

Methods

throwM :: Exception e => e -> ReaderT * r m a #

MonadThrow m => MonadThrow (ConduitM i o m) 

Methods

throwM :: Exception e => e -> ConduitM i o m a #

MonadThrow m => MonadThrow (ContT * r m) 

Methods

throwM :: Exception e => e -> ContT * r m a #

(MonadThrow m, Monoid w) => MonadThrow (RWST r w s m) 

Methods

throwM :: Exception e => e -> RWST r w s m a #

(MonadThrow m, Monoid w) => MonadThrow (RWST r w s m) 

Methods

throwM :: Exception e => e -> RWST r w s m a #

MonadThrow m => MonadThrow (Pipe l i o u m) 

Methods

throwM :: Exception e => e -> Pipe l i o u m a #

class MonadThrow m => MonadCatch (m :: * -> *) #

A class for monads which allow exceptions to be caught, in particular exceptions which were thrown by throwM.

Instances should obey the following law:

catch (throwM e) f = f e

Note that the ability to catch an exception does not guarantee that we can deal with all possible exit points from a computation. Some monads, such as continuation-based stacks, allow for more than just a success/failure strategy, and therefore catch cannot be used by those monads to properly implement a function such as finally. For more information, see MonadMask.

Minimal complete definition

catch

Instances

MonadCatch IO 

Methods

catch :: Exception e => IO a -> (e -> IO a) -> IO a #

MonadCatch STM 

Methods

catch :: Exception e => STM a -> (e -> STM a) -> STM a #

(~) * e SomeException => MonadCatch (Either e)

Since: 0.8.3

Methods

catch :: Exception e => Either e a -> (e -> Either e a) -> Either e a #

MonadCatch m => MonadCatch (MaybeT m)

Catches exceptions from the base monad.

Methods

catch :: Exception e => MaybeT m a -> (e -> MaybeT m a) -> MaybeT m a #

MonadCatch m => MonadCatch (ListT m) 

Methods

catch :: Exception e => ListT m a -> (e -> ListT m a) -> ListT m a #

MonadCatch m => MonadCatch (NoLoggingT m) 

Methods

catch :: Exception e => NoLoggingT m a -> (e -> NoLoggingT m a) -> NoLoggingT m a #

MonadCatch m => MonadCatch (LoggingT m) 

Methods

catch :: Exception e => LoggingT m a -> (e -> LoggingT m a) -> LoggingT m a #

MonadCatch m => MonadCatch (ResourceT m) 

Methods

catch :: Exception e => ResourceT m a -> (e -> ResourceT m a) -> ResourceT m a #

(MonadCatch m, Monoid w) => MonadCatch (WriterT w m) 

Methods

catch :: Exception e => WriterT w m a -> (e -> WriterT w m a) -> WriterT w m a #

(MonadCatch m, Monoid w) => MonadCatch (WriterT w m) 

Methods

catch :: Exception e => WriterT w m a -> (e -> WriterT w m a) -> WriterT w m a #

MonadCatch m => MonadCatch (StateT s m) 

Methods

catch :: Exception e => StateT s m a -> (e -> StateT s m a) -> StateT s m a #

MonadCatch m => MonadCatch (StateT s m) 

Methods

catch :: Exception e => StateT s m a -> (e -> StateT s m a) -> StateT s m a #

(Error e, MonadCatch m) => MonadCatch (ErrorT e m)

Catches exceptions from the base monad.

Methods

catch :: Exception e => ErrorT e m a -> (e -> ErrorT e m a) -> ErrorT e m a #

MonadCatch m => MonadCatch (ExceptT e m)

Catches exceptions from the base monad.

Methods

catch :: Exception e => ExceptT e m a -> (e -> ExceptT e m a) -> ExceptT e m a #

MonadCatch m => MonadCatch (IdentityT * m) 

Methods

catch :: Exception e => IdentityT * m a -> (e -> IdentityT * m a) -> IdentityT * m a #

MonadCatch m => MonadCatch (ReaderT * r m) 

Methods

catch :: Exception e => ReaderT * r m a -> (e -> ReaderT * r m a) -> ReaderT * r m a #

MonadCatch m => MonadCatch (ConduitM i o m) 

Methods

catch :: Exception e => ConduitM i o m a -> (e -> ConduitM i o m a) -> ConduitM i o m a #

(MonadCatch m, Monoid w) => MonadCatch (RWST r w s m) 

Methods

catch :: Exception e => RWST r w s m a -> (e -> RWST r w s m a) -> RWST r w s m a #

(MonadCatch m, Monoid w) => MonadCatch (RWST r w s m) 

Methods

catch :: Exception e => RWST r w s m a -> (e -> RWST r w s m a) -> RWST r w s m a #

MonadCatch m => MonadCatch (Pipe l i o u m) 

Methods

catch :: Exception e => Pipe l i o u m a -> (e -> Pipe l i o u m a) -> Pipe l i o u m a #

catchAll :: MonadCatch m => m a -> (SomeException -> m a) -> m a #

Catches all exceptions, and somewhat defeats the purpose of the extensible exception system. Use sparingly.

runReaderT :: ReaderT k r m a -> r -> m a #

data ReaderT k r (m :: k -> *) (a :: k) :: forall k. * -> (k -> *) -> k -> * #

The reader monad transformer, which adds a read-only environment to the given monad.

