| Copyright | (C) 2013-2016 University of Twente 2016-2017 Myrtle Software Ltd 2017 Google Inc. |
|---|---|
| License | BSD2 (see the file LICENSE) |
| Maintainer | Christiaan Baaij <christiaan.baaij@gmail.com> |
| Safe Haskell | Trustworthy |
| Language | Haskell2010 |
| Extensions |
|
Clash.Explicit.BlockRam
Description
BlockRAM primitives
Using RAMs
We will show a rather elaborate example on how you can, and why you might want
to use blockRams. We will build a "small" CPU+Memory+Program ROM where we
will slowly evolve to using blockRams. Note that the code is not meant as a
de-facto standard on how to do CPU design in CλaSH.
We start with the definition of the Instructions, Register names and machine codes:
{-# LANGUAGE RecordWildCards, TupleSections #-}
module CPU where
import Clash.Explicit.Prelude
type InstrAddr = Unsigned 8
type MemAddr = Unsigned 5
type Value = Signed 8
data Instruction
= Compute Operator Reg Reg Reg
| Branch Reg Value
| Jump Value
| Load MemAddr Reg
| Store Reg MemAddr
| Nop
deriving (Eq,Show)
data Reg
= Zero
| PC
| RegA
| RegB
| RegC
| RegD
| RegE
deriving (Eq,Show,Enum)
data Operator = Add | Sub | Incr | Imm | CmpGt
deriving (Eq,Show)
data MachCode
= MachCode
{ inputX :: Reg
, inputY :: Reg
, result :: Reg
, aluCode :: Operator
, ldReg :: Reg
, rdAddr :: MemAddr
, wrAddrM :: Maybe MemAddr
, jmpM :: Maybe Value
}
nullCode = MachCode { inputX = Zero, inputY = Zero, result = Zero, aluCode = Imm
, ldReg = Zero, rdAddr = 0, wrAddrM = Nothing
, jmpM = Nothing
}
Next we define the CPU and its ALU:
cpu
:: Vec 7 Value
-- ^ Register bank
-> (Value,Instruction)
-- ^ (Memory output, Current instruction)
-> ( Vec 7 Value
, (MemAddr, Maybe (MemAddr,Value), InstrAddr)
)
cpu regbank (memOut,instr) = (regbank',(rdAddr,(,aluOut) <$> wrAddrM,fromIntegral ipntr))
where
-- Current instruction pointer
ipntr = regbank !! PC
-- Decoder
(MachCode {..}) = case instr of
Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op}
Branch cr a -> nullCode {inputX=cr,jmpM=Just a}
Jump a -> nullCode {aluCode=Incr,jmpM=Just a}
Load a r -> nullCode {ldReg=r,rdAddr=a}
Store r a -> nullCode {inputX=r,wrAddrM=Just a}
Nop -> nullCode
-- ALU
regX = regbank !! inputX
regY = regbank !! inputY
aluOut = alu aluCode regX regY
-- next instruction
nextPC = case jmpM of
Just a | aluOut /= 0 -> ipntr + a
_ -> ipntr + 1
-- update registers
regbank' = replace Zero 0
$ replace PC nextPC
$ replace result aluOut
$ replace ldReg memOut
$ regbank
alu Add x y = x + y
alu Sub x y = x - y
alu Incr x _ = x + 1
alu Imm x _ = x
alu CmpGt x y = if x > y then 1 else 0
We initially create a memory out of simple registers:
dataMem :: Clock domain gated -> Reset domain synchronous -> Signal domain MemAddr -- ^ Read address -> Signal domain (Maybe (MemAddr,Value)) -- ^ (write address, data in) -> Signal domain Value -- ^ data out dataMem clk rst rd wrM =mealyclk rst dataMemT (replicated32 0) (bundle (rd,wrM)) where dataMemT mem (rd,wrM) = (mem',dout) where dout = mem!!rd mem' = case wrM of Just (wr,din) ->replacewr din mem _ -> mem
And then connect everything:
system
:: KnownNat n
=> Vec n Instruction
-> Clock domain gated
-> Reset domain synchronous
-> Signal domain Value
system instrs clk rst = memOut
where
memOut = dataMem clk rst rdAddr dout
(rdAddr,dout,ipntr) = mealyB clk rst cpu (replicate d7 0) (memOut,instr)
instr = asyncRom instrs <$> ipntr
Create a simple program that calculates the GCD of 4 and 6:
-- Compute GCD of 4 and 6
prog = -- 0 := 4
Compute Incr Zero RegA RegA :>
replicate d3 (Compute Incr RegA Zero RegA) ++
Store RegA 0 :>
-- 1 := 6
Compute Incr Zero RegA RegA :>
replicate d5 (Compute Incr RegA Zero RegA) ++
Store RegA 1 :>
-- A := 4
Load 0 RegA :>
-- B := 6
Load 1 RegB :>
-- start
Compute CmpGt RegA RegB RegC :>
Branch RegC 4 :>
Compute CmpGt RegB RegA RegC :>
Branch RegC 4 :>
Jump 5 :>
-- (a > b)
Compute Sub RegA RegB RegA :>
Jump (-6) :>
-- (b > a)
Compute Sub RegB RegA RegB :>
Jump (-8) :>
-- end
Store RegA 2 :>
Load 2 RegC :>
Nil
And test our system:
>>> sampleN 31 $ system prog systemClockGen systemResetGen [0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
to see that our system indeed calculates that the GCD of 6 and 4 is 2.
