ipfs: Access IPFS locally and remotely

[ agpl, library, network ] [ Propose Tags ]

Interact with the IPFS network by shelling out to a local IPFS node or communicating via the HTTP interface of a remote IPFS node.


[Skip to Readme]
Versions [faq] 1.0.0, 1.0.1, 1.0.2
Dependencies aeson, base (<5), bytestring, envy, flow, Glob, ip, lens, monad-logger, regex-compat, rio, servant-client, servant-server, swagger2, text, vector [details]
License AGPL-3.0-or-later
Copyright © 2020 Fission Internet Software Services for Open Networks Inc.
Author Brooklyn Zelenka, Daniel Holmgren, Steven Vandevelde
Maintainer brooklyn@fission.codes, daniel@fission.codes, steven@fission.codes
Category Network
Home page https://github.com/fission-suite/ipfs-haskell#readme
Bug tracker https://github.com/fission-suite/ipfs-haskell/issues
Source repo head: git clone https://github.com/fission-suite/ipfs-haskell
Uploaded by expede at Tue Mar 17 23:20:57 UTC 2020
Distributions NixOS:1.0.2
Downloads 270 total (133 in the last 30 days)
Rating (no votes yet) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Hackage Matrix CI
Docs available [build log]
Last success reported on 2020-03-18 [all 1 reports]

Modules

[Index] [Quick Jump]

Downloads

Maintainer's Corner

For package maintainers and hackage trustees


Readme for ipfs-1.0.2

[back to package description]

ipfs-haskell

Build Status License Maintainability Built by FISSION Discord Discourse

Documentation: ipfs on hackage

A library for integrating IPFS into your haskell applications. Interact with the IPFS network by shelling out to a local IPFS node or communicating via the HTTP interface of a remote node.

QuickStart

Define instances for MonadLocalIPFS and/or MonadRemoteIPFS. Each requires only one function:

class Monad m => MonadRemoteIPFS m where
  runRemote :: Servant.ClientM a -> m (Either Servant.ClientError a)

class Monad m => MonadLocalIPFS m where
  runLocal ::
       [IPFS.Opt]
    -> Lazy.ByteString
    -> m (Either Process.Error Process.RawMessage)

We use RIO processes to shell out to a local IPFS node and Servant for HTTP requests to a remote node.

After that, simply add MonadLocalIPFS m as a constraint to a function and you'll be able to call IPFS within it. For instance:

import           Network.IPFS
import qualified Network.IPFS.Add        as IPFS
import           Network.IPFS.File.Types as File

add ::
  MonadLocalIPFS  m
  => File.Serialzed
  -> m ()
add (Serialized rawData) = IPFS.addRaw rawData >>= \case
  Right newCID -> 
    -- ...
  Left err ->
    -- ...

You can see example instances below:

instance
  ( HasProcessContext cfg
  , HasLogFunc cfg
  , Has IPFS.BinPath cfg
  , Has IPFS.Timeout cfg
  )
  => MonadLocalIPFS (RIO cfg) where
    runLocal opts arg = do
      IPFS.BinPath ipfs <- view hasLens
      IPFS.Timeout secs <- view hasLens
      let opts' = ("--timeout=" <> show secs <> "s") : opts

      runProc readProcess ipfs (byteStringInput arg) byteStringOutput opts' >>= \case
        (ExitSuccess, contents, _) ->
          return $ Right contents
        (ExitFailure _, _, stdErr)
          | Lazy.isSuffixOf "context deadline exceeded" stdErr ->
              return . Left $ Process.Timeout secs
          | otherwise ->
            return . Left $ Process.UnknownErr stdErr

instance
  ( Has IPFS.URL     cfg
  , Has HTTP.Manager cfg
  )
  => MonadRemoteIPFS (RIO cfg) where
    runRemote query = do
      IPFS.URL url <- view hasLens
      manager      <- view hasLens

      url
        & mkClientEnv manager
        & runClientM query
        & liftIO