Agda-2.5.2: A dependently typed functional programming language and proof assistant

Safe HaskellNone
LanguageHaskell2010

Agda.TypeChecking.Substitute

Contents

Synopsis

Documentation

canProject :: QName -> Term -> Maybe (Arg Term) Source #

If $v$ is a record value, canProject f v returns its field f.

conApp :: ConHead -> ConInfo -> Args -> Elims -> Term Source #

Eliminate a constructed term.

defApp :: QName -> Elims -> Elims -> Term Source #

defApp f us vs applies Def f us to further arguments vs, eliminating top projection redexes. If us is not empty, we cannot have a projection redex, since the record argument is the first one.

piApply :: Type -> Args -> Type Source #

(x:A)->B(x) piApply [u] = B(u)

Precondition: The type must contain the right number of pis without having to perform any reduction.

piApply is potentially unsafe, the monadic piApplyM is preferable.

Abstraction

abstractArgs :: Abstract a => Args -> a -> a Source #

Substitution and raisingshiftingweakening

renaming :: forall a. DeBruijn a => Empty -> Permutation -> Substitution' a Source #

If permute π : [a]Γ -> [a]Δ, then applySubst (renaming _ π) : Term Γ -> Term Δ

renamingR :: DeBruijn a => Permutation -> Substitution' a Source #

If permute π : [a]Γ -> [a]Δ, then applySubst (renamingR π) : Term Δ -> Term Γ

renameP :: Subst t a => Empty -> Permutation -> a -> a Source #

The permutation should permute the corresponding context. (right-to-left list)

Projections

projDropParsApply :: Projection -> ProjOrigin -> Args -> Term Source #

projDropParsApply proj o args = projDropPars proj o `apply' args

This function is an optimization, saving us from construction lambdas we immediately remove through application.

Telescopes

data TelV a Source #

Constructors

TelV 

Fields

Instances

Functor TelV Source # 

Methods

fmap :: (a -> b) -> TelV a -> TelV b #

(<$) :: a -> TelV b -> TelV a #

(Subst t a, Eq a) => Eq (TelV a) Source # 

Methods

(==) :: TelV a -> TelV a -> Bool #

(/=) :: TelV a -> TelV a -> Bool #

(Subst t a, Ord a) => Ord (TelV a) Source # 

Methods

compare :: TelV a -> TelV a -> Ordering #

(<) :: TelV a -> TelV a -> Bool #

(<=) :: TelV a -> TelV a -> Bool #

(>) :: TelV a -> TelV a -> Bool #

(>=) :: TelV a -> TelV a -> Bool #

max :: TelV a -> TelV a -> TelV a #

min :: TelV a -> TelV a -> TelV a #

Show a => Show (TelV a) Source # 

Methods

showsPrec :: Int -> TelV a -> ShowS #

show :: TelV a -> String #

showList :: [TelV a] -> ShowS #

type ListTel' a = [Dom (a, Type)] Source #

bindsToTel' :: (Name -> a) -> [Name] -> Dom Type -> ListTel' a Source #

Turn a typed binding (x1 .. xn : A) into a telescope.

bindsWithHidingToTel' :: (Name -> a) -> [WithHiding Name] -> Dom Type -> ListTel' a Source #

Turn a typed binding (x1 .. xn : A) into a telescope.

telView' :: Type -> TelView Source #

Takes off all exposed function domains from the given type. This means that it does not reduce to expose Pi-types.

telView'UpTo :: Int -> Type -> TelView Source #

telView'UpTo n t takes off the first n exposed function types of t. Takes off all (exposed ones) if n < 0.

mkPi :: Dom (ArgName, Type) -> Type -> Type Source #

mkPi dom t = telePi (telFromList [dom]) t

telePi :: Telescope -> Type -> Type Source #

Uses free variable analysis to introduce noAbs bindings.

telePi_ :: Telescope -> Type -> Type Source #

Everything will be a Abs.

class TeleNoAbs a where Source #

Performs void (noAbs) abstraction over telescope.

Minimal complete definition

teleNoAbs

Methods

teleNoAbs :: a -> Term -> Term Source #

compiledClauseBody :: Clause -> Maybe Term Source #

In compiled clauses, the variables in the clause body are relative to the pattern variables (including dot patterns) instead of the clause telescope.