The return function ignores the environment, while >>= passes the inherited environment to both subcomputations.

Instances

MonadBaseControl b m => MonadBaseControl b (ReaderT * r m) 

Associated Types

type StM (ReaderT * r m :: * -> *) a :: * #

Methods

liftBaseWith :: (RunInBase (ReaderT * r m) b -> b a) -> ReaderT * r m a #

restoreM :: StM (ReaderT * r m) a -> ReaderT * r m a #

MonadBase b m => MonadBase b (ReaderT * r m) 

Methods

liftBase :: b α -> ReaderT * r m α #

MonadTrans (ReaderT * r) 

Methods

lift :: Monad m => m a -> ReaderT * r m a #

MonadTransControl (ReaderT * r) 

Associated Types

type StT (ReaderT * r :: (* -> *) -> * -> *) a :: * #

Methods

liftWith :: Monad m => (Run (ReaderT * r) -> m a) -> ReaderT * r m a #

restoreT :: Monad m => m (StT (ReaderT * r) a) -> ReaderT * r m a #

Monad m => Monad (ReaderT * r m) 

Methods

(>>=) :: ReaderT * r m a -> (a -> ReaderT * r m b) -> ReaderT * r m b #

(>>) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m b #

return :: a -> ReaderT * r m a #

fail :: String -> ReaderT * r m a #

Functor m => Functor (ReaderT * r m) 

Methods

fmap :: (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

(<$) :: a -> ReaderT * r m b -> ReaderT * r m a #

MonadFix m => MonadFix (ReaderT * r m) 

Methods

mfix :: (a -> ReaderT * r m a) -> ReaderT * r m a #

MonadFail m => MonadFail (ReaderT * r m) 

Methods

fail :: String -> ReaderT * r m a #

Applicative m => Applicative (ReaderT * r m) 

Methods

pure :: a -> ReaderT * r m a #

(<*>) :: ReaderT * r m (a -> b) -> ReaderT * r m a -> ReaderT * r m b #

liftA2 :: (a -> b -> c) -> ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m c #

(*>) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m b #

(<*) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m a #

Alternative m => Alternative (ReaderT * r m) 

Methods

empty :: ReaderT * r m a #

(<|>) :: ReaderT * r m a -> ReaderT * r m a -> ReaderT * r m a #

some :: ReaderT * r m a -> ReaderT * r m [a] #

many :: ReaderT * r m a -> ReaderT * r m [a] #

MonadPlus m => MonadPlus (ReaderT * r m) 

Methods

mzero :: ReaderT * r m a #

mplus :: ReaderT * r m a -> ReaderT * r m a -> ReaderT * r m a #

MonadZip m => MonadZip (ReaderT * r m) 

Methods

mzip :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m (a, b) #

mzipWith :: (a -> b -> c) -> ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m c #

munzip :: ReaderT * r m (a, b) -> (ReaderT * r m a, ReaderT * r m b) #

MonadIO m => MonadIO (ReaderT * r m) 

Methods

liftIO :: IO a -> ReaderT * r m a #

MonadThrow m => MonadThrow (ReaderT * r m) 

Methods

throwM :: Exception e => e -> ReaderT * r m a #

MonadCatch m => MonadCatch (ReaderT * r m) 

Methods

catch :: Exception e => ReaderT * r m a -> (e -> ReaderT * r m a) -> ReaderT * r m a #

MonadMask m => MonadMask (ReaderT * r m) 

Methods

mask :: ((forall a. ReaderT * r m a -> ReaderT * r m a) -> ReaderT * r m b) -> ReaderT * r m b #

uninterruptibleMask :: ((forall a. ReaderT * r m a -> ReaderT * r m a) -> ReaderT * r m b) -> ReaderT * r m b #

MonadLogger m => MonadLogger (ReaderT * r m) 

Methods

monadLoggerLog :: ToLogStr msg => Loc -> LogSource -> LogLevel -> msg -> ReaderT * r m () #

MonadLoggerIO m => MonadLoggerIO (ReaderT * r m) 

Methods

askLoggerIO :: ReaderT * r m (Loc -> LogSource -> LogLevel -> LogStr -> IO ()) #

PrimMonad m => PrimMonad (ReaderT * r m) 

Associated Types

type PrimState (ReaderT * r m :: * -> *) :: * #

Methods

primitive :: (State# (PrimState (ReaderT * r m)) -> (#TupleRep [RuntimeRep], LiftedRep, State# (PrimState (ReaderT * r m)), a#)) -> ReaderT * r m a #

MonadResource m => MonadResource (ReaderT * r m) 

Methods

liftResourceT :: ResourceT IO a -> ReaderT * r m a #

MonadIO m => MonadLogger (ReaderT * LoggerConfig m) Source # 
type StT (ReaderT * r) a 
type StT (ReaderT * r) a = a
type PrimState (ReaderT * r m) 
type PrimState (ReaderT * r m) = PrimState m
type StM (ReaderT * r m) a 
type StM (ReaderT * r m) a = ComposeSt (ReaderT * r) m a

ask :: Monad m => ReaderT * r m r #

Fetch the value of the environment.

class Generic a #

Representable types of kind *. This class is derivable in GHC with the DeriveGeneric flag on.

