mixed-types-num-0.5.11: Alternative Prelude with numeric and logic expressions typed bottom-up
Copyright(c) Michal Konecny
LicenseBSD3
Maintainermikkonecny@gmail.com
Stabilityexperimental
Portabilityportable
Safe HaskellSafe-Inferred
LanguageHaskell2010

Numeric.MixedTypes.PreludeHiding

Description

Prelude without operations that clash with MixedTypes

Synopsis

Documentation

(++) :: [a] -> [a] -> [a] infixr 5 #

Append two lists, i.e.,

[x1, ..., xm] ++ [y1, ..., yn] == [x1, ..., xm, y1, ..., yn]
[x1, ..., xm] ++ [y1, ...] == [x1, ..., xm, y1, ...]

If the first list is not finite, the result is the first list.

seq :: forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b infixr 0 #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

filter :: (a -> Bool) -> [a] -> [a] #

\(\mathcal{O}(n)\). filter, applied to a predicate and a list, returns the list of those elements that satisfy the predicate; i.e.,

filter p xs = [ x | x <- xs, p x]
>>> filter odd [1, 2, 3]
[1,3]

zip :: [a] -> [b] -> [(a, b)] #

\(\mathcal{O}(\min(m,n))\). zip takes two lists and returns a list of corresponding pairs.

zip [1, 2] ['a', 'b'] = [(1, 'a'), (2, 'b')]

If one input list is short, excess elements of the longer list are discarded:

zip [1] ['a', 'b'] = [(1, 'a')]
zip [1, 2] ['a'] = [(1, 'a')]

zip is right-lazy:

zip [] _|_ = []
zip _|_ [] = _|_

zip is capable of list fusion, but it is restricted to its first list argument and its resulting list.

print :: Show a => a -> IO () #

The print function outputs a value of any printable type to the standard output device. Printable types are those that are instances of class Show; print converts values to strings for output using the show operation and adds a newline.

For example, a program to print the first 20 integers and their powers of 2 could be written as:

main = print ([(n, 2^n) | n <- [0..19]])

fst :: (a, b) -> a #

Extract the first component of a pair.

snd :: (a, b) -> b #

Extract the second component of a pair.

otherwise :: Bool #

otherwise is defined as the value True. It helps to make guards more readable. eg.

 f x | x < 0     = ...
     | otherwise = ...

map :: (a -> b) -> [a] -> [b] #

\(\mathcal{O}(n)\). map f xs is the list obtained by applying f to each element of xs, i.e.,

map f [x1, x2, ..., xn] == [f x1, f x2, ..., f xn]
map f [x1, x2, ...] == [f x1, f x2, ...]
>>> map (+1) [1, 2, 3]

($) :: forall (r :: RuntimeRep) a (b :: TYPE r). (a -> b) -> a -> b infixr 0 #

Application operator. This operator is redundant, since ordinary application (f x) means the same as (f $ x). However, $ has low, right-associative binding precedence, so it sometimes allows parentheses to be omitted; for example:

f $ g $ h x  =  f (g (h x))

It is also useful in higher-order situations, such as map ($ 0) xs, or zipWith ($) fs xs.

Note that ($) is levity-polymorphic in its result type, so that foo $ True where foo :: Bool -> Int# is well-typed.

fromIntegral :: (Integral a, Num b) => a -> b #

general coercion from integral types

realToFrac :: (Real a, Fractional b) => a -> b #

general coercion to fractional types

class Bounded a where #

The Bounded class is used to name the upper and lower limits of a type. Ord is not a superclass of Bounded since types that are not totally ordered may also have upper and lower bounds.

The Bounded class may be derived for any enumeration type; minBound is the first constructor listed in the data declaration and maxBound is the last. Bounded may also be derived for single-constructor datatypes whose constituent types are in Bounded.

Methods

minBound :: a #

maxBound :: a #

Instances

Instances details
Bounded Bool

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Char

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: Int #

maxBound :: Int #

Bounded Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Bounded Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Bounded Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Bounded Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Bounded Ordering

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Bounded Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Bounded Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Bounded Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Bounded Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Bounded VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Bounded VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Bounded ()

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: () #

maxBound :: () #

Bounded All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: All #

maxBound :: All #

Bounded Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Any #

maxBound :: Any #

Bounded Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Bounded CChar 
Instance details

Defined in Foreign.C.Types

Bounded CSChar 
Instance details

Defined in Foreign.C.Types

Bounded CUChar 
Instance details

Defined in Foreign.C.Types

Bounded CShort 
Instance details

Defined in Foreign.C.Types

Bounded CUShort 
Instance details

Defined in Foreign.C.Types

Bounded CInt 
Instance details

Defined in Foreign.C.Types

Bounded CUInt 
Instance details

Defined in Foreign.C.Types

Bounded CLong 
Instance details

Defined in Foreign.C.Types

Bounded CULong 
Instance details

Defined in Foreign.C.Types

Bounded CLLong 
Instance details

Defined in Foreign.C.Types

Bounded CULLong 
Instance details

Defined in Foreign.C.Types

Bounded CBool 
Instance details

Defined in Foreign.C.Types

Bounded CPtrdiff 
Instance details

Defined in Foreign.C.Types

Bounded CSize 
Instance details

Defined in Foreign.C.Types

Bounded CWchar 
Instance details

Defined in Foreign.C.Types

Bounded CSigAtomic 
Instance details

Defined in Foreign.C.Types

Bounded CIntPtr 
Instance details

Defined in Foreign.C.Types

Bounded CUIntPtr 
Instance details

Defined in Foreign.C.Types

Bounded CIntMax 
Instance details

Defined in Foreign.C.Types

Bounded CUIntMax 
Instance details

Defined in Foreign.C.Types

Bounded TimeSpec 
Instance details

Defined in System.Clock

Bounded Extension 
Instance details

Defined in GHC.LanguageExtensions.Type

Bounded a => Bounded (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Bounded a => Bounded (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Dual a #

maxBound :: Dual a #

Bounded a => Bounded (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Methods

minBound :: Sum a #

maxBound :: Sum a #

Bounded a => Bounded (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

(Num a, Bounded a) => Bounded (Positive a) 
Instance details

Defined in Test.SmallCheck.Series

(Num a, Bounded a) => Bounded (NonNegative a) 
Instance details

Defined in Test.SmallCheck.Series

(Eq a, Num a, Bounded a) => Bounded (NonZero a) 
Instance details

Defined in Test.SmallCheck.Series

(Bounded a, Bounded b) => Bounded (a, b)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b) #

maxBound :: (a, b) #

Bounded (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

minBound :: Proxy t #

maxBound :: Proxy t #

(Bounded a, Bounded b, Bounded c) => Bounded (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c) #

maxBound :: (a, b, c) #

Bounded a => Bounded (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b #

maxBound :: Const a b #

(Applicative f, Bounded a) => Bounded (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

minBound :: Ap f a #

maxBound :: Ap f a #

a ~ b => Bounded (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

minBound :: a :~: b #

maxBound :: a :~: b #

(Bounded a, Bounded b, Bounded c, Bounded d) => Bounded (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d) #

maxBound :: (a, b, c, d) #

a ~~ b => Bounded (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in Data.Type.Equality

Methods

minBound :: a :~~: b #

maxBound :: a :~~: b #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e) => Bounded (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e) #

maxBound :: (a, b, c, d, e) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f) => Bounded (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f) #

maxBound :: (a, b, c, d, e, f) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g) => Bounded (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g) #

maxBound :: (a, b, c, d, e, f, g) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h) => Bounded (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h) #

maxBound :: (a, b, c, d, e, f, g, h) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i) => Bounded (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i) #

maxBound :: (a, b, c, d, e, f, g, h, i) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j) => Bounded (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j) #

maxBound :: (a, b, c, d, e, f, g, h, i, j) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k) => Bounded (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

(Bounded a, Bounded b, Bounded c, Bounded d, Bounded e, Bounded f, Bounded g, Bounded h, Bounded i, Bounded j, Bounded k, Bounded l, Bounded m, Bounded n, Bounded o) => Bounded (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

minBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

maxBound :: (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

class Enum a where #

Class Enum defines operations on sequentially ordered types.

The enumFrom... methods are used in Haskell's translation of arithmetic sequences.

Instances of Enum may be derived for any enumeration type (types whose constructors have no fields). The nullary constructors are assumed to be numbered left-to-right by fromEnum from 0 through n-1. See Chapter 10 of the Haskell Report for more details.