Improvement 1: using asyncRam
As you can see, it's fairly straightforward to build a memory using registers
and read (!!) and write (replace) logic. This might however not result in
the most efficient hardware structure, especially when building an ASIC.
Instead it is preferable to use the asyncRam function which
has the potential to be translated to a more efficient structure:
system2
:: KnownNat n
=> Vec n Instruction
-> Clock domain gated
-> Reset domain synchronous
-> Signal domain Value
system2 instrs clk rst = memOut
where
memOut = asyncRam clk clk d32 rdAddr dout
(rdAddr,dout,ipntr) = mealyB clk rst cpu (replicate d7 0) (memOut,instr)
instr = asyncRom instrs <$> ipntr
Again, we can simulate our system and see that it works. This time however,
we need to disregard the first few output samples, because the initial content of an
asyncRam is undefined, and consequently, the first few
output samples are also undefined. We use the utility function printX to conveniently
filter out the undefinedness and replace it with the string X in the few leading outputs.
>>> printX $ sampleN 31 $ system2 prog systemClockGen systemResetGen [X,X,X,X,X,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
Improvement 2: using blockRam
Finally we get to using blockRam. On FPGAs, asyncRam will
be implemented in terms of LUTs, and therefore take up logic resources. FPGAs
also have large(r) memory structures called Block RAMs, which are preferred,
especially as the memories we need for our application get bigger. The
blockRam function will be translated to such a Block RAM.
One important aspect of Block RAMs have a synchronous read port, meaning that,
unlike the behaviour of asyncRam, given a read address r
at time t, the value v in the RAM at address r is only available at time
t+1.
For us that means we need to change the design of our CPU. Right now, upon a load instruction we generate a read address for the memory, and the value at that read address is immediately available to be put in the register bank. Because we will be using a BlockRAM, the value is delayed until the next cycle. We hence need to also delay the register address to which the memory address is loaded:
cpu2
:: (Vec 7 Value,Reg)
-- ^ (Register bank, Load reg addr)
-> (Value,Instruction)
-- ^ (Memory output, Current instruction)
-> ( (Vec 7 Value,Reg)
, (MemAddr, Maybe (MemAddr,Value), InstrAddr)
)
cpu2 (regbank,ldRegD) (memOut,instr) = ((regbank',ldRegD'),(rdAddr,(,aluOut) <$> wrAddrM,fromIntegral ipntr))
where
-- Current instruction pointer
ipntr = regbank !! PC
-- Decoder
(MachCode {..}) = case instr of
Compute op rx ry res -> nullCode {inputX=rx,inputY=ry,result=res,aluCode=op}
Branch cr a -> nullCode {inputX=cr,jmpM=Just a}
Jump a -> nullCode {aluCode=Incr,jmpM=Just a}
Load a r -> nullCode {ldReg=r,rdAddr=a}
Store r a -> nullCode {inputX=r,wrAddrM=Just a}
Nop -> nullCode
-- ALU
regX = regbank !! inputX
regY = regbank !! inputY
aluOut = alu aluCode regX regY
-- next instruction
nextPC = case jmpM of
Just a | aluOut /= 0 -> ipntr + a
_ -> ipntr + 1
-- update registers
ldRegD' = ldReg -- Delay the ldReg by 1 cycle
regbank' = replace Zero 0
$ replace PC nextPC
$ replace result aluOut
$ replace ldRegD memOut
$ regbank
We can now finally instantiate our system with a blockRam:
system3
:: KnownNat n
=> Vec n Instruction
-> Clock domain gated
-> Reset domain synchronous
-> Signal domain Value
system3 instrs clk rst = memOut
where
memOut = blockRam clk (replicate d32 0) rdAddr dout
(rdAddr,dout,ipntr) = mealyB clk rst cpu2 ((replicate d7 0),Zero) (memOut,instr)
instr = asyncRom instrs <$> ipntr
We are, however, not done. We will also need to update our program. The reason
being that values that we try to load in our registers won't be loaded into the
register until the next cycle. This is a problem when the next instruction
immediately depended on this memory value. In our case, this was only the case
when the loaded the value 6, which was stored at address 1, into RegB.
