=INTRODUCTION=
Morfette is a tool for supervised learning of inflectional
morphology. Given a corpus of sentences annotated with lemmas
and morphological labels, and optionally a lexicon, morfette
learns how to morphologically analyse new sentences.
In the learning stage Morfette fits two separate logistic regression
models: one for morphological tagging and one for lemmatization. The
predictions of the models are combined dynamically and produce a
globally plausible sequence of morphological-tag - lemma pairs for
a sentence.
In Morfette lemmatization is cast as a classification task where a
a lemmatization class corresponds to the specification of the edit
operations which are needed to transform the inflected word form into
the corresponding lemma.
The basic approach is described in (Chrupala et al 2008 and Chrupala 2008).
The current version of Morfette uses an averaged perceptron to
fit the models, rather than Maximum Entropy training. The lemmatization
classes are Edit-Tree-based as described in (Chrupala 2008).
=LICENSE=
The source code in the src directory is licensed under
the BSD license.
=INSTALLATION=
Pre-built binaries are available from the project website.
If they don't work on your system you will
need to build from source, using the GHC Haskell compiler. Build
instructions are in [INSTALL]
=USAGE=
Usage: morfette command [OPTION...] [ARG...]
train: train models
train [OPTION...] TRAIN-FILE MODEL-DIR
--dict-file=PATH path to optional dictionary
--language-configuration=es|pl|tr|.. language configuration
--class-entropy-prune-threshold=NUM class prune threshold
predict: predict postags and lemmas using saved model data
predict [OPTION...] MODEL-DIR
--beam=+INT beam size to use
--tokenize tokenize input
eval: evaluate morpho-tagging and lemmatization results
eval [OPTION...] TRAIN-FILE GOLD-FILE TEST-FILE
--ignore-case ignore case for evaluation
--baseline-file=PATH path to baseline results
--dict-file=PATH path to optional dictionary
--ignore-punctuation ignore punctuation for evaluation
--ignore-pos=POS-prefix ignore POS starting with POS-prefix for evaluation
=EXAMPLE USAGE=
To train a new model:
morfette train --dict-file=DICT TRAINING-FILE MODEL-DIR
To use the model in MODEL-DIR to analyze new data:
morfette predict MODEL-DIR < TEST-DATA > ANALYZED-TEST-DATA
=DATA FORMAT=
Morfette expects both training and testing data to be tokenized and
split into sentences. The format of training data look like this:
Gómez Gómez np0000p
sostiene sostener vmip3s0
que que cs
la el da0fs0
propuesta propuesta ncfs000
no no rn
cambiará cambiar vmif3s0
. . Fp
La el da0fs0
propuesta propuesta ncfs000
será ser vsif3s0
la el da0fs0
misma mismo pi0fs000
There is one token per line, with three columns separated by spaces or
tabs. The columns contain word form, lemma and morphological tag
respectively. Sentences are separated by an empty line. Text should be
encoded in UTF-8.
Test data format is similar, except only the first column is needed:
Gómez
sostiene
que
la
propuesta
no
cambiará
.
La
propuesta
será
la
misma
=References=
[1] Grzegorz Chrupala, Georgiana Dinu and Josef van Genabith. 2008.
Learning Morphology with Morfette. In Proceedings of LREC 2008.
http://www.lrec-conf.org/proceedings/lrec2008/pdf/594_paper.pdf
[2] Grzegorz Chrupala. 2008. Towards a Machine-Learning Architecture
for Lexical Functional Grammar Parsing. Chapter 6. PhD
dissertation, Dublin City
University.
http://www.lsv.uni-saarland.de/personalPages/gchrupala/papers/phd.pdf