For any type that is an instance of class Bounded as well as Enum, the following should hold:

   enumFrom     x   = enumFromTo     x maxBound
   enumFromThen x y = enumFromThenTo x y bound
     where
       bound | fromEnum y >= fromEnum x = maxBound
             | otherwise                = minBound

Minimal complete definition

toEnum, fromEnum

Methods

succ :: a -> a #

the successor of a value. For numeric types, succ adds 1.

pred :: a -> a #

the predecessor of a value. For numeric types, pred subtracts 1.

toEnum :: Int -> a #

Convert from an Int.

fromEnum :: a -> Int #

Convert to an Int. It is implementation-dependent what fromEnum returns when applied to a value that is too large to fit in an Int.

enumFrom :: a -> [a] #

Used in Haskell's translation of [n..] with [n..] = enumFrom n, a possible implementation being enumFrom n = n : enumFrom (succ n). For example:

  • enumFrom 4 :: [Integer] = [4,5,6,7,...]
  • enumFrom 6 :: [Int] = [6,7,8,9,...,maxBound :: Int]

enumFromThen :: a -> a -> [a] #

Used in Haskell's translation of [n,n'..] with [n,n'..] = enumFromThen n n', a possible implementation being enumFromThen n n' = n : n' : worker (f x) (f x n'), worker s v = v : worker s (s v), x = fromEnum n' - fromEnum n and f n y | n > 0 = f (n - 1) (succ y) | n < 0 = f (n + 1) (pred y) | otherwise = y For example:

  • enumFromThen 4 6 :: [Integer] = [4,6,8,10...]
  • enumFromThen 6 2 :: [Int] = [6,2,-2,-6,...,minBound :: Int]

enumFromTo :: a -> a -> [a] #

Used in Haskell's translation of [n..m] with [n..m] = enumFromTo n m, a possible implementation being enumFromTo n m | n <= m = n : enumFromTo (succ n) m | otherwise = []. For example:

  • enumFromTo 6 10 :: [Int] = [6,7,8,9,10]
  • enumFromTo 42 1 :: [Integer] = []

enumFromThenTo :: a -> a -> a -> [a] #

Used in Haskell's translation of [n,n'..m] with [n,n'..m] = enumFromThenTo n n' m, a possible implementation being enumFromThenTo n n' m = worker (f x) (c x) n m, x = fromEnum n' - fromEnum n, c x = bool (>=) ((x 0) f n y | n > 0 = f (n - 1) (succ y) | n < 0 = f (n + 1) (pred y) | otherwise = y and worker s c v m | c v m = v : worker s c (s v) m | otherwise = [] For example:

  • enumFromThenTo 4 2 -6 :: [Integer] = [4,2,0,-2,-4,-6]
  • enumFromThenTo 6 8 2 :: [Int] = []

Instances

Instances details
Enum Bool

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Bool -> Bool #

pred :: Bool -> Bool #

toEnum :: Int -> Bool #

fromEnum :: Bool -> Int #

enumFrom :: Bool -> [Bool] #

enumFromThen :: Bool -> Bool -> [Bool] #

enumFromTo :: Bool -> Bool -> [Bool] #

enumFromThenTo :: Bool -> Bool -> Bool -> [Bool] #

Enum Char

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Char -> Char #

pred :: Char -> Char #

toEnum :: Int -> Char #

fromEnum :: Char -> Int #

enumFrom :: Char -> [Char] #

enumFromThen :: Char -> Char -> [Char] #

enumFromTo :: Char -> Char -> [Char] #

enumFromThenTo :: Char -> Char -> Char -> [Char] #

Enum Int

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Int -> Int #

pred :: Int -> Int #

toEnum :: Int -> Int #

fromEnum :: Int -> Int #

enumFrom :: Int -> [Int] #

enumFromThen :: Int -> Int -> [Int] #

enumFromTo :: Int -> Int -> [Int] #

enumFromThenTo :: Int -> Int -> Int -> [Int] #

Enum Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

succ :: Int8 -> Int8 #

pred :: Int8 -> Int8 #

toEnum :: Int -> Int8 #

fromEnum :: Int8 -> Int #

enumFrom :: Int8 -> [Int8] #

enumFromThen :: Int8 -> Int8 -> [Int8] #

enumFromTo :: Int8 -> Int8 -> [Int8] #

enumFromThenTo :: Int8 -> Int8 -> Int8 -> [Int8] #

Enum Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Enum Integer

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Enum

Enum Ordering

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Word

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: Word -> Word #

pred :: Word -> Word #

toEnum :: Int -> Word #

fromEnum :: Word -> Int #

enumFrom :: Word -> [Word] #

enumFromThen :: Word -> Word -> [Word] #

enumFromTo :: Word -> Word -> [Word] #

enumFromThenTo :: Word -> Word -> Word -> [Word] #

Enum Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Enum Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Enum VecCount

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Enum VecElem

Since: base-4.10.0.0

Instance details

Defined in GHC.Enum

Enum ()

Since: base-2.1

Instance details

Defined in GHC.Enum

Methods

succ :: () -> () #

pred :: () -> () #

toEnum :: Int -> () #

fromEnum :: () -> Int #

enumFrom :: () -> [()] #

enumFromThen :: () -> () -> [()] #

enumFromTo :: () -> () -> [()] #

enumFromThenTo :: () -> () -> () -> [()] #

Enum Associativity

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Enum CChar 
Instance details

Defined in Foreign.C.Types

Enum CSChar 
Instance details

Defined in Foreign.C.Types

Enum CUChar 
Instance details

Defined in Foreign.C.Types

Enum CShort 
Instance details

Defined in Foreign.C.Types

Enum CUShort 
Instance details

Defined in Foreign.C.Types

Enum CInt 
Instance details

Defined in Foreign.C.Types

Methods

succ :: CInt -> CInt #

pred :: CInt -> CInt #

toEnum :: Int -> CInt #

fromEnum :: CInt -> Int #

enumFrom :: CInt -> [CInt] #

enumFromThen :: CInt -> CInt -> [CInt] #

enumFromTo :: CInt -> CInt -> [CInt] #

enumFromThenTo :: CInt -> CInt -> CInt -> [CInt] #

Enum CUInt 
Instance details

Defined in Foreign.C.Types

Enum CLong 
Instance details

Defined in Foreign.C.Types

Enum CULong 
Instance details

Defined in Foreign.C.Types

Enum CLLong 
Instance details

Defined in Foreign.C.Types

Enum CULLong 
Instance details

Defined in Foreign.C.Types

Enum CBool 
Instance details

Defined in Foreign.C.Types

Enum CFloat 
Instance details

Defined in Foreign.C.Types

Enum CDouble 
Instance details

Defined in Foreign.C.Types

Enum CPtrdiff 
Instance details

Defined in Foreign.C.Types

Enum CSize 
Instance details

Defined in Foreign.C.Types

Enum CWchar 
Instance details

Defined in Foreign.C.Types

Enum CSigAtomic 
Instance details

Defined in Foreign.C.Types

Enum CClock 
Instance details

Defined in Foreign.C.Types

Enum CTime 
Instance details

Defined in Foreign.C.Types

Enum CUSeconds 
Instance details

Defined in Foreign.C.Types

Enum CSUSeconds 
Instance details

Defined in Foreign.C.Types

Enum CIntPtr 
Instance details

Defined in Foreign.C.Types

Enum CUIntPtr 
Instance details

Defined in Foreign.C.Types

Enum CIntMax 
Instance details

Defined in Foreign.C.Types

Enum CUIntMax 
Instance details

Defined in Foreign.C.Types

Enum Clock 
Instance details

Defined in System.Clock

Enum TimeSpec 
Instance details

Defined in System.Clock

Enum Extension 
Instance details

Defined in GHC.LanguageExtensions.Type

Enum ClosureType 
Instance details

Defined in GHC.Exts.Heap.ClosureTypes

Enum THResultType 
Instance details

Defined in GHCi.Message

Enum TestQuality 
Instance details

Defined in Test.SmallCheck.Property

Enum Day 
Instance details

Defined in Data.Time.Calendar.Days

Methods

succ :: Day -> Day #

pred :: Day -> Day #

toEnum :: Int -> Day #

fromEnum :: Day -> Int #

enumFrom :: Day -> [Day] #

enumFromThen :: Day -> Day -> [Day] #

enumFromTo :: Day -> Day -> [Day] #

enumFromThenTo :: Day -> Day -> Day -> [Day] #

Integral a => Enum (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

succ :: Ratio a -> Ratio a #

pred :: Ratio a -> Ratio a #

toEnum :: Int -> Ratio a #

fromEnum :: Ratio a -> Int #

enumFrom :: Ratio a -> [Ratio a] #

enumFromThen :: Ratio a -> Ratio a -> [Ratio a] #

enumFromTo :: Ratio a -> Ratio a -> [Ratio a] #

enumFromThenTo :: Ratio a -> Ratio a -> Ratio a -> [Ratio a] #

Enum a => Enum (Blind a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: Blind a -> Blind a #

