| Safe Haskell | Safe |
|---|---|
| Language | Haskell2010 |
Yaya.Applied
Contents
Synopsis
- type Void = Mu Identity
- absurd :: Recursive (->) t Identity => t -> a
- append :: (Recursive (->) t (XNor a), Steppable (->) u (XNor a)) => t -> u -> u
- at :: (Recursive (->) n Maybe, Projectable (->) s ((,) a)) => n -> s -> a
- atMay :: (Recursive (->) n Maybe, Projectable (->) s (XNor a)) => n -> s -> Maybe a
- constantly :: Corecursive (->) t (Pair a) => a -> t
- drop' :: Projectable (->) t (XNor a) => Maybe (t -> t) -> t -> t
- drop :: (Recursive (->) n Maybe, Projectable (->) t (XNor a)) => n -> t -> t
- fibonacci :: Corecursive (->) t ((,) Int) => t
- fibonacciPolynomials :: (Integral i, Corecursive (->) t ((,) i)) => i -> t
- fromList :: Corecursive (->) t (XNor a) => [a] -> t
- fromListN :: Steppable (->) t (XNor a) => Int -> [a] -> t
- fromMaybe :: (Steppable (->) t (Either a), Corecursive (->) t (Either a)) => Maybe a -> t
- height :: (Foldable f, Steppable (->) n Maybe, Ord n) => f n -> n
- jacobsthal :: (Integral i, Corecursive (->) t ((,) i)) => t
- length :: (Recursive (->) t (XNor a), Steppable (->) n Maybe, Ord n) => t -> n
- lucas :: Integral i => Corecursive (->) t ((,) i) => t
- lucasSequenceU :: (Integral i, Corecursive (->) t ((,) i)) => i -> i -> t
- lucasSequenceV :: (Integral i, Corecursive (->) t ((,) i)) => i -> i -> t
- maybeReify :: (Projectable (->) s f, Steppable (->) l (FreeF f s), Functor f) => Algebra (->) Maybe (s -> l)
- mersenne :: (Integral i, Corecursive (->) t ((,) i)) => t
- naturals :: (Steppable (->) n Maybe, Corecursive (->) t ((,) n)) => t
- now :: Steppable (->) t (Either a) => a -> t
- pell :: (Integral i, Corecursive (->) t ((,) i)) => t
- reifyUpTo :: (Recursive (->) n Maybe, Projectable (->) s f, Steppable (->) l (FreeF f s), Functor f) => n -> s -> l
- reverse' :: Steppable (->) t (XNor a) => XNor a (XNor a t -> XNor a t) -> XNor a t -> XNor a t
- reverse :: (Recursive (->) t (XNor a), Steppable (->) u (XNor a)) => t -> u
- runToEnd :: Recursive (->) t (Either a) => t -> a
- succN :: Steppable (->) t Maybe => t -> t
- tail :: Projectable (->) t (XNor a) => t -> t
- take :: (Recursive (->) n Maybe, Projectable (->) s ((,) a), Steppable (->) l (XNor a)) => n -> s -> l
- takeUpTo :: (Recursive (->) n Maybe, Projectable (->) s (XNor a), Steppable (->) l (XNor a)) => n -> s -> l
- toList :: Projectable (->) t (XNor a) => t -> [a]
- truncate :: (Recursive (->) n Maybe, Projectable (->) t f, Steppable (->) u (FreeF f ()), Functor f) => n -> t -> u
- vacuous :: (Functor f, Recursive (->) t Identity) => f t -> f a
- zeroN :: Steppable (->) t Maybe => t
Documentation
at :: (Recursive (->) n Maybe, Projectable (->) s ((,) a)) => n -> s -> a Source #
Extracts the element at a finite index of an infinite sequence (a
!! that can't fail).
constantly :: Corecursive (->) t (Pair a) => a -> t Source #
Creates an infinite stream of the provided value.
fibonacciPolynomials :: (Integral i, Corecursive (->) t ((,) i)) => i -> t Source #
fromList :: Corecursive (->) t (XNor a) => [a] -> t Source #
An implementation of toList for Corecursive fixed-points of
XNor.
fromListN :: Steppable (->) t (XNor a) => Int -> [a] -> t Source #
An implementation of fromListN for Steppable fixed-points of
XNor.
This should return an empty structure if the Int is negative.
If the target structure isn’t Steppable or the target structure is
Corecursive (i.e., unsafeFromList isn’t used),
then the default definition for fromListN should suffice.
fromMaybe :: (Steppable (->) t (Either a), Corecursive (->) t (Either a)) => Maybe a -> t Source #
Converts exceptional divergence to non-termination.
jacobsthal :: (Integral i, Corecursive (->) t ((,) i)) => t Source #
lucasSequenceU :: (Integral i, Corecursive (->) t ((,) i)) => i -> i -> t Source #
lucasSequenceV :: (Integral i, Corecursive (->) t ((,) i)) => i -> i -> t Source #
maybeReify :: (Projectable (->) s f, Steppable (->) l (FreeF f s), Functor f) => Algebra (->) Maybe (s -> l) Source #
Turns part of a structure inductive, so it can be analyzed, without forcing the entire tree.
reifyUpTo :: (Recursive (->) n Maybe, Projectable (->) s f, Steppable (->) l (FreeF f s), Functor f) => n -> s -> l Source #
reverse' :: Steppable (->) t (XNor a) => XNor a (XNor a t -> XNor a t) -> XNor a t -> XNor a t Source #
runToEnd :: Recursive (->) t (Either a) => t -> a Source #
This will collapse all the intermediate steps to get to the value that must exist at the end.
tail :: Projectable (->) t (XNor a) => t -> t Source #
take :: (Recursive (->) n Maybe, Projectable (->) s ((,) a), Steppable (->) l (XNor a)) => n -> s -> l Source #
Extracts _exactly_ n elements from the infinite stream s.
takeUpTo :: (Recursive (->) n Maybe, Projectable (->) s (XNor a), Steppable (->) l (XNor a)) => n -> s -> l Source #
Extracts _no more than_ n elements from the possibly-infinite sequence
s.
toList :: Projectable (->) t (XNor a) => t -> [a] Source #
An implementation of toList for Projectable fixed-points of
XNor.
truncate :: (Recursive (->) n Maybe, Projectable (->) t f, Steppable (->) u (FreeF f ()), Functor f) => n -> t -> u Source #
Lops off the branches of the tree below a certain depth, turning a
potentially-infinite structure into a finite one. Like a generalized
take.