Syntactic equality and order

Level stuff

pts :: Sort -> Sort -> Sort Source #

The `rule', if Agda is considered as a functional pure type system (pts).

TODO: This needs to be properly implemented, requiring refactoring of Agda's handling of levels. Without impredicativity or SizeUniv, Agda's pts rule is just the least upper bound, which is total and commutative. The handling of levels relies on this simplification.

dLub :: Sort -> Abs Sort -> Sort Source #

Dependent least upper bound, to assign a level to expressions like forall i -> Set i.

dLub s1 i.s2 = omega if i appears in the rigid variables of s2.

data Substitution' a Source #

Substitutions.

Constructors

IdS

Identity substitution. Γ ⊢ IdS : Γ

EmptyS

Empty substitution, lifts from the empty context. Apply this to closed terms you want to use in a non-empty context. Γ ⊢ EmptyS : ()

a :# (Substitution' a) infixr 4

Substitution extension, `cons'. Γ ⊢ u : Aρ Γ ⊢ ρ : Δ ---------------------- Γ ⊢ u :# ρ : Δ, A

Strengthen Empty (Substitution' a)

Strengthening substitution. First argument is IMPOSSIBLE. Apply this to a term which does not contain variable 0 to lower all de Bruijn indices by one. Γ ⊢ ρ : Δ --------------------------- Γ ⊢ Strengthen ρ : Δ, A

Wk !Int (Substitution' a)

Weakning substitution, lifts to an extended context. Γ ⊢ ρ : Δ ------------------- Γ, Ψ ⊢ Wk |Ψ| ρ : Δ

Lift !Int (Substitution' a)

Lifting substitution. Use this to go under a binder. Lift 1 ρ == var 0 :# Wk 1 ρ. Γ ⊢ ρ : Δ ------------------------- Γ, Ψρ ⊢ Lift |Ψ| ρ : Δ, Ψ

Instances

Functor Substitution' Source # 

Methods

fmap :: (a -> b) -> Substitution' a -> Substitution' b #

(<$) :: a -> Substitution' b -> Substitution' a #

Foldable Substitution' Source # 

Methods

fold :: Monoid m => Substitution' m -> m #

foldMap :: Monoid m => (a -> m) -> Substitution' a -> m #

foldr :: (a -> b -> b) -> b -> Substitution' a -> b #

foldr' :: (a -> b -> b) -> b -> Substitution' a -> b #

foldl :: (b -> a -> b) -> b -> Substitution' a -> b #

foldl' :: (b -> a -> b) -> b -> Substitution' a -> b #

foldr1 :: (a -> a -> a) -> Substitution' a -> a #

foldl1 :: (a -> a -> a) -> Substitution' a -> a #

toList :: Substitution' a -> [a] #

null :: Substitution' a -> Bool #

length :: Substitution' a -> Int #

elem :: Eq a => a -> Substitution' a -> Bool #

maximum :: Ord a => Substitution' a -> a #

minimum :: Ord a => Substitution' a -> a #

sum :: Num a => Substitution' a -> a #

product :: Num a => Substitution' a -> a #

Traversable Substitution' Source # 

Methods

traverse :: Applicative f => (a -> f b) -> Substitution' a -> f (Substitution' b) #

sequenceA :: Applicative f => Substitution' (f a) -> f (Substitution' a) #

mapM :: Monad m => (a -> m b) -> Substitution' a -> m (Substitution' b) #

sequence :: Monad m => Substitution' (m a) -> m (Substitution' a) #

KillRange Substitution Source # 
InstantiateFull Substitution Source # 
Show a => Show (Substitution' a) Source # 
Pretty a => Pretty (Substitution' a) Source # 
Null (Substitution' a) Source # 
TermSize a => TermSize (Substitution' a) Source # 
(Show a, PrettyTCM a, Subst a a) => PrettyTCM (Substitution' a) Source # 

Orphan instances

Eq NotBlocked Source # 
Eq LevelAtom Source # 
Eq PlusLevel Source # 
Eq Level Source # 

Methods

(==) :: Level -> Level -> Bool #

(/=) :: Level -> Level -> Bool #

Eq Sort Source # 

Methods

(==) :: Sort -> Sort -> Bool #

(/=) :: Sort -> Sort -> Bool #

Eq Term Source #

Syntactic Term equality, ignores stuff below DontCare and sharing.