pred :: Blind a -> Blind a #

toEnum :: Int -> Blind a #

fromEnum :: Blind a -> Int #

enumFrom :: Blind a -> [Blind a] #

enumFromThen :: Blind a -> Blind a -> [Blind a] #

enumFromTo :: Blind a -> Blind a -> [Blind a] #

enumFromThenTo :: Blind a -> Blind a -> Blind a -> [Blind a] #

Enum a => Enum (Fixed a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum a => Enum (Positive a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Enum a => Enum (Negative a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Enum a => Enum (NonZero a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: NonZero a -> NonZero a #

pred :: NonZero a -> NonZero a #

toEnum :: Int -> NonZero a #

fromEnum :: NonZero a -> Int #

enumFrom :: NonZero a -> [NonZero a] #

enumFromThen :: NonZero a -> NonZero a -> [NonZero a] #

enumFromTo :: NonZero a -> NonZero a -> [NonZero a] #

enumFromThenTo :: NonZero a -> NonZero a -> NonZero a -> [NonZero a] #

Enum a => Enum (NonNegative a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Enum a => Enum (NonPositive a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Enum a => Enum (Large a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: Large a -> Large a #

pred :: Large a -> Large a #

toEnum :: Int -> Large a #

fromEnum :: Large a -> Int #

enumFrom :: Large a -> [Large a] #

enumFromThen :: Large a -> Large a -> [Large a] #

enumFromTo :: Large a -> Large a -> [Large a] #

enumFromThenTo :: Large a -> Large a -> Large a -> [Large a] #

Enum a => Enum (Small a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: Small a -> Small a #

pred :: Small a -> Small a #

toEnum :: Int -> Small a #

fromEnum :: Small a -> Int #

enumFrom :: Small a -> [Small a] #

enumFromThen :: Small a -> Small a -> [Small a] #

enumFromTo :: Small a -> Small a -> [Small a] #

enumFromThenTo :: Small a -> Small a -> Small a -> [Small a] #

Enum a => Enum (Shrink2 a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

succ :: Shrink2 a -> Shrink2 a #

pred :: Shrink2 a -> Shrink2 a #

toEnum :: Int -> Shrink2 a #

fromEnum :: Shrink2 a -> Int #

enumFrom :: Shrink2 a -> [Shrink2 a] #

enumFromThen :: Shrink2 a -> Shrink2 a -> [Shrink2 a] #

enumFromTo :: Shrink2 a -> Shrink2 a -> [Shrink2 a] #

enumFromThenTo :: Shrink2 a -> Shrink2 a -> Shrink2 a -> [Shrink2 a] #

Enum a => Enum (Identity a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Identity

Enum a => Enum (Positive a) 
Instance details

Defined in Test.SmallCheck.Series

Enum a => Enum (NonNegative a) 
Instance details

Defined in Test.SmallCheck.Series

Enum a => Enum (NonZero a) 
Instance details

Defined in Test.SmallCheck.Series

Methods

succ :: NonZero a -> NonZero a #

pred :: NonZero a -> NonZero a #

toEnum :: Int -> NonZero a #

fromEnum :: NonZero a -> Int #

enumFrom :: NonZero a -> [NonZero a] #

enumFromThen :: NonZero a -> NonZero a -> [NonZero a] #

enumFromTo :: NonZero a -> NonZero a -> [NonZero a] #

enumFromThenTo :: NonZero a -> NonZero a -> NonZero a -> [NonZero a] #

Enum a => Enum (M a) 
Instance details

Defined in Test.SmallCheck.Series

Methods

succ :: M a -> M a #

pred :: M a -> M a #

toEnum :: Int -> M a #

fromEnum :: M a -> Int #

enumFrom :: M a -> [M a] #

enumFromThen :: M a -> M a -> [M a] #

enumFromTo :: M a -> M a -> [M a] #

enumFromThenTo :: M a -> M a -> M a -> [M a] #

Enum a => Enum (N a) 
Instance details

Defined in Test.SmallCheck.Series

Methods

succ :: N a -> N a #

pred :: N a -> N a #

toEnum :: Int -> N a #

fromEnum :: N a -> Int #

enumFrom :: N a -> [N a] #

enumFromThen :: N a -> N a -> [N a] #

enumFromTo :: N a -> N a -> [N a] #

enumFromThenTo :: N a -> N a -> N a -> [N a] #

Enum (Fixed a)

Since: base-2.1

Instance details

Defined in Data.Fixed

Methods

succ :: Fixed a -> Fixed a #

pred :: Fixed a -> Fixed a #

toEnum :: Int -> Fixed a #

fromEnum :: Fixed a -> Int #

enumFrom :: Fixed a -> [Fixed a] #

enumFromThen :: Fixed a -> Fixed a -> [Fixed a] #

enumFromTo :: Fixed a -> Fixed a -> [Fixed a] #

enumFromThenTo :: Fixed a -> Fixed a -> Fixed a -> [Fixed a] #

Enum (Proxy s)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

succ :: Proxy s -> Proxy s #

pred :: Proxy s -> Proxy s #

toEnum :: Int -> Proxy s #

fromEnum :: Proxy s -> Int #

enumFrom :: Proxy s -> [Proxy s] #

enumFromThen :: Proxy s -> Proxy s -> [Proxy s] #

enumFromTo :: Proxy s -> Proxy s -> [Proxy s] #

enumFromThenTo :: Proxy s -> Proxy s -> Proxy s -> [Proxy s] #

Enum a => Enum (Const a b)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b #

pred :: Const a b -> Const a b #

toEnum :: Int -> Const a b #

fromEnum :: Const a b -> Int #

enumFrom :: Const a b -> [Const a b] #

enumFromThen :: Const a b -> Const a b -> [Const a b] #

enumFromTo :: Const a b -> Const a b -> [Const a b] #

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] #

Enum (f a) => Enum (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

succ :: Ap f a -> Ap f a #

pred :: Ap f a -> Ap f a #

toEnum :: Int -> Ap f a #

fromEnum :: Ap f a -> Int #

enumFrom :: Ap f a -> [Ap f a] #

enumFromThen :: Ap f a -> Ap f a -> [Ap f a] #

enumFromTo :: Ap f a -> Ap f a -> [Ap f a] #

enumFromThenTo :: Ap f a -> Ap f a -> Ap f a -> [Ap f a] #

Enum (f a) => Enum (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

succ :: Alt f a -> Alt f a #

pred :: Alt f a -> Alt f a #

toEnum :: Int -> Alt f a #

fromEnum :: Alt f a -> Int #

enumFrom :: Alt f a -> [Alt f a] #

enumFromThen :: Alt f a -> Alt f a -> [Alt f a] #

enumFromTo :: Alt f a -> Alt f a -> [Alt f a] #

enumFromThenTo :: Alt f a -> Alt f a -> Alt f a -> [Alt f a] #

a ~ b => Enum (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

succ :: (a :~: b) -> a :~: b #

pred :: (a :~: b) -> a :~: b #

toEnum :: Int -> a :~: b #

fromEnum :: (a :~: b) -> Int #

enumFrom :: (a :~: b) -> [a :~: b] #

enumFromThen :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromTo :: (a :~: b) -> (a :~: b) -> [a :~: b] #

enumFromThenTo :: (a :~: b) -> (a :~: b) -> (a :~: b) -> [a :~: b] #

a ~~ b => Enum (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in Data.Type.Equality

Methods

succ :: (a :~~: b) -> a :~~: b #

pred :: (a :~~: b) -> a :~~: b #

toEnum :: Int -> a :~~: b #

fromEnum :: (a :~~: b) -> Int #

enumFrom :: (a :~~: b) -> [a :~~: b] #

enumFromThen :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromTo :: (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

enumFromThenTo :: (a :~~: b) -> (a :~~: b) -> (a :~~: b) -> [a :~~: b] #

class Applicative m => Monad (m :: Type -> Type) where #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following:

Left identity
return a >>= k = k a
Right identity
m >>= return = m
Associativity
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for lists, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

'as >>= bs' can be understood as the do expression

do a <- as
   bs a

(>>) :: m a -> m b -> m b infixl 1 #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

'as >> bs' can be understood as the do expression

do as
   bs

return :: a -> m a #

Inject a value into the monadic type.