Minimal complete definition

from, to

Instances

Generic Bool 

Associated Types

type Rep Bool :: * -> * #

Methods

from :: Bool -> Rep Bool x #

to :: Rep Bool x -> Bool #

Generic Ordering 

Associated Types

type Rep Ordering :: * -> * #

Methods

from :: Ordering -> Rep Ordering x #

to :: Rep Ordering x -> Ordering #

Generic Exp 

Associated Types

type Rep Exp :: * -> * #

Methods

from :: Exp -> Rep Exp x #

to :: Rep Exp x -> Exp #

Generic Match 

Associated Types

type Rep Match :: * -> * #

Methods

from :: Match -> Rep Match x #

to :: Rep Match x -> Match #

Generic Clause 

Associated Types

type Rep Clause :: * -> * #

Methods

from :: Clause -> Rep Clause x #

to :: Rep Clause x -> Clause #

Generic Pat 

Associated Types

type Rep Pat :: * -> * #

Methods

from :: Pat -> Rep Pat x #

to :: Rep Pat x -> Pat #

Generic Type 

Associated Types

type Rep Type :: * -> * #

Methods

from :: Type -> Rep Type x #

to :: Rep Type x -> Type #

Generic Dec 

Associated Types

type Rep Dec :: * -> * #

Methods

from :: Dec -> Rep Dec x #

to :: Rep Dec x -> Dec #

Generic Name 

Associated Types

type Rep Name :: * -> * #

Methods

from :: Name -> Rep Name x #

to :: Rep Name x -> Name #

Generic FunDep 

Associated Types

type Rep FunDep :: * -> * #

Methods

from :: FunDep -> Rep FunDep x #

to :: Rep FunDep x -> FunDep #

Generic TyVarBndr 

Associated Types

type Rep TyVarBndr :: * -> * #

Generic InjectivityAnn 

Associated Types

type Rep InjectivityAnn :: * -> * #

Generic Overlap 

Associated Types

type Rep Overlap :: * -> * #

Methods

from :: Overlap -> Rep Overlap x #

to :: Rep Overlap x -> Overlap #

Generic DerivStrategy 

Associated Types

type Rep DerivStrategy :: * -> * #

Generic () 

Associated Types

type Rep () :: * -> * #

Methods

from :: () -> Rep () x #

to :: Rep () x -> () #

Generic Con 

Associated Types

type Rep Con :: * -> * #

Methods

from :: Con -> Rep Con x #

to :: Rep Con x -> Con #

Generic Value 

Associated Types

type Rep Value :: * -> * #

Methods

from :: Value -> Rep Value x #

to :: Rep Value x -> Value #

Generic Void 

Associated Types

type Rep Void :: * -> * #

Methods

from :: Void -> Rep Void x #

to :: Rep Void x -> Void #

Generic Version 

Associated Types

type Rep Version :: * -> * #

Methods

from :: Version -> Rep Version x #

to :: Rep Version x -> Version #

Generic ExitCode 

Associated Types

type Rep ExitCode :: * -> * #

Methods

from :: ExitCode -> Rep ExitCode x #

to :: Rep ExitCode x -> ExitCode #

Generic All 

Associated Types

type Rep All :: * -> * #

Methods

from :: All -> Rep All x #

to :: Rep All x -> All #

Generic Any 

Associated Types

type Rep Any :: * -> * #

Methods

from :: Any -> Rep Any x #

to :: Rep Any x -> Any #

Generic Fixity 

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic Associativity 

Associated Types

type Rep Associativity :: * -> * #

Generic SourceUnpackedness 
Generic SourceStrictness 
Generic DecidedStrictness 
Generic Extension 