Our updated program is thus:
prog2 = -- 0 := 4
Compute Incr Zero RegA RegA :>
replicate d3 (Compute Incr RegA Zero RegA) ++
Store RegA 0 :>
-- 1 := 6
Compute Incr Zero RegA RegA :>
replicate d5 (Compute Incr RegA Zero RegA) ++
Store RegA 1 :>
-- A := 4
Load 0 RegA :>
-- B := 6
Load 1 RegB :>
Nop :> -- Extra NOP
-- start
Compute CmpGt RegA RegB RegC :>
Branch RegC 4 :>
Compute CmpGt RegB RegA RegC :>
Branch RegC 4 :>
Jump 5 :>
-- (a > b)
Compute Sub RegA RegB RegA :>
Jump (-6) :>
-- (b > a)
Compute Sub RegB RegA RegB :>
Jump (-8) :>
-- end
Store RegA 2 :>
Load 2 RegC :>
Nil
When we simulate our system we see that it works. This time again,
we need to disregard the first sample, because the initial output of a
blockRam is undefined. We use the utility function printX to conveniently
filter out the undefinedness and replace it with the string X.
>>> printX $ sampleN 33 $ system3 prog2 systemClockGen systemResetGen [X,0,0,0,0,0,4,4,4,4,4,4,4,4,6,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,4,2]
This concludes the short introduction to using blockRam.
Synopsis
- blockRam :: HasCallStack => Enum addr => Clock dom gated -> Vec n a -> Signal dom addr -> Signal dom (Maybe (addr, a)) -> Signal dom a
- blockRamPow2 :: (KnownNat n, HasCallStack) => Clock dom gated -> Vec (2 ^ n) a -> Signal dom (Unsigned n) -> Signal dom (Maybe (Unsigned n, a)) -> Signal dom a
- readNew :: Eq addr => Reset domain synchronous -> Clock domain gated -> (Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a) -> Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a
- blockRam# :: HasCallStack => Clock dom gated -> Vec n a -> Signal dom Int -> Signal dom Bool -> Signal dom Int -> Signal dom a -> Signal dom a
BlockRAM synchronised to the system clock
Arguments
| :: HasCallStack | |
| => Enum addr | |
| => Clock dom gated |
|
| -> Vec n a | Initial content of the BRAM, also determines the size, NB: MUST be a constant. |
| -> Signal dom addr | Read address |
| -> Signal dom (Maybe (addr, a)) | (write address |
| -> Signal dom a | Value of the |
Create a blockRAM with space for n elements
- NB: Read value is delayed by 1 cycle
- NB: Initial output value is
undefined
bram40 ::Clockdomain gated ->Signaldomain (Unsigned6) ->Signaldomain (Maybe (Unsigned6,Bit)) ->SignaldomainBitbram40 clk =blockRamclk (replicated40 1)
Additional helpful information:
- See Clash.Explicit.BlockRam for more information on how to use a Block RAM.
- Use the adapter
readNewfor obtaining write-before-read semantics like this:.readNewclk rst (blockRamclk inits) rd wrM
Arguments
| :: (KnownNat n, HasCallStack) | |
| => Clock dom gated |
|
| -> Vec (2 ^ n) a | Initial content of the BRAM, also
determines the size, NB: MUST be a constant. |
| -> Signal dom (Unsigned n) | Read address |
| -> Signal dom (Maybe (Unsigned n, a)) | (Write address |
| -> Signal dom a | Value of the |
Create a blockRAM with space for 2^n elements
- NB: Read value is delayed by 1 cycle
- NB: Initial output value is
undefined
bram32 ::Signaldomain (Unsigned5) ->Signaldomain (Maybe (Unsigned5,Bit)) ->SignaldomainBitbram32 clk =blockRamPow2clk (replicated32 1)
Additional helpful information:
- See Clash.Prelude.BlockRam for more information on how to use a Block RAM.
- Use the adapter
readNewfor obtaining write-before-read semantics like this:.readNewclk rst (blockRamPow2clk inits) rd wrM
Read/Write conflict resolution
Arguments
| :: Eq addr | |
| => Reset domain synchronous | |
| -> Clock domain gated | |
| -> (Signal domain addr -> Signal domain (Maybe (addr, a)) -> Signal domain a) | The |
| -> Signal domain addr | Read address |
| -> Signal domain (Maybe (addr, a)) | (Write address |
| -> Signal domain a | Value of the |
Create read-after-write blockRAM from a read-before-write one
Internal
Arguments
| :: HasCallStack | |
| => Clock dom gated |
|
| -> Vec n a | Initial content of the BRAM, also
determines the size, NB: MUST be a constant. |
| -> Signal dom Int | Read address |
| -> Signal dom Bool | Write enable |
| -> Signal dom Int | Write address |
| -> Signal dom a | Value to write (at address |
| -> Signal dom a | Value of the |
blockRAM primitive