Instances

Instances details
Monad []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] #

(>>) :: [a] -> [b] -> [b] #

return :: a -> [a] #

Monad Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b #

(>>) :: Maybe a -> Maybe b -> Maybe b #

return :: a -> Maybe a #

Monad IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b #

(>>) :: IO a -> IO b -> IO b #

return :: a -> IO a #

Monad Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b #

(>>) :: Par1 a -> Par1 b -> Par1 b #

return :: a -> Par1 a #

Monad Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

(>>=) :: Q a -> (a -> Q b) -> Q b #

(>>) :: Q a -> Q b -> Q b #

return :: a -> Q a #

Monad Rose 
Instance details

Defined in Test.QuickCheck.Property

Methods

(>>=) :: Rose a -> (a -> Rose b) -> Rose b #

(>>) :: Rose a -> Rose b -> Rose b #

return :: a -> Rose a #

Monad Gen 
Instance details

Defined in Test.QuickCheck.Gen

Methods

(>>=) :: Gen a -> (a -> Gen b) -> Gen b #

(>>) :: Gen a -> Gen b -> Gen b #

return :: a -> Gen a #

Monad Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

(>>=) :: Complex a -> (a -> Complex b) -> Complex b #

(>>) :: Complex a -> Complex b -> Complex b #

return :: a -> Complex a #

Monad Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b #

(>>) :: Identity a -> Identity b -> Identity b #

return :: a -> Identity a #

Monad First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b #

(>>) :: First a -> First b -> First b #

return :: a -> First a #

Monad Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b #

(>>) :: Last a -> Last b -> Last b #

return :: a -> Last a #

Monad Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b #

(>>) :: Dual a -> Dual b -> Dual b #

return :: a -> Dual a #

Monad Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b #

(>>) :: Sum a -> Sum b -> Sum b #

return :: a -> Sum a #

Monad Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b #

(>>) :: Product a -> Product b -> Product b #

return :: a -> Product a #

Monad ReadPrec

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

(>>=) :: ReadPrec a -> (a -> ReadPrec b) -> ReadPrec b #

(>>) :: ReadPrec a -> ReadPrec b -> ReadPrec b #

return :: a -> ReadPrec a #

Monad ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b #

(>>) :: ReadP a -> ReadP b -> ReadP b #

return :: a -> ReadP a #

Monad NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b #

return :: a -> NonEmpty a #

Monad Tree 
Instance details

Defined in Data.Tree

Methods

(>>=) :: Tree a -> (a -> Tree b) -> Tree b #

(>>) :: Tree a -> Tree b -> Tree b #

return :: a -> Tree a #

Monad Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

(>>=) :: Seq a -> (a -> Seq b) -> Seq b #

(>>) :: Seq a -> Seq b -> Seq b #

return :: a -> Seq a #

Monad PV 
Instance details

Defined in RdrHsSyn

Methods

(>>=) :: PV a -> (a -> PV b) -> PV b #

(>>) :: PV a -> PV b -> PV b #

return :: a -> PV a #

Monad P

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

(>>=) :: P a -> (a -> P b) -> P b #

(>>) :: P a -> P b -> P b #

return :: a -> P a #

Monad (Either e)

Since: base-4.4.0.0

Instance details

Defined in Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b #

(>>) :: Either e a -> Either e b -> Either e b #

return :: a -> Either e a #

Monad (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b #

(>>) :: U1 a -> U1 b -> U1 b #

return :: a -> U1 a #

Monoid a => Monad ((,) a)

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) #

(>>) :: (a, a0) -> (a, b) -> (a, b) #

return :: a0 -> (a, a0) #

Monad m => Monad (WrappedMonad m)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Methods

(>>=) :: WrappedMonad m a -> (a -> WrappedMonad m b) -> WrappedMonad m b #

(>>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b #

return :: a -> WrappedMonad m a #

Monad (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b #

(>>) :: Proxy a -> Proxy b -> Proxy b #

return :: a -> Proxy a #

Monoid es => Monad (CollectErrors es) 
Instance details

Defined in Control.CollectErrors.Type

Methods

(>>=) :: CollectErrors es a -> (a -> CollectErrors es b) -> CollectErrors es b #

(>>) :: CollectErrors es a -> CollectErrors es b -> CollectErrors es b #

return :: a -> CollectErrors es a #

Monad (SpecM a) 
Instance details

Defined in Test.Hspec.Core.Spec.Monad

Methods

(>>=) :: SpecM a a0 -> (a0 -> SpecM a b) -> SpecM a b #

(>>) :: SpecM a a0 -> SpecM a b -> SpecM a b #

return :: a0 -> SpecM a a0 #

Monad (SetM s) 
Instance details

Defined in Data.Graph

Methods

(>>=) :: SetM s a -> (a -> SetM s b) -> SetM s b #

(>>) :: SetM s a -> SetM s b -> SetM s b #

return :: a -> SetM s a #

Monad f => Monad (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b #

return :: a -> Rec1 f a #

(Monoid a, Monoid b) => Monad ((,,) a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, b, a0) -> (a0 -> (a, b, b0)) -> (a, b, b0) #

(>>) :: (a, b, a0) -> (a, b, b0) -> (a, b, b0) #

return :: a0 -> (a, b, a0) #

Monad f => Monad (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b #

(>>) :: Ap f a -> Ap f b -> Ap f b #

return :: a -> Ap f a #

Monad f => Monad (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b #

(>>) :: Alt f a -> Alt f b -> Alt f b #

return :: a -> Alt f a #

(Applicative f, Monad f) => Monad (WhenMissing f x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)).

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

(>>=) :: WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b #

(>>) :: WhenMissing f x a -> WhenMissing f x b -> WhenMissing f x b #

return :: a -> WhenMissing f x a #

(Monad m, Error e) => Monad (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

(>>=) :: ErrorT e m a -> (a -> ErrorT e m b) -> ErrorT e m b #

(>>) :: ErrorT e m a -> ErrorT e m b -> ErrorT e m b #

return :: a -> ErrorT e m a #

Monad m => Monad (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

(>>=) :: ReaderT r m a -> (a -> ReaderT r m b) -> ReaderT r m b #

(>>) :: ReaderT r m a -> ReaderT r m b -> ReaderT r m b #

return :: a -> ReaderT r m a #

(Monoid w, Monad m) => Monad (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

(>>=) :: WriterT w m a -> (a -> WriterT w m b) -> WriterT w m b #

(>>) :: WriterT w m a -> WriterT w m b -> WriterT w m b #

return :: a -> WriterT w m a #

Monad ((->) r :: Type -> Type)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b #

(>>) :: (r -> a) -> (r -> b) -> r -> b #

return :: a -> r -> a #

(Monad f, Monad g) => Monad (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b #

return :: a -> (f :*: g) a #

(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

(>>=) :: (a, b, c, a0) -> (a0 -> (a, b, c, b0)) -> (a, b, c, b0) #

(>>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) #

return :: a0 -> (a, b, c, a0) #

(Monad f, Monad g) => Monad (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

(>>=) :: Product f g a -> (a -> Product f g b) -> Product f g b #

(>>) :: Product f g a -> Product f g b -> Product f g b #

return :: a -> Product f g a #

(Monad f, Applicative f) => Monad (WhenMatched f x y)

Equivalent to ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

(>>=) :: WhenMatched f x y a -> (a -> WhenMatched f x y b) -> WhenMatched f x y b #

(>>) :: WhenMatched f x y a -> WhenMatched f x y b -> WhenMatched f x y b #

return :: a -> WhenMatched f x y a #

(Applicative f, Monad f) => Monad (WhenMissing f k x)

Equivalent to ReaderT k (ReaderT x (MaybeT f)) .

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

(>>=) :: WhenMissing f k x a -> (a -> WhenMissing f k x b) -> WhenMissing f k x b #

(>>) :: WhenMissing f k x a -> WhenMissing f k x b -> WhenMissing f k x b #

return :: a -> WhenMissing f k x a #

Monad f => Monad (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b #

return :: a -> M1 i c f a #

(Monad f, Applicative f) => Monad (WhenMatched f k x y)

Equivalent to ReaderT k (ReaderT x (ReaderT y (MaybeT f)))

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

(>>=) :: WhenMatched f k x y a -> (a -> WhenMatched f k x y b) -> WhenMatched f k x y b #

(>>) :: WhenMatched f k x y a -> WhenMatched f k x y b -> WhenMatched f k x y b #

return :: a -> WhenMatched f k x y a #

class Functor (f :: Type -> Type) where #

A type f is a Functor if it provides a function fmap which, given any types a and b lets you apply any function from (a -> b) to turn an f a into an f b, preserving the structure of f. Furthermore f needs to adhere to the following:

Identity
fmap id == id
Composition
fmap (f . g) == fmap f . fmap g

Note, that the second law follows from the free theorem of the type fmap and the first law, so you need only check that the former condition holds.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b #

Using ApplicativeDo: 'fmap f as' can be understood as the do expression

do a <- as
   pure (f a)

with an inferred Functor constraint.

(<$) :: a -> f b -> f a infixl 4 #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Using ApplicativeDo: 'a <$ bs' can be understood as the do expression

do bs
   pure a

with an inferred Functor constraint.