Methods

(==) :: Term -> Term -> Bool #

(/=) :: Term -> Term -> Bool #

Eq Candidate Source # 
Eq Section Source # 

Methods

(==) :: Section -> Section -> Bool #

(/=) :: Section -> Section -> Bool #

Eq Constraint Source # 
Ord NotBlocked Source # 
Ord LevelAtom Source # 
Ord PlusLevel Source # 
Ord Level Source # 

Methods

compare :: Level -> Level -> Ordering #

(<) :: Level -> Level -> Bool #

(<=) :: Level -> Level -> Bool #

(>) :: Level -> Level -> Bool #

(>=) :: Level -> Level -> Bool #

max :: Level -> Level -> Level #

min :: Level -> Level -> Level #

Ord Sort Source # 

Methods

compare :: Sort -> Sort -> Ordering #

(<) :: Sort -> Sort -> Bool #

(<=) :: Sort -> Sort -> Bool #

(>) :: Sort -> Sort -> Bool #

(>=) :: Sort -> Sort -> Bool #

max :: Sort -> Sort -> Sort #

min :: Sort -> Sort -> Sort #

Ord Term Source # 

Methods

compare :: Term -> Term -> Ordering #

(<) :: Term -> Term -> Bool #

(<=) :: Term -> Term -> Bool #

(>) :: Term -> Term -> Bool #

(>=) :: Term -> Term -> Bool #

max :: Term -> Term -> Term #

min :: Term -> Term -> Term #

DeBruijn DeBruijnPattern Source # 
Abstract Permutation Source # 
Abstract Clause Source # 
Abstract Sort Source # 
Abstract Telescope Source # 
Abstract Type Source # 
Abstract Term Source # 
Abstract CompiledClauses Source # 
Abstract FunctionInverse Source # 
Abstract PrimFun Source # 
Abstract Defn Source # 
Abstract ProjLams Source # 
Abstract Projection Source # 
Abstract Definition Source # 
Abstract RewriteRule Source #

tel ⊢ (Γ ⊢ lhs ↦ rhs : t) becomes tel, Γ ⊢ lhs ↦ rhs : t) we do not need to change lhs, rhs, and t since they live in Γ. See 'Abstract Clause'.

Apply Permutation Source # 
Apply Clause Source # 
Apply Sort Source # 

Methods

apply :: Sort -> Args -> Sort Source #

applyE :: Sort -> Elims -> Sort Source #

Apply Term Source # 

Methods

apply :: Term -> Args -> Term Source #

applyE :: Term -> Elims -> Term Source #

Apply CompiledClauses Source # 
Apply FunctionInverse Source # 
Apply PrimFun Source # 
Apply Defn Source # 

Methods

apply :: Defn -> Args -> Defn Source #

applyE :: Defn -> Elims -> Defn Source #

Apply ProjLams Source # 
Apply Projection Source # 
Apply Definition Source # 
Apply RewriteRule Source # 
Apply DisplayTerm Source # 
Subst DeBruijnPattern DeBruijnPattern Source # 
Subst Term () Source # 

Methods

applySubst :: Substitution' Term -> () -> () Source #

Subst Term String Source # 
Subst Term Name Source # 
Subst Term EqualityView Source # 
Subst Term ConPatternInfo Source # 
Subst Term Pattern Source # 
Subst Term LevelAtom Source # 
Subst Term PlusLevel Source # 
Subst Term Level Source # 
Subst Term Sort Source # 
Subst Term Term Source # 
Subst Term NamedDotPattern Source # 
Subst Term Candidate Source # 
Subst Term ModuleParameters Source # 
Subst Term RewriteRule Source # 
Subst Term NLPType Source # 
Subst Term NLPat Source # 
Subst Term DisplayTerm Source # 
Subst Term DisplayForm Source # 
Subst Term Constraint Source # 
Subst t a => Subst t [a] Source # 

