Flint2-0.1.0.5: Haskell bindings for the flint library for number theory

Data.Number.Flint.Fq.NMod.MPoly.Factor

Synopsis

# Factorisation of multivariate polynomials over finite fields of

Constructors

 FqNModMPolyFactor !(ForeignPtr CFqNModMPolyFactor)

Constructors

 CFqNModMPolyFactor (Ptr CFqNMod) (Ptr CFqNModMPoly) (Ptr CFmpz) CLong CLong

#### Instances

Instances details
 Source # Instance details MethodspokeByteOff :: Ptr b -> Int -> CFqNModMPolyFactor -> IO () #

# Memory management

fq_nmod_mpoly_factor_init f ctx

Initialise f.

fq_nmod_mpoly_factor_clear f ctx

Clear f.

# Basic manipulation

fq_nmod_mpoly_factor_swap f g ctx

Efficiently swap f and g.

fq_nmod_mpoly_factor_length f ctx

Return the length of the product in f.

fq_nmod_mpoly_factor_get_constant_fq_nmod c f ctx

Set $$c$$ to the constant of f.

fq_nmod_mpoly_factor_get_base p f i ctx

fq_nmod_mpoly_factor_swap_base p f i ctx

Set (resp. swap) B to (resp. with) the base of the term of index i in A.

fq_nmod_mpoly_factor_get_exp_si f i ctx

Return the exponent of the term of index i in A. It is assumed to fit an slong.

fq_nmod_mpoly_factor_sort f ctx

Sort the product of f first by exponent and then by base.

# Factorisation

fq_nmod_mpoly_factor_squarefree f A ctx

Set f to a factorization of A where the bases are primitive and pairwise relatively prime. If the product of all irreducible factors with a given exponent is desired, it is recommended to call fq_nmod_mpoly_factor_sort and then multiply the bases with the desired exponent.

fq_nmod_mpoly_factor f A ctx

Set f to a factorization of A where the bases are irreducible.