Instances

Instances details
Functor []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> [a] -> [b] #

(<$) :: a -> [b] -> [a] #

Functor Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b #

(<$) :: a -> Maybe b -> Maybe a #

Functor IO

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> IO a -> IO b #

(<$) :: a -> IO b -> IO a #

Functor Par1

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b #

(<$) :: a -> Par1 b -> Par1 a #

Functor Q 
Instance details

Defined in Language.Haskell.TH.Syntax

Methods

fmap :: (a -> b) -> Q a -> Q b #

(<$) :: a -> Q b -> Q a #

Functor Rose 
Instance details

Defined in Test.QuickCheck.Property

Methods

fmap :: (a -> b) -> Rose a -> Rose b #

(<$) :: a -> Rose b -> Rose a #

Functor Blind 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Blind a -> Blind b #

(<$) :: a -> Blind b -> Blind a #

Functor Fixed 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Fixed a -> Fixed b #

(<$) :: a -> Fixed b -> Fixed a #

Functor OrderedList 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> OrderedList a -> OrderedList b #

(<$) :: a -> OrderedList b -> OrderedList a #

Functor NonEmptyList 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> NonEmptyList a -> NonEmptyList b #

(<$) :: a -> NonEmptyList b -> NonEmptyList a #

Functor SortedList 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> SortedList a -> SortedList b #

(<$) :: a -> SortedList b -> SortedList a #

Functor Positive 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Positive a -> Positive b #

(<$) :: a -> Positive b -> Positive a #

Functor Negative 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Negative a -> Negative b #

(<$) :: a -> Negative b -> Negative a #

Functor NonZero 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> NonZero a -> NonZero b #

(<$) :: a -> NonZero b -> NonZero a #

Functor NonNegative 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> NonNegative a -> NonNegative b #

(<$) :: a -> NonNegative b -> NonNegative a #

Functor NonPositive 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> NonPositive a -> NonPositive b #

(<$) :: a -> NonPositive b -> NonPositive a #

Functor Large 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Large a -> Large b #

(<$) :: a -> Large b -> Large a #

Functor Small 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Small a -> Small b #

(<$) :: a -> Small b -> Small a #

Functor Shrink2 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Shrink2 a -> Shrink2 b #

(<$) :: a -> Shrink2 b -> Shrink2 a #

Functor Smart 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Smart a -> Smart b #

(<$) :: a -> Smart b -> Smart a #

Functor Gen 
Instance details

Defined in Test.QuickCheck.Gen

Methods

fmap :: (a -> b) -> Gen a -> Gen b #

(<$) :: a -> Gen b -> Gen a #

Functor Complex

Since: base-4.9.0.0

Instance details

Defined in Data.Complex

Methods

fmap :: (a -> b) -> Complex a -> Complex b #

(<$) :: a -> Complex b -> Complex a #

Functor ZipList

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b #

(<$) :: a -> ZipList b -> ZipList a #

Functor Identity

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Methods

fmap :: (a -> b) -> Identity a -> Identity b #

(<$) :: a -> Identity b -> Identity a #

Functor Handler

Since: base-4.6.0.0

Instance details

Defined in Control.Exception

Methods

fmap :: (a -> b) -> Handler a -> Handler b #

(<$) :: a -> Handler b -> Handler a #

Functor First

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b #

(<$) :: a -> First b -> First a #

Functor Last

Since: base-4.8.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b #

(<$) :: a -> Last b -> Last a #

Functor Dual

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b #

(<$) :: a -> Dual b -> Dual a #

Functor Sum

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b #

(<$) :: a -> Sum b -> Sum a #

Functor Product

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b #

(<$) :: a -> Product b -> Product a #

Functor ReadPrec

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadPrec

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b #

(<$) :: a -> ReadPrec b -> ReadPrec a #

Functor ReadP

Since: base-2.1

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b #

(<$) :: a -> ReadP b -> ReadP a #

Functor NonEmpty

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b #

(<$) :: a -> NonEmpty b -> NonEmpty a #

Functor IntMap 
Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> IntMap a -> IntMap b #

(<$) :: a -> IntMap b -> IntMap a #

Functor SCC

Since: containers-0.5.4

Instance details

Defined in Data.Graph

Methods

fmap :: (a -> b) -> SCC a -> SCC b #

(<$) :: a -> SCC b -> SCC a #

Functor Tree 
Instance details

Defined in Data.Tree

Methods

fmap :: (a -> b) -> Tree a -> Tree b #

(<$) :: a -> Tree b -> Tree a #

Functor Seq 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Seq a -> Seq b #

(<$) :: a -> Seq b -> Seq a #

Functor FingerTree 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> FingerTree a -> FingerTree b #

(<$) :: a -> FingerTree b -> FingerTree a #

Functor Digit 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Digit a -> Digit b #

(<$) :: a -> Digit b -> Digit a #

Functor Node 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Node a -> Node b #

(<$) :: a -> Node b -> Node a #

Functor Elem 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> Elem a -> Elem b #

(<$) :: a -> Elem b -> Elem a #

Functor ViewL 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> ViewL a -> ViewL b #

(<$) :: a -> ViewL b -> ViewL a #

Functor ViewR 
Instance details

Defined in Data.Sequence.Internal

Methods

fmap :: (a -> b) -> ViewR a -> ViewR b #

(<$) :: a -> ViewR b -> ViewR a #

Functor PV 
Instance details

Defined in RdrHsSyn

Methods

fmap :: (a -> b) -> PV a -> PV b #

(<$) :: a -> PV b -> PV a #

Functor HsMatchContext 
Instance details

Defined in GHC.Hs.Expr

Methods

fmap :: (a -> b) -> HsMatchContext a -> HsMatchContext b #

(<$) :: a -> HsMatchContext b -> HsMatchContext a #

Functor HsStmtContext 
Instance details

Defined in GHC.Hs.Expr

Methods

fmap :: (a -> b) -> HsStmtContext a -> HsStmtContext b #

(<$) :: a -> HsStmtContext b -> HsStmtContext a #

Functor AnnProvenance 
Instance details

Defined in GHC.Hs.Decls

Methods

fmap :: (a -> b) -> AnnProvenance a -> AnnProvenance b #

(<$) :: a -> AnnProvenance b -> AnnProvenance a #

Functor RecordPatSynField 
Instance details

Defined in GHC.Hs.Binds

Functor SizedSeq 
Instance details

Defined in SizedSeq

Methods

fmap :: (a -> b) -> SizedSeq a -> SizedSeq b #

(<$) :: a -> SizedSeq b -> SizedSeq a #

Functor GenClosure 
Instance details

Defined in GHC.Exts.Heap.Closures

Methods

fmap :: (a -> b) -> GenClosure a -> GenClosure b #

(<$) :: a -> GenClosure b -> GenClosure a #

Functor Positive 
Instance details

Defined in Test.SmallCheck.Series

Methods

fmap :: (a -> b) -> Positive a -> Positive b #

(<$) :: a -> Positive b -> Positive a #

Functor NonNegative 
Instance details

Defined in Test.SmallCheck.Series

Methods

fmap :: (a -> b) -> NonNegative a -> NonNegative b #

(<$) :: a -> NonNegative b -> NonNegative a #

Functor NonZero 
Instance details

Defined in Test.SmallCheck.Series

Methods

fmap :: (a -> b) -> NonZero a -> NonZero b #

(<$) :: a -> NonZero b -> NonZero a #

Functor P

Since: base-4.8.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> P a -> P b #

(<$) :: a -> P b -> P a #

Functor (Either a)

Since: base-3.0

Instance details

Defined in Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b #

(<$) :: a0 -> Either a b -> Either a a0 #

Functor (V1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b #

(<$) :: a -> V1 b -> V1 a #

Functor (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b #

(<$) :: a -> U1 b -> U1 a #

Functor ((,) a)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) #

(<$) :: a0 -> (a, b) -> (a, a0) #

Functor ((:->) a) 
Instance details

Defined in Test.QuickCheck.Function

Methods

fmap :: (a0 -> b) -> (a :-> a0) -> a :-> b #

(<$) :: a0 -> (a :-> b) -> a :-> a0 #

Functor (Fun a) 
Instance details

Defined in Test.QuickCheck.Function

Methods

fmap :: (a0 -> b) -> Fun a a0 -> Fun a b #

(<$) :: a0 -> Fun a b -> Fun a a0 #

Functor (Shrinking s) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

fmap :: (a -> b) -> Shrinking s a -> Shrinking s b #

(<$) :: a -> Shrinking s b -> Shrinking s a #

Monad m => Functor (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a -> b) -> WrappedMonad m a -> WrappedMonad m b #

(<$) :: a -> WrappedMonad m b -> WrappedMonad m a #

Functor (Proxy :: Type -> Type)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b #

