Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Pandora.Paradigm.Junction.Schemes.TU
Documentation
newtype TU ct cu t u a Source #
Instances
Composition (TU ct cu t u) Source # | |
(Covariant t, Contravariant u) => Contravariant (TU Co Contra t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (>$<) :: (a -> b) -> TU Co Contra t u b -> TU Co Contra t u a Source # contramap :: (a -> b) -> TU Co Contra t u b -> TU Co Contra t u a Source # (>$) :: b -> TU Co Contra t u b -> TU Co Contra t u a Source # ($<) :: TU Co Contra t u b -> b -> TU Co Contra t u a Source # full :: TU Co Contra t u () -> TU Co Contra t u a Source # (>&<) :: TU Co Contra t u b -> (a -> b) -> TU Co Contra t u a Source # (>$$<) :: Contravariant u0 => (a -> b) -> ((TU Co Contra t u :.: u0) >< a) -> (TU Co Contra t u :.: u0) >< b Source # (>$$$<) :: (Contravariant u0, Contravariant v) => (a -> b) -> ((TU Co Contra t u :.: (u0 :.: v)) >< b) -> (TU Co Contra t u :.: (u0 :.: v)) >< a Source # (>$$$$<) :: (Contravariant u0, Contravariant v, Contravariant w) => (a -> b) -> ((TU Co Contra t u :.: (u0 :.: (v :.: w))) >< a) -> (TU Co Contra t u :.: (u0 :.: (v :.: w))) >< b Source # (>&&<) :: Contravariant u0 => ((TU Co Contra t u :.: u0) >< a) -> (a -> b) -> (TU Co Contra t u :.: u0) >< b Source # (>&&&<) :: (Contravariant u0, Contravariant v) => ((TU Co Contra t u :.: (u0 :.: v)) >< b) -> (a -> b) -> (TU Co Contra t u :.: (u0 :.: v)) >< a Source # (>&&&&<) :: (Contravariant u0, Contravariant v, Contravariant w) => ((TU Co Contra t u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (TU Co Contra t u :.: (u0 :.: (v :.: w))) >< b Source # | |
(Contravariant t, Covariant u) => Contravariant (TU Contra Co t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (>$<) :: (a -> b) -> TU Contra Co t u b -> TU Contra Co t u a Source # contramap :: (a -> b) -> TU Contra Co t u b -> TU Contra Co t u a Source # (>$) :: b -> TU Contra Co t u b -> TU Contra Co t u a Source # ($<) :: TU Contra Co t u b -> b -> TU Contra Co t u a Source # full :: TU Contra Co t u () -> TU Contra Co t u a Source # (>&<) :: TU Contra Co t u b -> (a -> b) -> TU Contra Co t u a Source # (>$$<) :: Contravariant u0 => (a -> b) -> ((TU Contra Co t u :.: u0) >< a) -> (TU Contra Co t u :.: u0) >< b Source # (>$$$<) :: (Contravariant u0, Contravariant v) => (a -> b) -> ((TU Contra Co t u :.: (u0 :.: v)) >< b) -> (TU Contra Co t u :.: (u0 :.: v)) >< a Source # (>$$$$<) :: (Contravariant u0, Contravariant v, Contravariant w) => (a -> b) -> ((TU Contra Co t u :.: (u0 :.: (v :.: w))) >< a) -> (TU Contra Co t u :.: (u0 :.: (v :.: w))) >< b Source # (>&&<) :: Contravariant u0 => ((TU Contra Co t u :.: u0) >< a) -> (a -> b) -> (TU Contra Co t u :.: u0) >< b Source # (>&&&<) :: (Contravariant u0, Contravariant v) => ((TU Contra Co t u :.: (u0 :.: v)) >< b) -> (a -> b) -> (TU Contra Co t u :.: (u0 :.: v)) >< a Source # (>&&&&<) :: (Contravariant u0, Contravariant v, Contravariant w) => ((TU Contra Co t u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (TU Contra Co t u :.: (u0 :.: (v :.: w))) >< b Source # | |
(Covariant t, Covariant u) => Covariant (TU Co Co t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (<$>) :: (a -> b) -> TU Co Co t u a -> TU Co Co t u b Source # comap :: (a -> b) -> TU Co Co t u a -> TU Co Co t u b Source # (<$) :: a -> TU Co Co t u b -> TU Co Co t u a Source # ($>) :: TU Co Co t u a -> b -> TU Co Co t u b Source # void :: TU Co Co t u a -> TU Co Co t u () Source # loeb :: TU Co Co t u (TU Co Co t u a -> a) -> TU Co Co t u a Source # (<&>) :: TU Co Co t u a -> (a -> b) -> TU Co Co t u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((TU Co Co t u :.: u0) >< a) -> (TU Co Co t u :.: u0) >< b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((TU Co Co t u :.: (u0 :.: v)) >< a) -> (TU Co Co t u :.: (u0 :.: v)) >< b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((TU Co Co t u :.: (u0 :.: (v :.: w))) >< a) -> (TU Co Co t u :.: (u0 :.: (v :.: w))) >< b Source # (<&&>) :: Covariant u0 => ((TU Co Co t u :.: u0) >< a) -> (a -> b) -> (TU Co Co t u :.: u0) >< b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((TU Co Co t u :.: (u0 :.: v)) >< a) -> (a -> b) -> (TU Co Co t u :.: (u0 :.: v)) >< b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((TU Co Co t u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (TU Co Co t u :.: (u0 :.: (v :.: w))) >< b Source # | |
