Safe Haskell | None |
---|
- data Char
- type String = [Char]
- data Double
- data Int
- data Integer
- data Bool
- class Read a
- class Show a
- class Eq a where
- (==) :: Eq a => a -> a -> Bool
- (/=) :: Eq a => a -> a -> Bool
- data Maybe a
- maybe :: t -> (t1 -> t) -> Maybe t1 -> t
- (>>=) :: Fay a -> (a -> Fay b) -> Fay b
- (>>) :: Fay a -> Fay b -> Fay b
- return :: a -> Fay a
- when :: Bool -> Fay a -> Fay ()
- forM_ :: [t] -> (t -> Fay a) -> Fay ()
- mapM_ :: (a -> Fay b) -> [a] -> Fay ()
- (=<<) :: (a -> Fay b) -> Fay a -> Fay b
- sequence :: [Fay a] -> Fay [a]
- sequence_ :: [Fay a] -> Fay ()
- (*) :: Num a => a -> a -> a
- (+) :: Num a => a -> a -> a
- (-) :: Num a => a -> a -> a
- data Rational
- class (Eq a, Ord a) => Ord a where
- data Ordering
- compare :: Ord a => a -> a -> Ordering
- succ :: Num a => a -> a
- pred :: Num a => a -> a
- enumFrom :: Num a => a -> [a]
- enumFromTo :: (Ord t, Num t) => t -> t -> [t]
- enumFromBy :: Num t => t -> t -> [t]
- enumFromThen :: Num t => t -> t -> [t]
- enumFromByTo :: (Ord t, Num t) => t -> t -> t -> [t]
- enumFromThenTo :: (Ord t, Num t) => t -> t -> t -> [t]
- (/) :: Fractional a => a -> a -> a
- fromIntegral :: Int -> Double
- fromIntegral :: Int -> Double
- (&&) :: Bool -> Bool -> Bool
- (||) :: Bool -> Bool -> Bool
- not :: Bool -> Bool
- otherwise :: Bool
- show :: Automatic a -> String
- error :: String -> a
- undefined :: a
- data Either a b
- either :: (a -> c) -> (b -> c) -> Either a b -> c
- until :: (a -> Bool) -> (a -> a) -> a -> a
- ($!) :: (a -> b) -> a -> b
- seq :: a -> b -> b
- const :: a -> b -> a
- id :: a -> a
- (.) :: (t1 -> t) -> (t2 -> t1) -> t2 -> t
- ($) :: (t1 -> t) -> t1 -> t
- flip :: (t1 -> t2 -> t) -> t2 -> t1 -> t
- curry :: ((a, b) -> c) -> a -> b -> c
- uncurry :: (a -> b -> c) -> (a, b) -> c
- snd :: (t, t1) -> t1
- fst :: (t, t1) -> t
- div :: Int -> Int -> Int
- mod :: Int -> Int -> Int
- divMod :: Int -> Int -> (Int, Int)
- min :: Num a => a -> a -> a
- max :: Num a => a -> a -> a
- recip :: Double -> Double
- negate :: Num a => a -> a
- abs :: (Num a, Ord a) => a -> a
- signum :: (Num a, Ord a) => a -> a
- pi :: Double
- exp :: Double -> Double
- sqrt :: Double -> Double
- log :: Double -> Double
- (**) :: Double -> Double -> Double
- (^^) :: Double -> Int -> Double
- unsafePow :: (Num a, Num b) => a -> b -> a
- (^) :: Num a => a -> Int -> a
- logBase :: Double -> Double -> Double
- sin :: Double -> Double
- tan :: Double -> Double
- cos :: Double -> Double
- asin :: Double -> Double
- atan :: Double -> Double
- acos :: Double -> Double
- sinh :: Double -> Double
- tanh :: Double -> Double
- cosh :: Double -> Double
- asinh :: Double -> Double
- atanh :: Double -> Double
- acosh :: Double -> Double
- properFraction :: Double -> (Int, Double)
- truncate :: Double -> Int
- round :: Double -> Int
- ceiling :: Double -> Int
- floor :: Double -> Int
- subtract :: Num a => a -> a -> a
- even :: Int -> Bool
- odd :: Int -> Bool
- gcd :: Int -> Int -> Int
- quot :: Int -> Int -> Int
- quot' :: Int -> Int -> Int
- quotRem :: Int -> Int -> (Int, Int)
- rem :: Int -> Int -> Int