(<$) :: a -> Proxy b -> Proxy a #

Functor (CollectErrors es) 
Instance details

Defined in Control.CollectErrors.Type

Methods

fmap :: (a -> b) -> CollectErrors es a -> CollectErrors es b #

(<$) :: a -> CollectErrors es b -> CollectErrors es a #

Functor (Map k) 
Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> Map k a -> Map k b #

(<$) :: a -> Map k b -> Map k a #

Functor (HsRecFields p) 
Instance details

Defined in GHC.Hs.Pat

Methods

fmap :: (a -> b) -> HsRecFields p a -> HsRecFields p b #

(<$) :: a -> HsRecFields p b -> HsRecFields p a #

Functor (HsRecField' id) 
Instance details

Defined in GHC.Hs.Pat

Methods

fmap :: (a -> b) -> HsRecField' id a -> HsRecField' id b #

(<$) :: a -> HsRecField' id b -> HsRecField' id a #

Functor (GenLocated l) 
Instance details

Defined in SrcLoc

Methods

fmap :: (a -> b) -> GenLocated l a -> GenLocated l b #

(<$) :: a -> GenLocated l b -> GenLocated l a #

Functor (SpecM a) 
Instance details

Defined in Test.Hspec.Core.Spec.Monad

Methods

fmap :: (a0 -> b) -> SpecM a a0 -> SpecM a b #

(<$) :: a0 -> SpecM a b -> SpecM a a0 #

Functor (Tree c) 
Instance details

Defined in Test.Hspec.Core.Tree

Methods

fmap :: (a -> b) -> Tree c a -> Tree c b #

(<$) :: a -> Tree c b -> Tree c a #

Functor (SetM s) 
Instance details

Defined in Data.Graph

Methods

fmap :: (a -> b) -> SetM s a -> SetM s b #

(<$) :: a -> SetM s b -> SetM s a #

Functor f => Functor (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b #

(<$) :: a -> Rec1 f b -> Rec1 f a #

Functor (URec Char :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b #

(<$) :: a -> URec Char b -> URec Char a #

Functor (URec Double :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b #

(<$) :: a -> URec Double b -> URec Double a #

Functor (URec Float :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b #

(<$) :: a -> URec Float b -> URec Float a #

Functor (URec Int :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b #

(<$) :: a -> URec Int b -> URec Int a #

Functor (URec Word :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b #

(<$) :: a -> URec Word b -> URec Word a #

Functor (URec (Ptr ()) :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a #

Functor ((,,) a b)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b0) -> (a, b, a0) -> (a, b, b0) #

(<$) :: a0 -> (a, b, b0) -> (a, b, a0) #

Arrow a => Functor (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 #

(<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 #

Functor (Const m :: Type -> Type)

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b #

(<$) :: a -> Const m b -> Const m a #

Functor f => Functor (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b #

(<$) :: a -> Ap f b -> Ap f a #

Functor f => Functor (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b #

(<$) :: a -> Alt f b -> Alt f a #

(Applicative f, Monad f) => Functor (WhenMissing f x)

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> WhenMissing f x a -> WhenMissing f x b #

(<$) :: a -> WhenMissing f x b -> WhenMissing f x a #

Functor m => Functor (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

fmap :: (a -> b) -> ErrorT e m a -> ErrorT e m b #

(<$) :: a -> ErrorT e m b -> ErrorT e m a #

Functor m => Functor (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

fmap :: (a -> b) -> ReaderT r m a -> ReaderT r m b #

(<$) :: a -> ReaderT r m b -> ReaderT r m a #

Functor m => Functor (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

fmap :: (a -> b) -> WriterT w m a -> WriterT w m b #

(<$) :: a -> WriterT w m b -> WriterT w m a #

Functor (Constant a :: Type -> Type) 
Instance details

Defined in Data.Functor.Constant

Methods

fmap :: (a0 -> b) -> Constant a a0 -> Constant a b #

(<$) :: a0 -> Constant a b -> Constant a a0 #

Functor ((->) r :: Type -> Type)

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b #

(<$) :: a -> (r -> b) -> r -> a #

Functor (K1 i c :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b #

(<$) :: a -> K1 i c b -> K1 i c a #

(Functor f, Functor g) => Functor (f :+: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b #

(<$) :: a -> (f :+: g) b -> (f :+: g) a #

(Functor f, Functor g) => Functor (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b #

(<$) :: a -> (f :*: g) b -> (f :*: g) a #

Functor ((,,,) a b c)

Since: base-4.14.0.0

Instance details

Defined in GHC.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) #

(<$) :: a0 -> (a, b, c, b0) -> (a, b, c, a0) #

(Functor f, Functor g) => Functor (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fmap :: (a -> b) -> Product f g a -> Product f g b #

(<$) :: a -> Product f g b -> Product f g a #

Functor f => Functor (WhenMatched f x y)

Since: containers-0.5.9

Instance details

Defined in Data.IntMap.Internal

Methods

fmap :: (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b #

(<$) :: a -> WhenMatched f x y b -> WhenMatched f x y a #

(Applicative f, Monad f) => Functor (WhenMissing f k x)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> WhenMissing f k x a -> WhenMissing f k x b #

(<$) :: a -> WhenMissing f k x b -> WhenMissing f k x a #

Functor f => Functor (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b #

(<$) :: a -> M1 i c f b -> M1 i c f a #

(Functor f, Functor g) => Functor (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b #

(<$) :: a -> (f :.: g) b -> (f :.: g) a #

(Functor f, Functor g) => Functor (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fmap :: (a -> b) -> Compose f g a -> Compose f g b #

(<$) :: a -> Compose f g b -> Compose f g a #

Functor f => Functor (WhenMatched f k x y)

Since: containers-0.5.9

Instance details

Defined in Data.Map.Internal

Methods

fmap :: (a -> b) -> WhenMatched f k x y a -> WhenMatched f k x y b #

(<$) :: a -> WhenMatched f k x y b -> WhenMatched f k x y a #

class Read a where #

Parsing of Strings, producing values.

Derived instances of Read make the following assumptions, which derived instances of Show obey:

  • If the constructor is defined to be an infix operator, then the derived Read instance will parse only infix applications of the constructor (not the prefix form).
  • Associativity is not used to reduce the occurrence of parentheses, although precedence may be.
  • If the constructor is defined using record syntax, the derived Read will parse only the record-syntax form, and furthermore, the fields must be given in the same order as the original declaration.
  • The derived Read instance allows arbitrary Haskell whitespace between tokens of the input string. Extra parentheses are also allowed.

For example, given the declarations

infixr 5 :^:
data Tree a =  Leaf a  |  Tree a :^: Tree a

the derived instance of Read in Haskell 2010 is equivalent to

instance (Read a) => Read (Tree a) where

        readsPrec d r =  readParen (d > app_prec)
                         (\r -> [(Leaf m,t) |
                                 ("Leaf",s) <- lex r,
                                 (m,t) <- readsPrec (app_prec+1) s]) r

                      ++ readParen (d > up_prec)
                         (\r -> [(u:^:v,w) |
                                 (u,s) <- readsPrec (up_prec+1) r,
                                 (":^:",t) <- lex s,
                                 (v,w) <- readsPrec (up_prec+1) t]) r

          where app_prec = 10
                up_prec = 5

Note that right-associativity of :^: is unused.

The derived instance in GHC is equivalent to

instance (Read a) => Read (Tree a) where

        readPrec = parens $ (prec app_prec $ do
                                 Ident "Leaf" <- lexP
                                 m <- step readPrec
                                 return (Leaf m))

                     +++ (prec up_prec $ do
                                 u <- step readPrec
                                 Symbol ":^:" <- lexP
                                 v <- step readPrec
                                 return (u :^: v))

          where app_prec = 10
                up_prec = 5

        readListPrec = readListPrecDefault

Why do both readsPrec and readPrec exist, and why does GHC opt to implement readPrec in derived Read instances instead of readsPrec? The reason is that readsPrec is based on the ReadS type, and although ReadS is mentioned in the Haskell 2010 Report, it is not a very efficient parser data structure.

readPrec, on the other hand, is based on a much more efficient ReadPrec datatype (a.k.a "new-style parsers"), but its definition relies on the use of the RankNTypes language extension. Therefore, readPrec (and its cousin, readListPrec) are marked as GHC-only. Nevertheless, it is recommended to use readPrec instead of readsPrec whenever possible for the efficiency improvements it brings.

As mentioned above, derived Read instances in GHC will implement readPrec instead of readsPrec. The default implementations of readsPrec (and its cousin, readList) will simply use readPrec under the hood. If you are writing a Read instance by hand, it is recommended to write it like so:

instance Read T where
  readPrec     = ...
  readListPrec = readListPrecDefault

Minimal complete definition

readsPrec | readPrec

Methods

readsPrec #

Arguments

:: Int

the operator precedence of the enclosing context (a number from 0 to 11). Function application has precedence 10.