Associated Types

type Rep Extension :: * -> * #

Generic ForeignSrcLang 

Associated Types

type Rep ForeignSrcLang :: * -> * #

Generic Loc 

Associated Types

type Rep Loc :: * -> * #

Methods

from :: Loc -> Rep Loc x #

to :: Rep Loc x -> Loc #

Generic Doc 

Associated Types

type Rep Doc :: * -> * #

Methods

from :: Doc -> Rep Doc x #

to :: Rep Doc x -> Doc #

Generic TextDetails 

Associated Types

type Rep TextDetails :: * -> * #

Generic Style 

Associated Types

type Rep Style :: * -> * #

Methods

from :: Style -> Rep Style x #

to :: Rep Style x -> Style #

Generic Mode 

Associated Types

type Rep Mode :: * -> * #

Methods

from :: Mode -> Rep Mode x #

to :: Rep Mode x -> Mode #

Generic ModName 

Associated Types

type Rep ModName :: * -> * #

Methods

from :: ModName -> Rep ModName x #

to :: Rep ModName x -> ModName #

Generic PkgName 

Associated Types

type Rep PkgName :: * -> * #

Methods

from :: PkgName -> Rep PkgName x #

to :: Rep PkgName x -> PkgName #

Generic Module 

Associated Types

type Rep Module :: * -> * #

Methods

from :: Module -> Rep Module x #

to :: Rep Module x -> Module #

Generic OccName 

Associated Types

type Rep OccName :: * -> * #

Methods

from :: OccName -> Rep OccName x #

to :: Rep OccName x -> OccName #

Generic NameFlavour 

Associated Types

type Rep NameFlavour :: * -> * #

Generic NameSpace 

Associated Types

type Rep NameSpace :: * -> * #

Generic Info 

Associated Types

type Rep Info :: * -> * #

Methods

from :: Info -> Rep Info x #

to :: Rep Info x -> Info #

Generic ModuleInfo 

Associated Types

type Rep ModuleInfo :: * -> * #

Generic Fixity 

Associated Types

type Rep Fixity :: * -> * #

Methods

from :: Fixity -> Rep Fixity x #

to :: Rep Fixity x -> Fixity #

Generic FixityDirection 
Generic Lit 

Associated Types

type Rep Lit :: * -> * #

Methods

from :: Lit -> Rep Lit x #

to :: Rep Lit x -> Lit #

Generic Body 

Associated Types

type Rep Body :: * -> * #

Methods

from :: Body -> Rep Body x #

to :: Rep Body x -> Body #

Generic Guard 

Associated Types

type Rep Guard :: * -> * #

Methods

from :: Guard -> Rep Guard x #

to :: Rep Guard x -> Guard #

Generic Stmt 

Associated Types

type Rep Stmt :: * -> * #

Methods

from :: Stmt -> Rep Stmt x #

to :: Rep Stmt x -> Stmt #

Generic Range 

Associated Types

type Rep Range :: * -> * #

Methods

from :: Range -> Rep Range x #

to :: Rep Range x -> Range #

Generic DerivClause 

Associated Types

type Rep DerivClause :: * -> * #

Generic TypeFamilyHead 

Associated Types

type Rep TypeFamilyHead :: * -> * #

Generic TySynEqn 

Associated Types

type Rep TySynEqn :: * -> * #

Methods

from :: TySynEqn -> Rep TySynEqn x #

to :: Rep TySynEqn x -> TySynEqn #

Generic FamFlavour 

Associated Types

type Rep FamFlavour :: * -> * #

Generic Foreign 

Associated Types

type Rep Foreign :: * -> * #

Methods

from :: Foreign -> Rep Foreign x #

to :: Rep Foreign x -> Foreign #

Generic Callconv 

Associated Types

type Rep Callconv :: * -> * #

Methods

from :: Callconv -> Rep Callconv x #

to :: Rep Callconv x -> Callconv #

Generic Safety 

Associated Types

type Rep Safety :: * -> * #

Methods

from :: Safety -> Rep Safety x #

to :: Rep Safety x -> Safety #

Generic Pragma 

Associated Types

type Rep Pragma :: * -> * #

Methods

from :: Pragma -> Rep Pragma x #

to :: Rep Pragma x -> Pragma #

Generic Inline 

Associated Types

type Rep Inline :: * -> * #

Methods

from :: Inline -> Rep Inline x #

to :: Rep Inline x -> Inline #

Generic RuleMatch 

Associated Types

type Rep RuleMatch :: * -> * #

Generic Phases 

Associated Types

type Rep Phases :: * -> * #

Methods

from :: Phases -> Rep Phases x #

to :: Rep Phases x -> Phases #

Generic RuleBndr 

Associated Types

type Rep RuleBndr :: * -> * #

Methods

from :: RuleBndr -> Rep RuleBndr x #

to :: Rep RuleBndr x -> RuleBndr #

Generic AnnTarget 

Associated Types

type Rep AnnTarget :: * -> * #

Generic SourceUnpackedness 
Generic SourceStrictness 
Generic DecidedStrictness 
Generic Bang 

Associated Types

type Rep Bang :: * -> * #

Methods

from :: Bang -> Rep Bang x #

to :: Rep Bang x -> Bang #

Generic PatSynDir 

Associated Types

type Rep PatSynDir :: * -> * #

Generic PatSynArgs 

Associated Types

type Rep PatSynArgs :: * -> * #

Generic FamilyResultSig 
Generic TyLit 

Associated Types

type Rep TyLit :: * -> * #

Methods

from :: TyLit -> Rep TyLit x #

to :: Rep TyLit x -> TyLit #

Generic Role 

Associated Types

type Rep Role :: * -> * #

Methods

from :: Role -> Rep Role x #

to :: Rep Role x -> Role #

Generic AnnLookup 

Associated Types

type Rep AnnLookup :: * -> * #

Generic DataSource # 

Associated Types

type Rep DataSource :: * -> * #

Generic [a] 

Associated Types

type Rep [a] :: * -> * #

Methods

from :: [a] -> Rep [a] x #

to :: Rep [a] x -> [a] #

Generic (Maybe a) 

Associated Types

type Rep (Maybe a) :: * -> * #

Methods

from :: Maybe a -> Rep (Maybe a) x #

to :: Rep (Maybe a) x -> Maybe a #

Generic (Par1 p) 

Associated Types

type Rep (Par1 p) :: * -> * #

Methods

from :: Par1 p -> Rep (Par1 p) x #

to :: Rep (Par1 p) x -> Par1 p #

Generic (Complex a) 

Associated Types

type Rep (Complex a) :: * -> * #

Methods

from :: Complex a -> Rep (Complex a) x #

to :: Rep (Complex a) x -> Complex a #

Generic (Min a) 