- rem' :: Int -> Int -> Int
- lcm :: Int -> Int -> Int
- find :: (a -> Bool) -> [a] -> Maybe a
- filter :: (a -> Bool) -> [a] -> [a]
- null :: [t] -> Bool
- map :: (a -> b) -> [a] -> [b]
- nub :: Eq a => [a] -> [a]
- nub' :: Eq a => [a] -> [a] -> [a]
- elem :: Eq a => a -> [a] -> Bool
- notElem :: Eq a => a -> [a] -> Bool
- sort :: Ord a => [a] -> [a]
- sortBy :: (t -> t -> Ordering) -> [t] -> [t]
- insertBy :: (a -> a -> Ordering) -> a -> [a] -> [a]
- conc :: [a] -> [a] -> [a]
- concat :: [[a]] -> [a]
- concatMap :: (a -> [b]) -> [a] -> [b]
- foldr :: (t -> t1 -> t1) -> t1 -> [t] -> t1
- foldr1 :: (a -> a -> a) -> [a] -> a
- foldl :: (t1 -> t -> t1) -> t1 -> [t] -> t1
- foldl1 :: (a -> a -> a) -> [a] -> a
- (++) :: [a] -> [a] -> [a]
- (!!) :: [a] -> Int -> a
- head :: [a] -> a
- tail :: [a] -> [a]
- init :: [a] -> [a]
- last :: [a] -> a
- iterate :: (a -> a) -> a -> [a]
- repeat :: a -> [a]
- replicate :: Int -> a -> [a]
- cycle :: [a] -> [a]
- take :: Int -> [a] -> [a]
- drop :: Int -> [a] -> [a]
- splitAt :: Int -> [a] -> ([a], [a])
- takeWhile :: (a -> Bool) -> [a] -> [a]
- dropWhile :: (a -> Bool) -> [a] -> [a]
- span :: (a -> Bool) -> [a] -> ([a], [a])
- break :: (a -> Bool) -> [a] -> ([a], [a])
- zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
- zipWith3 :: (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
- zip :: [a] -> [b] -> [(a, b)]
- zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]
- unzip :: [(a, b)] -> ([a], [b])
- unzip3 :: [(a, b, c)] -> ([a], [b], [c])
- lines :: String -> [String]
- unlines :: [String] -> String
- words :: String -> [String]
- unwords :: [String] -> String
- and :: [Bool] -> Bool
- or :: [Bool] -> Bool
- any :: (a -> Bool) -> [a] -> Bool
- all :: (a -> Bool) -> [a] -> Bool
- intersperse :: a -> [a] -> [a]
- prependToAll :: a -> [a] -> [a]
- intercalate :: [a] -> [[a]] -> [a]
- maximum :: Num a => [a] -> a
- minimum :: Num a => [a] -> a
- product :: Num a => [a] -> a
- sum :: Num a => [a] -> a
- scanl :: (a -> b -> a) -> a -> [b] -> [a]
- scanl1 :: (a -> a -> a) -> [a] -> [a]
- scanr :: (a -> b -> b) -> b -> [a] -> [b]
- scanr1 :: (a -> a -> a) -> [a] -> [a]
- lookup :: Eq a1 => a1 -> [(a1, a)] -> Maybe a
- length :: [a] -> Int
- length' :: Int -> [a] -> Int
- reverse :: [a] -> [a]
- print :: Automatic a -> Fay ()
- putStrLn :: String -> Fay ()
- data Fay a
Documentation
data Char
The character type Char
is an enumeration whose values represent
Unicode (or equivalently ISO/IEC 10646) characters (see
http://www.unicode.org/ for details). This set extends the ISO 8859-1
(Latin-1) character set (the first 256 characters), which is itself an extension
of the ASCII character set (the first 128 characters). A character literal in
Haskell has type Char
.
To convert a Char
to or from the corresponding Int
value defined
by Unicode, use toEnum
and fromEnum
from the
Enum
class respectively (or equivalently ord
and chr
).
data Double
Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.
data Int
data Integer
Arbitrary-precision integers.
data Bool
class Read a
Parsing of String
s, producing values.
