The geodetics package

[ Tags: bsd3, geography, library ] [ Propose Tags ]

Precise geographical coordinates (latitude & longitude), with conversion between different reference frames and projections.

Certain distinguished reference frames and grids are given distinct types so that coordinates expressed within them cannot be confused with from coordinates in other frames.

[Skip to Readme]


Versions 0.0.1, 0.0.2, 0.0.3, 0.0.4
Dependencies array (>=0.4), base (>=4.6 && <5), dimensional (>=1.0) [details]
License BSD3
Copyright Paul Johnson 2015.
Author Paul Johnson <>
Maintainer Paul Johnson <>
Category Geography
Home page
Source repo head: git clone
Uploaded Sun Nov 15 15:30:49 UTC 2015 by PaulJohnson
Distributions NixOS:0.0.4
Downloads 1320 total (25 in the last 30 days)
Rating (no votes yet) [estimated by rule of succession]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2016-11-30 [all 2 reports]
Hackage Matrix CI




Maintainer's Corner

For package maintainers and hackage trustees

Readme for geodetics-0.0.4

[back to package description]


Haskell library of data types and calculations for positions on planet Earth

This library provides "geodetic" positions. That is, latitude, longitude and altitude on a specified Terrestrial Reference Frame (TRF). The basic TRF is the WGS84, which is the one used by GPS and Google Earth. Others can be added by describing the underlying ellipsoid and the difference in angle and centre with WGS84, and a position in one TRF can be transformed into another. Given two points in the same TRF you can find the shortest distance between them and the bearing from one to the other.

Once you have a geodetic position defined you can project it onto a flat plane, or Grid. At present Transverse Mercator and Oblique Stereographic grids are provided. More can be added by defining new instances of the Grid typeclass: see "AddingProjections.txt" for detais.

The Paths module defines a path as a parametric function of distance that returns a position and a bearing. Given two paths you can find their intersection using a fast iterative algorithm.

Release Notes

Version 0.0.2: Tided up cabal file and removed spurious dependency on Parsec.

Version 0.0.3: Updated for Haskell Platform 2014.2.0.0 and GHC 7.8.3. Fixed some minor documentation issues.

Version 0.0.4: Updated for Dimensional 1.0.