Associated Types

type Rep (Min a) :: * -> * #

Methods

from :: Min a -> Rep (Min a) x #

to :: Rep (Min a) x -> Min a #

Generic (Max a) 

Associated Types

type Rep (Max a) :: * -> * #

Methods

from :: Max a -> Rep (Max a) x #

to :: Rep (Max a) x -> Max a #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (WrappedMonoid m) 

Associated Types

type Rep (WrappedMonoid m) :: * -> * #

Generic (Option a) 

Associated Types

type Rep (Option a) :: * -> * #

Methods

from :: Option a -> Rep (Option a) x #

to :: Rep (Option a) x -> Option a #

Generic (NonEmpty a) 

Associated Types

type Rep (NonEmpty a) :: * -> * #

Methods

from :: NonEmpty a -> Rep (NonEmpty a) x #

to :: Rep (NonEmpty a) x -> NonEmpty a #

Generic (ZipList a) 

Associated Types

type Rep (ZipList a) :: * -> * #

Methods

from :: ZipList a -> Rep (ZipList a) x #

to :: Rep (ZipList a) x -> ZipList a #

Generic (Identity a) 

Associated Types

type Rep (Identity a) :: * -> * #

Methods

from :: Identity a -> Rep (Identity a) x #

to :: Rep (Identity a) x -> Identity a #

Generic (Dual a) 

Associated Types

type Rep (Dual a) :: * -> * #

Methods

from :: Dual a -> Rep (Dual a) x #

to :: Rep (Dual a) x -> Dual a #

Generic (Endo a) 

Associated Types

type Rep (Endo a) :: * -> * #

Methods

from :: Endo a -> Rep (Endo a) x #

to :: Rep (Endo a) x -> Endo a #

Generic (Sum a) 

Associated Types

type Rep (Sum a) :: * -> * #

Methods

from :: Sum a -> Rep (Sum a) x #

to :: Rep (Sum a) x -> Sum a #

Generic (Product a) 

Associated Types

type Rep (Product a) :: * -> * #

Methods

from :: Product a -> Rep (Product a) x #

to :: Rep (Product a) x -> Product a #

Generic (First a) 

Associated Types

type Rep (First a) :: * -> * #

Methods

from :: First a -> Rep (First a) x #

to :: Rep (First a) x -> First a #

Generic (Last a) 

Associated Types

type Rep (Last a) :: * -> * #

Methods

from :: Last a -> Rep (Last a) x #

to :: Rep (Last a) x -> Last a #

Generic (Tree a) 

Associated Types

type Rep (Tree a) :: * -> * #

Methods

from :: Tree a -> Rep (Tree a) x #

to :: Rep (Tree a) x -> Tree a #

Generic (ViewL a) 

Associated Types

type Rep (ViewL a) :: * -> * #

Methods

from :: ViewL a -> Rep (ViewL a) x #

to :: Rep (ViewL a) x -> ViewL a #

Generic (ViewR a) 

Associated Types

type Rep (ViewR a) :: * -> * #

Methods

from :: ViewR a -> Rep (ViewR a) x #

to :: Rep (ViewR a) x -> ViewR a #

Generic (Doc a) 

Associated Types

type Rep (Doc a) :: * -> * #

Methods

from :: Doc a -> Rep (Doc a) x #

to :: Rep (Doc a) x -> Doc a #

Generic (Either a b) 

Associated Types

type Rep (Either a b) :: * -> * #

Methods

from :: Either a b -> Rep (Either a b) x #

to :: Rep (Either a b) x -> Either a b #

Generic (V1 k p) 

Associated Types

type Rep (V1 k p) :: * -> * #

Methods

from :: V1 k p -> Rep (V1 k p) x #

to :: Rep (V1 k p) x -> V1 k p #

Generic (U1 k p) 

Associated Types

type Rep (U1 k p) :: * -> * #

Methods

from :: U1 k p -> Rep (U1 k p) x #

to :: Rep (U1 k p) x -> U1 k p #

Generic (a, b) 

Associated Types

type Rep (a, b) :: * -> * #

Methods

from :: (a, b) -> Rep (a, b) x #

to :: Rep (a, b) x -> (a, b) #

Generic (Arg a b) 

Associated Types

type Rep (Arg a b) :: * -> * #

Methods

from :: Arg a b -> Rep (Arg a b) x #

to :: Rep (Arg a b) x -> Arg a b #

Generic (WrappedMonad m a) 

Associated Types

type Rep (WrappedMonad m a) :: * -> * #

Methods

from :: WrappedMonad m a -> Rep (WrappedMonad m a) x #

to :: Rep (WrappedMonad m a) x -> WrappedMonad m a #

Generic (Proxy k t) 

Associated Types

type Rep (Proxy k t) :: * -> * #

Methods

from :: Proxy k t -> Rep (Proxy k t) x #

to :: Rep (Proxy k t) x -> Proxy k t #

Generic (Rec1 k f p) 

Associated Types

type Rep (Rec1 k f p) :: * -> * #

Methods

from :: Rec1 k f p -> Rep (Rec1 k f p) x #

to :: Rep (Rec1 k f p) x -> Rec1 k f p #

Generic (URec k (Ptr ()) p) 