Minimal complete definition: readsPrec
(or, for GHC only, readPrec
)
Derived instances of Read
make the following assumptions, which
derived instances of Show
obey:
- If the constructor is defined to be an infix operator, then the
derived
Read
instance will parse only infix applications of the constructor (not the prefix form). - Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
- If the constructor is defined using record syntax, the derived
Read
will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration. - The derived
Read
instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Read
in Haskell 98 is equivalent to
instance (Read a) => Read (Tree a) where readsPrec d r = readParen (d > app_prec) (\r -> [(Leaf m,t) | ("Leaf",s) <- lex r, (m,t) <- readsPrec (app_prec+1) s]) r ++ readParen (d > up_prec) (\r -> [(u:^:v,w) | (u,s) <- readsPrec (up_prec+1) r, (":^:",t) <- lex s, (v,w) <- readsPrec (up_prec+1) t]) r where app_prec = 10 up_prec = 5
Note that right-associativity of :^:
is unused.
The derived instance in GHC is equivalent to
instance (Read a) => Read (Tree a) where readPrec = parens $ (prec app_prec $ do Ident "Leaf" <- lexP m <- step readPrec return (Leaf m)) +++ (prec up_prec $ do u <- step readPrec Symbol ":^:" <- lexP v <- step readPrec return (u :^: v)) where app_prec = 10 up_prec = 5 readListPrec = readListPrecDefault
Read Bool | |
Read Char | |
Read Double | |
Read Float | |
Read Int | |
Read Integer | |
Read Ordering | |
Read Word | |
Read () | |
Read Lexeme | |
Read SerializeContext | |
Read a => Read [a] | |
(Integral a, Read a) => Read (Ratio a) | |
Read a => Read (Maybe a) | |
Read a => Read (Maybe a) | |
(Read a, Read b) => Read (a, b) | |
(Ix a, Read a, Read b) => Read (Array a b) | |
(Read a, Read b, Read c) => Read (a, b, c) | |
(Read a, Read b, Read c, Read d) => Read (a, b, c, d) | |
(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e) | |
(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Show a
Conversion of values to readable String
s.
Minimal complete definition: showsPrec
or show
.
Derived instances of Show
have the following properties, which
are compatible with derived instances of Read
:
- The result of
show
is a syntactically correct Haskell expression containing only constants, given the fixity declarations in force at the point where the type is declared. It contains only the constructor names defined in the data type, parentheses, and spaces. When labelled constructor fields are used, braces, commas, field names, and equal signs are also used. - If the constructor is defined to be an infix operator, then
showsPrec
will produce infix applications of the constructor. - the representation will be enclosed in parentheses if the
precedence of the top-level constructor in
x
is less thand
(associativity is ignored). Thus, ifd
is0
then the result is never surrounded in parentheses; ifd
is11
it is always surrounded in parentheses, unless it is an atomic expression. - If the constructor is defined using record syntax, then
show
will produce the record-syntax form, with the fields given in the same order as the original declaration.
For example, given the declarations
infixr 5 :^: data Tree a = Leaf a | Tree a :^: Tree a
the derived instance of Show
is equivalent to
instance (Show a) => Show (Tree a) where showsPrec d (Leaf m) = showParen (d > app_prec) $ showString "Leaf " . showsPrec (app_prec+1) m where app_prec = 10 showsPrec d (u :^: v) = showParen (d > up_prec) $ showsPrec (up_prec+1) u . showString " :^: " . showsPrec (up_prec+1) v where up_prec = 5
Note that right-associativity of :^:
is ignored. For example,
-
produces the stringshow
(Leaf 1 :^: Leaf 2 :^: Leaf 3)"Leaf 1 :^: (Leaf 2 :^: Leaf 3)"
.