Methods

applySubst :: Substitution' t -> [a] -> [a] Source #

Subst t a => Subst t (Maybe a) Source # 

Methods

applySubst :: Substitution' t -> Maybe a -> Maybe a Source #

Subst t a => Subst t (Dom a) Source # 

Methods

applySubst :: Substitution' t -> Dom a -> Dom a Source #

Subst t a => Subst t (Arg a) Source # 

Methods

applySubst :: Substitution' t -> Arg a -> Arg a Source #

Subst t a => Subst t (Abs a) Source # 

Methods

applySubst :: Substitution' t -> Abs a -> Abs a Source #

Subst t a => Subst t (Elim' a) Source # 

Methods

applySubst :: Substitution' t -> Elim' a -> Elim' a Source #

Subst t a => Subst t (Tele a) Source # 

Methods

applySubst :: Substitution' t -> Tele a -> Tele a Source #

Subst t a => Subst t (Blocked a) Source # 
Subst t a => Subst t (Ptr a) Source # 

Methods

applySubst :: Substitution' t -> Ptr a -> Ptr a Source #

Subst a a => Subst a (Substitution' a) Source # 
Subst Term a => Subst Term (Type' a) Source # 
(Subst t a, Subst t b) => Subst t (a, b) Source # 

Methods

applySubst :: Substitution' t -> (a, b) -> (a, b) Source #

(Ord k, Subst t a) => Subst t (Map k a) Source # 

Methods

applySubst :: Substitution' t -> Map k a -> Map k a Source #

Subst t a => Subst t (Named name a) Source # 

Methods

applySubst :: Substitution' t -> Named name a -> Named name a Source #

(Subst t a, Subst t b, Subst t c) => Subst t (a, b, c) Source # 

Methods

applySubst :: Substitution' t -> (a, b, c) -> (a, b, c) Source #

(Subst t a, Subst t b, Subst t c, Subst t d) => Subst t (a, b, c, d) Source # 

Methods

applySubst :: Substitution' t -> (a, b, c, d) -> (a, b, c, d) Source #

Eq (Substitution' Term) Source # 
Eq t => Eq (Blocked t) Source # 

Methods

(==) :: Blocked t -> Blocked t -> Bool #

(/=) :: Blocked t -> Blocked t -> Bool #

(Subst t a, Eq a) => Eq (Tele a) Source # 

Methods

(==) :: Tele a -> Tele a -> Bool #

(/=) :: Tele a -> Tele a -> Bool #

Eq a => Eq (Type' a) Source #

Syntactic Type equality, ignores sort annotations.