Associated Types

type Rep (URec k (Ptr ()) p) :: * -> * #

Methods

from :: URec k (Ptr ()) p -> Rep (URec k (Ptr ()) p) x #

to :: Rep (URec k (Ptr ()) p) x -> URec k (Ptr ()) p #

Generic (URec k Char p) 

Associated Types

type Rep (URec k Char p) :: * -> * #

Methods

from :: URec k Char p -> Rep (URec k Char p) x #

to :: Rep (URec k Char p) x -> URec k Char p #

Generic (URec k Double p) 

Associated Types

type Rep (URec k Double p) :: * -> * #

Methods

from :: URec k Double p -> Rep (URec k Double p) x #

to :: Rep (URec k Double p) x -> URec k Double p #

Generic (URec k Float p) 

Associated Types

type Rep (URec k Float p) :: * -> * #

Methods

from :: URec k Float p -> Rep (URec k Float p) x #

to :: Rep (URec k Float p) x -> URec k Float p #

Generic (URec k Int p) 

Associated Types

type Rep (URec k Int p) :: * -> * #

Methods

from :: URec k Int p -> Rep (URec k Int p) x #

to :: Rep (URec k Int p) x -> URec k Int p #

Generic (URec k Word p) 

Associated Types

type Rep (URec k Word p) :: * -> * #

Methods

from :: URec k Word p -> Rep (URec k Word p) x #

to :: Rep (URec k Word p) x -> URec k Word p #

Generic (a, b, c) 

Associated Types

type Rep (a, b, c) :: * -> * #

Methods

from :: (a, b, c) -> Rep (a, b, c) x #

to :: Rep (a, b, c) x -> (a, b, c) #

Generic (WrappedArrow a b c) 

Associated Types

type Rep (WrappedArrow a b c) :: * -> * #

Methods

from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x #

to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c #

Generic (Const k a b) 

Associated Types

type Rep (Const k a b) :: * -> * #

Methods

from :: Const k a b -> Rep (Const k a b) x #

to :: Rep (Const k a b) x -> Const k a b #

Generic (Alt k f a) 

Associated Types

type Rep (Alt k f a) :: * -> * #

Methods

from :: Alt k f a -> Rep (Alt k f a) x #

to :: Rep (Alt k f a) x -> Alt k f a #

Generic (Tagged k s b) 

Associated Types

type Rep (Tagged k s b) :: * -> * #

Methods

from :: Tagged k s b -> Rep (Tagged k s b) x #

to :: Rep (Tagged k s b) x -> Tagged k s b #

Generic (K1 k i c p) 

Associated Types

type Rep (K1 k i c p) :: * -> * #

Methods

from :: K1 k i c p -> Rep (K1 k i c p) x #

to :: Rep (K1 k i c p) x -> K1 k i c p #

Generic ((:+:) k f g p) 

Associated Types

type Rep ((k :+: f) g p) :: * -> * #

Methods

from :: (k :+: f) g p -> Rep ((k :+: f) g p) x #

to :: Rep ((k :+: f) g p) x -> (k :+: f) g p #

Generic ((:*:) k f g p) 

Associated Types

type Rep ((k :*: f) g p) :: * -> * #

Methods

from :: (k :*: f) g p -> Rep ((k :*: f) g p) x #

to :: Rep ((k :*: f) g p) x -> (k :*: f) g p #

Generic (a, b, c, d) 

Associated Types

type Rep (a, b, c, d) :: * -> * #

Methods

from :: (a, b, c, d) -> Rep (a, b, c, d) x #

to :: Rep (a, b, c, d) x -> (a, b, c, d) #

Generic (Product k f g a) 

Associated Types

type Rep (Product k f g a) :: * -> * #

Methods

from :: Product k f g a -> Rep (Product k f g a) x #

to :: Rep (Product k f g a) x -> Product k f g a #

Generic (Sum k f g a) 

Associated Types

type Rep (Sum k f g a) :: * -> * #

Methods

from :: Sum k f g a -> Rep (Sum k f g a) x #

to :: Rep (Sum k f g a) x -> Sum k f g a #

Generic (M1 k i c f p) 

Associated Types

type Rep (M1 k i c f p) :: * -> * #

Methods

from :: M1 k i c f p -> Rep (M1 k i c f p) x #

to :: Rep (M1 k i c f p) x -> M1 k i c f p #

Generic ((:.:) k2 k1 f g p) 

Associated Types

type Rep ((k2 :.: k1) f g p) :: * -> * #

Methods

from :: (k2 :.: k1) f g p -> Rep ((k2 :.: k1) f g p) x #

to :: Rep ((k2 :.: k1) f g p) x -> (k2 :.: k1) f g p #

Generic (a, b, c, d, e) 

Associated Types

type Rep (a, b, c, d, e) :: * -> * #

Methods

from :: (a, b, c, d, e) -> Rep (a, b, c, d, e) x #

to :: Rep (a, b, c, d, e) x -> (a, b, c, d, e) #

Generic (Compose k1 k2 f g a) 

Associated Types

type Rep (Compose k1 k2 f g a) :: * -> * #

Methods

from :: Compose k1 k2 f g a -> Rep (Compose k1 k2 f g a) x #

to :: Rep (Compose k1 k2 f g a) x -> Compose k1 k2 f g a #

Generic (a, b, c, d, e, f) 

Associated Types

type Rep (a, b, c, d, e, f) :: * -> * #

Methods

from :: (a, b, c, d, e, f) -> Rep (a, b, c, d, e, f) x #

to :: Rep (a, b, c, d, e, f) x -> (a, b, c, d, e, f) #

Generic (a, b, c, d, e, f, g) 

Associated Types

type Rep (a, b, c, d, e, f, g) :: * -> * #

Methods

from :: (a, b, c, d, e, f, g) -> Rep (a, b, c, d, e, f, g) x #

to :: Rep (a, b, c, d, e, f, g) x -> (a, b, c, d, e, f, g) #

data UTCTime :: * #

This is the simplest representation of UTC. It consists of the day number, and a time offset from midnight. Note that if a day has a leap second added to it, it will have 86401 seconds.