-> ReadS a 

attempts to parse a value from the front of the string, returning a list of (parsed value, remaining string) pairs. If there is no successful parse, the returned list is empty.

Derived instances of Read and Show satisfy the following:

That is, readsPrec parses the string produced by showsPrec, and delivers the value that showsPrec started with.

readList :: ReadS [a] #

The method readList is provided to allow the programmer to give a specialised way of parsing lists of values. For example, this is used by the predefined Read instance of the Char type, where values of type String should be are expected to use double quotes, rather than square brackets.

Instances

Instances details
Read Bool

Since: base-2.1

Instance details

Defined in GHC.Read

Read Char

Since: base-2.1

Instance details

Defined in GHC.Read

Read Double

Since: base-2.1

Instance details

Defined in GHC.Read

Read Float

Since: base-2.1

Instance details

Defined in GHC.Read

Read Int

Since: base-2.1

Instance details

Defined in GHC.Read

Read Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Read Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Read Integer

Since: base-2.1

Instance details

Defined in GHC.Read

Read Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Read

Read Ordering

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word

Since: base-4.5.0.0

Instance details

Defined in GHC.Read

Read Word8

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word16

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word32

Since: base-2.1

Instance details

Defined in GHC.Read

Read Word64

Since: base-2.1

Instance details

Defined in GHC.Read

Read ()

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS () #

readList :: ReadS [()] #

readPrec :: ReadPrec () #

readListPrec :: ReadPrec [()] #

Read Version

Since: base-2.1

Instance details

Defined in Data.Version

Read QCGen 
Instance details

Defined in Test.QuickCheck.Random

Methods

readsPrec :: Int -> ReadS QCGen #

readList :: ReadS [QCGen] #

readPrec :: ReadPrec QCGen #

readListPrec :: ReadPrec [QCGen] #

Read Args 
Instance details

Defined in Test.QuickCheck.Test

Read ASCIIString 
Instance details

Defined in Test.QuickCheck.Modifiers

Read UnicodeString 
Instance details

Defined in Test.QuickCheck.Modifiers

Read PrintableString 
Instance details

Defined in Test.QuickCheck.Modifiers

Read Void

Reading a Void value is always a parse error, considering Void as a data type with no constructors.

Since: base-4.8.0.0

Instance details

Defined in Data.Void

Read ExitCode 
Instance details

Defined in GHC.IO.Exception

Read All

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read Any

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read Fixity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Read Associativity

Since: base-4.6.0.0

Instance details

Defined in GHC.Generics

Read SourceUnpackedness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read SourceStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read DecidedStrictness

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read CChar 
Instance details

Defined in Foreign.C.Types

Read CSChar 
Instance details

Defined in Foreign.C.Types

Read CUChar 
Instance details

Defined in Foreign.C.Types

Read CShort 
Instance details

Defined in Foreign.C.Types

Read CUShort 
Instance details

Defined in Foreign.C.Types

Read CInt 
Instance details

Defined in Foreign.C.Types

Read CUInt 
Instance details

Defined in Foreign.C.Types

Read CLong 
Instance details

Defined in Foreign.C.Types

Read CULong 
Instance details

Defined in Foreign.C.Types

Read CLLong 
Instance details

Defined in Foreign.C.Types

Read CULLong 
Instance details

Defined in Foreign.C.Types

Read CBool 
Instance details

Defined in Foreign.C.Types

Read CFloat 
Instance details

Defined in Foreign.C.Types

Read CDouble 
Instance details

Defined in Foreign.C.Types

Read CPtrdiff 
Instance details

Defined in Foreign.C.Types

Read CSize 
Instance details

Defined in Foreign.C.Types

Read CWchar 
Instance details

Defined in Foreign.C.Types

Read CSigAtomic 
Instance details

Defined in Foreign.C.Types

Read CClock 
Instance details

Defined in Foreign.C.Types

Read CTime 
Instance details

Defined in Foreign.C.Types

Read CUSeconds 
Instance details

Defined in Foreign.C.Types

Read CSUSeconds 
Instance details

Defined in Foreign.C.Types

Read CIntPtr 
Instance details

Defined in Foreign.C.Types

Read CUIntPtr 
Instance details

Defined in Foreign.C.Types

Read CIntMax 
Instance details

Defined in Foreign.C.Types

Read CUIntMax 
Instance details

Defined in Foreign.C.Types

Read Lexeme

Since: base-2.1

Instance details

Defined in GHC.Read

Read GeneralCategory

Since: base-2.1

Instance details

Defined in GHC.Read

Read Clock 
Instance details

Defined in System.Clock

Read TimeSpec 
Instance details

Defined in System.Clock

Read IntSet 
Instance details

Defined in Data.IntSet.Internal

Read ConvertError Source # 
Instance details

Defined in Data.Convertible.Base

Read a => Read [a]

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS [a] #

readList :: ReadS [[a]] #

readPrec :: ReadPrec [a] #

readListPrec :: ReadPrec [[a]] #

Read a => Read (Maybe a)

Since: base-2.1

Instance details

Defined in GHC.Read

(Integral a, Read a) => Read (Ratio a)

Since: base-2.1

Instance details

Defined in GHC.Read

Read p => Read (Par1 p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Read a => Read (Fixed a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (OrderedList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (NonEmptyList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (SortedList a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Positive a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Negative a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (NonZero a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (NonNegative a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (NonPositive a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Large a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Small a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Shrink2 a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Read a => Read (Complex a)

Since: base-2.1

Instance details

Defined in Data.Complex

Read a => Read (ZipList a)

Since: base-4.7.0.0

Instance details

Defined in Control.Applicative

Read a => Read (Identity a)

This instance would be equivalent to the derived instances of the Identity newtype if the runIdentity field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Identity

Read a => Read (First a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Read a => Read (Last a)

Since: base-2.1

Instance details

Defined in Data.Monoid

Read a => Read (Dual a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (Sum a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (Product a)

Since: base-2.1

Instance details

Defined in Data.Semigroup.Internal

Read a => Read (NonEmpty a)

Since: base-4.11.0.0

Instance details

Defined in GHC.Read

Read e => Read (IntMap e) 
Instance details

Defined in Data.IntMap.Internal

Read vertex => Read (SCC vertex)

Since: containers-0.5.9

Instance details

Defined in Data.Graph

Methods

readsPrec :: Int -> ReadS (SCC vertex) #

readList :: ReadS [SCC vertex] #

readPrec :: ReadPrec (SCC vertex) #

readListPrec :: ReadPrec [SCC vertex] #

Read a => Read (Tree a) 
Instance details

Defined in Data.Tree

Read a => Read (Seq a) 
Instance details

Defined in Data.Sequence.Internal

Read a => Read (ViewL a) 
Instance details

Defined in Data.Sequence.Internal

Read a => Read (ViewR a) 
Instance details

Defined in Data.Sequence.Internal

(Read a, Ord a) => Read (Set a) 
Instance details

Defined in Data.Set.Internal

(Read a, Read b) => Read (Either a b)

Since: base-3.0

Instance details

Defined in Data.Either

Read (V1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Read (U1 p)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

(Read a, Read b) => Read (a, b)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b) #

readList :: ReadS [(a, b)] #

readPrec :: ReadPrec (a, b) #

readListPrec :: ReadPrec [(a, b)] #

(Ix a, Read a, Read b) => Read (Array a b)

Since: base-2.1

Instance details

Defined in GHC.Read

HasResolution a => Read (Fixed a)

Since: base-4.3.0.0

Instance details

Defined in Data.Fixed

Read (Proxy t)

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

(Ord k, Read k, Read e) => Read (Map k e) 
Instance details

Defined in Data.Map.Internal

Methods

readsPrec :: Int -> ReadS (Map k e) #

readList :: ReadS [Map k e] #

readPrec :: ReadPrec (Map k e) #

readListPrec :: ReadPrec [Map k e] #

Read (f p) => Read (Rec1 f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (Rec1 f p) #

readList :: ReadS [Rec1 f p] #

readPrec :: ReadPrec (Rec1 f p) #

readListPrec :: ReadPrec [Rec1 f p] #

(Read a, Read b, Read c) => Read (a, b, c)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c) #

readList :: ReadS [(a, b, c)] #

readPrec :: ReadPrec (a, b, c) #

readListPrec :: ReadPrec [(a, b, c)] #

Read a => Read (Const a b)

This instance would be equivalent to the derived instances of the Const newtype if the getConst field were removed