Show Bool | |
Show Char | |
Show Double | |
Show Float | |
Show Int | |
Show Integer | |
Show Ordering | |
Show Word | |
Show () | |
Show DataType | |
Show Constr | |
Show DataRep | |
Show ConstrRep | |
Show Fixity | |
Show TypeRep | |
Show TyCon | |
Show ModuleScope | |
Show CompileConfig | |
Show CompileState | |
Show CompileWriter | |
Show Mapping | |
Show CompileError | |
Show JsStmt | |
Show JsExp | |
Show JsName | |
Show JsLit | |
Show FundamentalType | |
Show SerializeContext | |
Show Rational | |
Show a => Show [a] | |
(Integral a, Show a) => Show (Ratio a) | |
Show a => Show (Maybe a) | |
Show a => Show (Maybe a) | |
(Show a, Show b) => Show (a, b) | |
(Show a, Show b, Show c) => Show (a, b, c) | |
(Show a, Show b, Show c, Show d) => Show (a, b, c, d) | |
(Show a, Show b, Show c, Show d, Show e) => Show (a, b, c, d, e) | |
(Show a, Show b, Show c, Show d, Show e, Show f) => Show (a, b, c, d, e, f) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g) => Show (a, b, c, d, e, f, g) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h) => Show (a, b, c, d, e, f, g, h) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i) => Show (a, b, c, d, e, f, g, h, i) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j) => Show (a, b, c, d, e, f, g, h, i, j) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k) => Show (a, b, c, d, e, f, g, h, i, j, k) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l) => Show (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Show a, Show b, Show c, Show d, Show e, Show f, Show g, Show h, Show i, Show j, Show k, Show l, Show m, Show n, Show o) => Show (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
class Eq a where
The Eq
class defines equality (==
) and inequality (/=
).
All the basic datatypes exported by the Prelude are instances of Eq
,
and Eq
may be derived for any datatype whose constituents are also
instances of Eq
.
Eq Bool | |
Eq Char | |
Eq Double | |
Eq Float | |
Eq Int | |
Eq Integer | |
Eq Ordering | |
Eq Word | |
Eq () | |
Eq Constr | Equality of constructors |
Eq DataRep | |
Eq ConstrRep | |
Eq Fixity | |
Eq TypeRep | |
Eq TyCon | |
Eq JsStmt | |
Eq JsExp | |
Eq JsName | |
Eq JsLit | |
Eq SerializeContext | |
Eq a => Eq [a] | |
Eq a => Eq (Ratio a) | |
Eq a => Eq (Maybe a) | |
(Eq a, Eq b) => Eq (a, b) | |
(Eq a, Eq b, Eq c) => Eq (a, b, c) | |
(Eq a, Eq b, Eq c, Eq d) => Eq (a, b, c, d) | |
(Eq a, Eq b, Eq c, Eq d, Eq e) => Eq (a, b, c, d, e) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f) => Eq (a, b, c, d, e, f) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g) => Eq (a, b, c, d, e, f, g) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h) => Eq (a, b, c, d, e, f, g, h) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i) => Eq (a, b, c, d, e, f, g, h, i) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j) => Eq (a, b, c, d, e, f, g, h, i, j) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k) => Eq (a, b, c, d, e, f, g, h, i, j, k) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l) => Eq (a, b, c, d, e, f, g, h, i, j, k, l) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n) | |
(Eq a, Eq b, Eq c, Eq d, Eq e, Eq f, Eq g, Eq h, Eq i, Eq j, Eq k, Eq l, Eq m, Eq n, Eq o) => Eq (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) |
Maybe type.
sequence :: [Fay a] -> Fay [a]Source
Evaluate each action in the sequence from left to right, and collect the results.
enumFromTo :: (Ord t, Num t) => t -> t -> [t]Source
enumFromBy :: Num t => t -> t -> [t]Source
enumFromThen :: Num t => t -> t -> [t]Source
enumFromByTo :: (Ord t, Num t) => t -> t -> t -> [t]Source
enumFromThenTo :: (Ord t, Num t) => t -> t -> t -> [t]Source
fromIntegral :: Int -> DoubleSource
fromIntegral :: Int -> DoubleSource
seq :: a -> b -> b
Evaluates its first argument to head normal form, and then returns its second argument as the result.
properFraction :: Double -> (Int, Double)Source
Implemented in Fay, not fast.
intersperse :: a -> [a] -> [a]Source
prependToAll :: a -> [a] -> [a]Source
intercalate :: [a] -> [[a]] -> [a]Source