Instances

Eq UTCTime 

Methods

(==) :: UTCTime -> UTCTime -> Bool #

(/=) :: UTCTime -> UTCTime -> Bool #

Data UTCTime 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> UTCTime -> c UTCTime #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c UTCTime #

toConstr :: UTCTime -> Constr #

dataTypeOf :: UTCTime -> DataType #

dataCast1 :: Typeable (* -> *) t => (forall d. Data d => c (t d)) -> Maybe (c UTCTime) #

dataCast2 :: Typeable (* -> * -> *) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c UTCTime) #

gmapT :: (forall b. Data b => b -> b) -> UTCTime -> UTCTime #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> UTCTime -> r #

gmapQ :: (forall d. Data d => d -> u) -> UTCTime -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> UTCTime -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> UTCTime -> m UTCTime #

Ord UTCTime 
ToJSON UTCTime 
ToJSONKey UTCTime 
FromJSON UTCTime 
FromJSONKey UTCTime 
NFData UTCTime 

Methods

rnf :: UTCTime -> () #

PersistFieldSql UTCTime 
PersistField UTCTime 
ParseTime UTCTime 

data Proxy k (t :: k) :: forall k. k -> * #

A concrete, poly-kinded proxy type

Constructors

Proxy 

Instances

Generic1 k (Proxy k) 

Associated Types

type Rep1 (Proxy k) (f :: Proxy k -> *) :: k -> * #

Methods

from1 :: f a -> Rep1 (Proxy k) f a #

to1 :: Rep1 (Proxy k) f a -> f a #

Monad (Proxy *)

Since: 4.7.0.0

Methods

(>>=) :: Proxy * a -> (a -> Proxy * b) -> Proxy * b #

(>>) :: Proxy * a -> Proxy * b -> Proxy * b #

return :: a -> Proxy * a #

fail :: String -> Proxy * a #

Functor (Proxy *)

Since: 4.7.0.0

Methods

fmap :: (a -> b) -> Proxy * a -> Proxy * b #

(<$) :: a -> Proxy * b -> Proxy * a #

Applicative (Proxy *)

Since: 4.7.0.0

Methods

pure :: a -> Proxy * a #

(<*>) :: Proxy * (a -> b) -> Proxy * a -> Proxy * b #

liftA2 :: (a -> b -> c) -> Proxy * a -> Proxy * b -> Proxy * c #

(*>) :: Proxy * a -> Proxy * b -> Proxy * b #

(<*) :: Proxy * a -> Proxy * b -> Proxy * a #

Foldable (Proxy *)

Since: 4.7.0.0

Methods

fold :: Monoid m => Proxy * m -> m #

foldMap :: Monoid m => (a -> m) -> Proxy * a -> m #

foldr :: (a -> b -> b) -> b -> Proxy * a -> b #

foldr' :: (a -> b -> b) -> b -> Proxy * a -> b #

foldl :: (b -> a -> b) -> b -> Proxy * a -> b #

foldl' :: (b -> a -> b) -> b -> Proxy * a -> b #

foldr1 :: (a -> a -> a) -> Proxy * a -> a #

foldl1 :: (a -> a -> a) -> Proxy * a -> a #

toList :: Proxy * a -> [a] #

null :: Proxy * a -> Bool #

length :: Proxy * a -> Int #

elem :: Eq a => a -> Proxy * a -> Bool #

maximum :: Ord a => Proxy * a -> a #

minimum :: Ord a => Proxy * a -> a #

sum :: Num a => Proxy * a -> a #

product :: Num a => Proxy * a -> a #

Traversable (Proxy *)

Since: 4.7.0.0

Methods

traverse :: Applicative f => (a -> f b) -> Proxy * a -> f (Proxy * b) #

sequenceA :: Applicative f => Proxy * (f a) -> f (Proxy * a) #

mapM :: Monad m => (a -> m b) -> Proxy * a -> m (Proxy * b) #

sequence :: Monad m => Proxy * (m a) -> m (Proxy * a) #

ToJSON1 (Proxy *) 

Methods

liftToJSON :: (a -> Value) -> ([a] -> Value) -> Proxy * a -> Value #

liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Proxy * a] -> Value #

liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Proxy * a -> Encoding #

liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Proxy * a] -> Encoding #

FromJSON1 (Proxy *) 

Methods

liftParseJSON :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser (Proxy * a) #

liftParseJSONList :: (Value -> Parser a) -> (Value -> Parser [a]) -> Value -> Parser [Proxy * a] #