Since: base-4.8.0.0

Instance details

Defined in Data.Functor.Const

Read (f a) => Read (Ap f a)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

readsPrec :: Int -> ReadS (Ap f a) #

readList :: ReadS [Ap f a] #

readPrec :: ReadPrec (Ap f a) #

readListPrec :: ReadPrec [Ap f a] #

Read (f a) => Read (Alt f a)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

readsPrec :: Int -> ReadS (Alt f a) #

readList :: ReadS [Alt f a] #

readPrec :: ReadPrec (Alt f a) #

readListPrec :: ReadPrec [Alt f a] #

a ~ b => Read (a :~: b)

Since: base-4.7.0.0

Instance details

Defined in Data.Type.Equality

Methods

readsPrec :: Int -> ReadS (a :~: b) #

readList :: ReadS [a :~: b] #

readPrec :: ReadPrec (a :~: b) #

readListPrec :: ReadPrec [a :~: b] #

(Read e, Read1 m, Read a) => Read (ErrorT e m a) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

readsPrec :: Int -> ReadS (ErrorT e m a) #

readList :: ReadS [ErrorT e m a] #

readPrec :: ReadPrec (ErrorT e m a) #

readListPrec :: ReadPrec [ErrorT e m a] #

(Read w, Read1 m, Read a) => Read (WriterT w m a) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

readsPrec :: Int -> ReadS (WriterT w m a) #

readList :: ReadS [WriterT w m a] #

readPrec :: ReadPrec (WriterT w m a) #

readListPrec :: ReadPrec [WriterT w m a] #

Read a => Read (Constant a b) 
Instance details

Defined in Data.Functor.Constant

Read c => Read (K1 i c p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (K1 i c p) #

readList :: ReadS [K1 i c p] #

readPrec :: ReadPrec (K1 i c p) #

readListPrec :: ReadPrec [K1 i c p] #

(Read (f p), Read (g p)) => Read ((f :+: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :+: g) p) #

readList :: ReadS [(f :+: g) p] #

readPrec :: ReadPrec ((f :+: g) p) #

readListPrec :: ReadPrec [(f :+: g) p] #

(Read (f p), Read (g p)) => Read ((f :*: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :*: g) p) #

readList :: ReadS [(f :*: g) p] #

readPrec :: ReadPrec ((f :*: g) p) #

readListPrec :: ReadPrec [(f :*: g) p] #

(Read a, Read b, Read c, Read d) => Read (a, b, c, d)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d) #

readList :: ReadS [(a, b, c, d)] #

readPrec :: ReadPrec (a, b, c, d) #

readListPrec :: ReadPrec [(a, b, c, d)] #

(Read1 f, Read1 g, Read a) => Read (Product f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

readsPrec :: Int -> ReadS (Product f g a) #

readList :: ReadS [Product f g a] #

readPrec :: ReadPrec (Product f g a) #

readListPrec :: ReadPrec [Product f g a] #

a ~~ b => Read (a :~~: b)

Since: base-4.10.0.0

Instance details

Defined in Data.Type.Equality

Methods

readsPrec :: Int -> ReadS (a :~~: b) #

readList :: ReadS [a :~~: b] #

readPrec :: ReadPrec (a :~~: b) #

readListPrec :: ReadPrec [a :~~: b] #

Read (f p) => Read (M1 i c f p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS (M1 i c f p) #

readList :: ReadS [M1 i c f p] #

readPrec :: ReadPrec (M1 i c f p) #

readListPrec :: ReadPrec [M1 i c f p] #

Read (f (g p)) => Read ((f :.: g) p)

Since: base-4.7.0.0

Instance details

Defined in GHC.Generics

Methods

readsPrec :: Int -> ReadS ((f :.: g) p) #

readList :: ReadS [(f :.: g) p] #

readPrec :: ReadPrec ((f :.: g) p) #

readListPrec :: ReadPrec [(f :.: g) p] #

(Read a, Read b, Read c, Read d, Read e) => Read (a, b, c, d, e)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e) #

readList :: ReadS [(a, b, c, d, e)] #

readPrec :: ReadPrec (a, b, c, d, e) #

readListPrec :: ReadPrec [(a, b, c, d, e)] #

(Read1 f, Read1 g, Read a) => Read (Compose f g a)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

readsPrec :: Int -> ReadS (Compose f g a) #

readList :: ReadS [Compose f g a] #

readPrec :: ReadPrec (Compose f g a) #

readListPrec :: ReadPrec [Compose f g a] #

(Read a, Read b, Read c, Read d, Read e, Read f) => Read (a, b, c, d, e, f)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f) #

readList :: ReadS [(a, b, c, d, e, f)] #

readPrec :: ReadPrec (a, b, c, d, e, f) #

readListPrec :: ReadPrec [(a, b, c, d, e, f)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g) => Read (a, b, c, d, e, f, g)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g) #

readList :: ReadS [(a, b, c, d, e, f, g)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h) => Read (a, b, c, d, e, f, g, h)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h) #

readList :: ReadS [(a, b, c, d, e, f, g, h)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i) => Read (a, b, c, d, e, f, g, h, i)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j) => Read (a, b, c, d, e, f, g, h, i, j)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k) => Read (a, b, c, d, e, f, g, h, i, j, k)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l) => Read (a, b, c, d, e, f, g, h, i, j, k, l)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n)] #

(Read a, Read b, Read c, Read d, Read e, Read f, Read g, Read h, Read i, Read j, Read k, Read l, Read m, Read n, Read o) => Read (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)

Since: base-2.1

Instance details

Defined in GHC.Read

Methods

readsPrec :: Int -> ReadS (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readList :: ReadS [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

readPrec :: ReadPrec (a, b, c, d, e, f, g, h, i, j, k, l, m, n, o) #

readListPrec :: ReadPrec [(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o)] #

class (Num a, Ord a) => Real a where #

Methods

toRational :: a -> Rational #

the rational equivalent of its real argument with full precision

Instances

Instances details
Real Int

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Int -> Rational #

Real Int8

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int8 -> Rational #

Real Int16

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int16 -> Rational #

Real Int32

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int32 -> Rational #

Real Int64

Since: base-2.1

Instance details

Defined in GHC.Int

Methods

toRational :: Int64 -> Rational #

Real Integer

Since: base-2.0.1

Instance details

Defined in GHC.Real

Real Natural

Since: base-4.8.0.0

Instance details

Defined in GHC.Real

Real Word

Since: base-2.1

Instance details

Defined in GHC.Real

Methods

toRational :: Word -> Rational #

Real Word8

Since: base-2.1

Instance details

Defined in GHC.Word

Methods

toRational :: Word8 -> Rational #

Real Word16

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word32

Since: base-2.1

Instance details

Defined in GHC.Word

Real Word64

Since: base-2.1

Instance details

Defined in GHC.Word

Real CChar 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CChar -> Rational #

Real CSChar 
Instance details

Defined in Foreign.C.Types

Real CUChar 
Instance details

Defined in Foreign.C.Types

Real CShort 
Instance details

Defined in Foreign.C.Types

Real CUShort 
Instance details

Defined in Foreign.C.Types

Real CInt 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CInt -> Rational #

Real CUInt 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CUInt -> Rational #

Real CLong 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CLong -> Rational #

Real CULong 
Instance details

Defined in Foreign.C.Types

Real CLLong 
Instance details

Defined in Foreign.C.Types

Real CULLong 
Instance details

Defined in Foreign.C.Types

Real CBool 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CBool -> Rational #

Real CFloat 
Instance details

Defined in Foreign.C.Types

Real CDouble 
Instance details

Defined in Foreign.C.Types

Real CPtrdiff 
Instance details

Defined in Foreign.C.Types

Real CSize 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CSize -> Rational #

Real CWchar 
Instance details

Defined in Foreign.C.Types

Real CSigAtomic 
Instance details

Defined in Foreign.C.Types

Real CClock 
Instance details

Defined in Foreign.C.Types

Real CTime 
Instance details

Defined in Foreign.C.Types

Methods

toRational :: CTime -> Rational #

Real CUSeconds 
Instance details

Defined in Foreign.C.Types

Real CSUSeconds 
Instance details

Defined in Foreign.C.Types

Real CIntPtr 
Instance details

Defined in Foreign.C.Types

Real CUIntPtr 
Instance details

Defined in Foreign.C.Types

Real CIntMax 
Instance details

Defined in Foreign.C.Types

Real CUIntMax 
Instance details

Defined in Foreign.C.Types

Real TimeSpec 
Instance details

Defined in System.Clock

Integral a => Real (Ratio a)

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

toRational :: Ratio a -> Rational #

Real a => Real (Blind a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

toRational :: Blind a -> Rational #

Real a => Real (Fixed a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

toRational :: Fixed a -> Rational #

Real a => Real (Large a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

toRational :: Large a -> Rational #

Real a => Real (Small a) 
Instance details

Defined in Test.QuickCheck.Modifiers

Methods

toRational ::