Methods

(==) :: Type' a -> Type' a -> Bool #

(/=) :: Type' a -> Type' a -> Bool #

(Subst t a, Eq a) => Eq (Abs a) Source # 

Methods

(==) :: Abs a -> Abs a -> Bool #

(/=) :: Abs a -> Abs a -> Bool #

(Subst t a, Eq a) => Eq (Elim' a) Source # 

Methods

(==) :: Elim' a -> Elim' a -> Bool #

(/=) :: Elim' a -> Elim' a -> Bool #

Ord (Substitution' Term) Source # 
Ord t => Ord (Blocked t) Source # 

Methods

compare :: Blocked t -> Blocked t -> Ordering #

(<) :: Blocked t -> Blocked t -> Bool #

(<=) :: Blocked t -> Blocked t -> Bool #

(>) :: Blocked t -> Blocked t -> Bool #

(>=) :: Blocked t -> Blocked t -> Bool #

max :: Blocked t -> Blocked t -> Blocked t #

min :: Blocked t -> Blocked t -> Blocked t #

(Subst t a, Ord a) => Ord (Tele a) Source # 

Methods

compare :: Tele a -> Tele a -> Ordering #

(<) :: Tele a -> Tele a -> Bool #

(<=) :: Tele a -> Tele a -> Bool #

(>) :: Tele a -> Tele a -> Bool #

(>=) :: Tele a -> Tele a -> Bool #

max :: Tele a -> Tele a -> Tele a #

min :: Tele a -> Tele a -> Tele a #

Ord a => Ord (Type' a) Source # 

Methods

compare :: Type' a -> Type' a -> Ordering #

(<) :: Type' a -> Type' a -> Bool #

(<=) :: Type' a -> Type' a -> Bool #

(>) :: Type' a -> Type' a -> Bool #

(>=) :: Type' a -> Type' a -> Bool #

max :: Type' a -> Type' a -> Type' a #

min :: Type' a -> Type' a -> Type' a #

(Subst t a, Ord a) => Ord (Abs a) Source # 

Methods

compare :: Abs a -> Abs a -> Ordering #

(<) :: Abs a -> Abs a -> Bool #

(<=) :: Abs a -> Abs a -> Bool #

(>) :: Abs a -> Abs a -> Bool #

(>=) :: Abs a -> Abs a -> Bool #

max :: Abs a -> Abs a -> Abs a #

min :: Abs a -> Abs a -> Abs a #

(Subst t a, Ord a) => Ord (Elim' a) Source # 

Methods

compare :: Elim' a -> Elim' a -> Ordering #

(<) :: Elim' a -> Elim' a -> Bool #

(<=) :: Elim' a -> Elim' a -> Bool #

(>) :: Elim' a -> Elim' a -> Bool #

(>=) :: Elim' a -> Elim' a -> Bool #

max :: Elim' a -> Elim' a -> Elim' a #

min :: Elim' a -> Elim' a -> Elim' a #

Abstract t => Abstract [t] Source # 

Methods

abstract :: Telescope -> [t] -> [t] Source #

Abstract [Occurrence] Source # 
Abstract [Polarity] Source # 
Abstract t => Abstract (Maybe t) Source # 

Methods

abstract :: Telescope -> Maybe t -> Maybe t Source #

DoDrop a => Abstract (Drop a) Source # 

Methods

abstract :: Telescope -> Drop a -> Drop a Source #

Abstract a => Abstract (Case a) Source # 

Methods

abstract :: Telescope -> Case a -> Case a Source #

Abstract a => Abstract (WithArity a) Source # 
Apply t => Apply [t] Source # 

Methods

apply :: [t] -> Args -> [t] Source #

applyE :: [t] -> Elims -> [t] Source #

Apply [NamedArg (Pattern' a)] Source #

Make sure we only drop variable patterns.

Apply [Occurrence] Source # 
Apply [Polarity] Source # 
Apply t => Apply (Maybe t) Source # 

Methods

apply :: Maybe t -> Args -> Maybe t Source #

applyE :: Maybe t -> Elims -> Maybe t Source #

Apply a => Apply (Ptr a) Source # 

Methods

apply :: Ptr a -> Args -> Ptr a Source #

applyE :: Ptr a -> Elims -> Ptr a Source #

DoDrop a => Apply (Drop a) Source # 

Methods

apply :: Drop a -> Args -> Drop a Source #

applyE :: Drop a -> Elims -> Drop a Source #

Apply t => Apply (Blocked t) Source # 

Methods

apply :: Blocked t -> Args -> Blocked t Source #

applyE :: Blocked t -> Elims -> Blocked t Source #

Subst Term a => Apply (Tele a) Source # 

Methods

apply :: Tele a -> Args -> Tele a Source #

applyE :: Tele a -> Elims -> Tele a Source #

Apply a => Apply (Case a) Source # 

Methods

apply :: Case a -> Args -> Case a Source #

applyE :: Case a -> Elims -> Case a Source #

Apply a => Apply (WithArity a) Source # 
Abstract v => Abstract (Map k v) Source # 

Methods

abstract :: Telescope -> Map k v -> Map k v Source #

Abstract v => Abstract (HashMap k v) Source # 

Methods

abstract :: Telescope -> HashMap k v -> HashMap k v Source #

(Apply a, Apply b) => Apply (a, b) Source # 

Methods

apply :: (a, b) -> Args -> (a, b) Source #

applyE :: (a, b) -> Elims -> (a, b) Source #

Apply v => Apply (Map k v) Source # 

Methods

apply :: Map k v -> Args -> Map k v Source #

applyE :: Map k v -> Elims -> Map k v Source #

Apply v => Apply (HashMap k v) Source # 

Methods

apply :: HashMap k v -> Args -> HashMap k v Source #

applyE :: HashMap k v -> Elims -> HashMap k v Source #

(Apply a, Apply b, Apply c) => Apply (a, b, c) Source # 

Methods

apply :: (a, b, c) -> Args -> (a, b, c) Source #

applyE :: (a, b, c) -> Elims -> (a, b, c) Source #