Alternative (Proxy *)

Since: 4.9.0.0

Methods

empty :: Proxy * a #

(<|>) :: Proxy * a -> Proxy * a -> Proxy * a #

some :: Proxy * a -> Proxy * [a] #

many :: Proxy * a -> Proxy * [a] #

MonadPlus (Proxy *)

Since: 4.9.0.0

Methods

mzero :: Proxy * a #

mplus :: Proxy * a -> Proxy * a -> Proxy * a #

Eq1 (Proxy *)

Since: 4.9.0.0

Methods

liftEq :: (a -> b -> Bool) -> Proxy * a -> Proxy * b -> Bool #

Ord1 (Proxy *)

Since: 4.9.0.0

Methods

liftCompare :: (a -> b -> Ordering) -> Proxy * a -> Proxy * b -> Ordering #

Read1 (Proxy *)

Since: 4.9.0.0

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Proxy * a) #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Proxy * a] #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Proxy * a) #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Proxy * a] #

Show1 (Proxy *)

Since: 4.9.0.0

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Proxy * a -> ShowS #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Proxy * a] -> ShowS #

Hashable1 (Proxy *) 

Methods

liftHashWithSalt :: (Int -> a -> Int) -> Int -> Proxy * a -> Int #

Bounded (Proxy k t) 

Methods

minBound :: Proxy k t #

maxBound :: Proxy k t #

Enum (Proxy k s)

Since: 4.7.0.0

Methods

succ :: Proxy k s -> Proxy k s #

pred :: Proxy k s -> Proxy k s #

toEnum :: Int -> Proxy k s #

fromEnum :: Proxy k s -> Int #

enumFrom :: Proxy k s -> [Proxy k s] #

enumFromThen :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromTo :: Proxy k s -> Proxy k s -> [Proxy k s] #

enumFromThenTo :: Proxy k s -> Proxy k s -> Proxy k s -> [Proxy k s] #

Eq (Proxy k s)

Since: 4.7.0.0

Methods

(==) :: Proxy k s -> Proxy k s -> Bool #

(/=) :: Proxy k s -> Proxy k s -> Bool #

Ord (Proxy k s)

Since: 4.7.0.0

Methods

compare :: Proxy k s -> Proxy k s -> Ordering #

(<) :: Proxy k s -> Proxy k s -> Bool #

(<=) :: Proxy k s -> Proxy k s -> Bool #

(>) :: Proxy k s -> Proxy k s -> Bool #

(>=) :: Proxy k s -> Proxy k s -> Bool #

max :: Proxy k s -> Proxy k s -> Proxy k s #

min :: Proxy k s -> Proxy k s -> Proxy k s #

Read (Proxy k s)

Since: 4.7.0.0

Show (Proxy k s)

Since: 4.7.0.0

Methods

showsPrec :: Int -> Proxy k s -> ShowS #

show :: Proxy k s -> String #

showList :: [Proxy k s] -> ShowS #

Ix (Proxy k s)

Since: 4.7.0.0

Methods

range :: (Proxy k s, Proxy k s) -> [Proxy k s] #

index :: (Proxy k s, Proxy k s) -> Proxy k s -> Int #

unsafeIndex :: (Proxy k s, Proxy k s) -> Proxy k s -> Int

inRange :: (Proxy k s, Proxy k s) -> Proxy k s -> Bool #

rangeSize :: (Proxy k s, Proxy k s) -> Int #

unsafeRangeSize :: (Proxy k s, Proxy k s) -> Int

Generic (Proxy k t) 

Associated Types

type Rep (Proxy k t) :: * -> * #

Methods

from :: Proxy k t -> Rep (Proxy k t) x #

to :: Rep (Proxy k t) x -> Proxy k t #

Semigroup (Proxy k s)

Since: 4.9.0.0

Methods

(<>) :: Proxy k s -> Proxy k s -> Proxy k s #

sconcat :: NonEmpty (Proxy k s) -> Proxy k s #

stimes :: Integral b => b -> Proxy k s -> Proxy k s #

Monoid (Proxy k s)

Since: 4.7.0.0

Methods

mempty :: Proxy k s #

mappend :: Proxy k s -> Proxy k s -> Proxy k s #

mconcat :: [Proxy k s] -> Proxy k s #

Hashable (Proxy k a) 

Methods

hashWithSalt :: Int -> Proxy k a -> Int #

hash :: Proxy k a -> Int #

ToJSON (Proxy k a) 

Methods

toJSON :: Proxy k a -> Value #

toEncoding :: Proxy k a -> Encoding #

toJSONList :: [Proxy k a] -> Value #

toEncodingList :: [Proxy k a] -> Encoding #

FromJSON (Proxy k a) 

Methods

parseJSON :: Value -> Parser (Proxy k a) #

parseJSONList :: Value -> Parser [Proxy k a] #

type Rep1 k (Proxy k) 
type Rep1 k (Proxy k) = D1 k (MetaData "Proxy" "Data.Proxy" "base" False) (C1 k (MetaCons "Proxy" PrefixI False) (U1 k))
type Rep (Proxy k t) 
type Rep (Proxy k t) = D1 * (MetaData "Proxy" "Data.Proxy" "base" False) (C1 * (MetaCons "Proxy" PrefixI False) (U1 *))