(Contravariant t, Contravariant u) => Covariant (TU Contra Contra t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (<$>) :: (a -> b) -> TU Contra Contra t u a -> TU Contra Contra t u b Source # comap :: (a -> b) -> TU Contra Contra t u a -> TU Contra Contra t u b Source # (<$) :: a -> TU Contra Contra t u b -> TU Contra Contra t u a Source # ($>) :: TU Contra Contra t u a -> b -> TU Contra Contra t u b Source # void :: TU Contra Contra t u a -> TU Contra Contra t u () Source # loeb :: TU Contra Contra t u (TU Contra Contra t u a -> a) -> TU Contra Contra t u a Source # (<&>) :: TU Contra Contra t u a -> (a -> b) -> TU Contra Contra t u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((TU Contra Contra t u :.: u0) >< a) -> (TU Contra Contra t u :.: u0) >< b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((TU Contra Contra t u :.: (u0 :.: v)) >< a) -> (TU Contra Contra t u :.: (u0 :.: v)) >< b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((TU Contra Contra t u :.: (u0 :.: (v :.: w))) >< a) -> (TU Contra Contra t u :.: (u0 :.: (v :.: w))) >< b Source # (<&&>) :: Covariant u0 => ((TU Contra Contra t u :.: u0) >< a) -> (a -> b) -> (TU Contra Contra t u :.: u0) >< b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((TU Contra Contra t u :.: (u0 :.: v)) >< a) -> (a -> b) -> (TU Contra Contra t u :.: (u0 :.: v)) >< b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((TU Contra Contra t u :.: (u0 :.: (v :.: w))) >< a) -> (a -> b) -> (TU Contra Contra t u :.: (u0 :.: (v :.: w))) >< b Source # | |
(Applicative t, Applicative u) => Applicative (TU Co Co t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (<*>) :: TU Co Co t u (a -> b) -> TU Co Co t u a -> TU Co Co t u b Source # apply :: TU Co Co t u (a -> b) -> TU Co Co t u a -> TU Co Co t u b Source # (*>) :: TU Co Co t u a -> TU Co Co t u b -> TU Co Co t u b Source # (<*) :: TU Co Co t u a -> TU Co Co t u b -> TU Co Co t u a Source # forever :: TU Co Co t u a -> TU Co Co t u b Source # (<**>) :: Applicative u0 => (TU Co Co t u :.: u0) (a -> b) -> (TU Co Co t u :.: u0) a -> (TU Co Co t u :.: u0) b Source # (<***>) :: (Applicative u0, Applicative v) => (TU Co Co t u :.: (u0 :.: v)) (a -> b) -> (TU Co Co t u :.: (u0 :.: v)) a -> (TU Co Co t u :.: (u0 :.: v)) b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => (TU Co Co t u :.: (u0 :.: (v :.: w))) (a -> b) -> (TU Co Co t u :.: (u0 :.: (v :.: w))) a -> (TU Co Co t u :.: (u0 :.: (v :.: w))) b Source # | |
(Alternative t, Covariant u) => Alternative (TU Co Co t u) Source # | |
(Avoidable t, Covariant u) => Avoidable (TU Co Co t u) Source # | |
(Distributive t, Distributive u) => Distributive (TU Co Co t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (>>-) :: Covariant t0 => t0 a -> (a -> TU Co Co t u b) -> (TU Co Co t u :.: t0) b Source # collect :: Covariant t0 => (a -> TU Co Co t u b) -> t0 a -> (TU Co Co t u :.: t0) b Source # distribute :: Covariant t0 => (t0 :.: TU Co Co t u) a -> (TU Co Co t u :.: t0) a Source # (>>>-) :: (Covariant t0, Covariant v) => (t0 :.: v) a -> (a -> TU Co Co t u b) -> (TU Co Co t u :.: (t0 :.: v)) b Source # (>>>>-) :: (Covariant t0, Covariant v, Covariant w) => (t0 :.: (v :.: w)) a -> (a -> TU Co Co t u b) -> (TU Co Co t u :.: (t0 :.: (v :.: w))) b Source # (>>>>>-) :: (Covariant t0, Covariant v, Covariant w, Covariant j) => (t0 :.: (v :.: (w :.: j))) a -> (a -> TU Co Co t u b) -> (TU Co Co t u :.: (t0 :.: (v :.: (w :.: j)))) b Source # | |
(Extractable t, Extractable u) => Extractable (TU Co Co t u) Source # | |
(Pointable t, Pointable u) => Pointable (TU Co Co t u) Source # | |
(Traversable t, Traversable u) => Traversable (TU Co Co t u) Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU Methods (->>) :: (Pointable u0, Applicative u0) => TU Co Co t u a -> (a -> u0 b) -> (u0 :.: TU Co Co t u) b Source # traverse :: (Pointable u0, Applicative u0) => (a -> u0 b) -> TU Co Co t u a -> (u0 :.: TU Co Co t u) b Source # sequence :: (Pointable u0, Applicative u0) => (TU Co Co t u :.: u0) a -> (u0 :.: TU Co Co t u) a Source # (->>>) :: (Pointable u0, Applicative u0, Traversable v) => (v :.: TU Co Co t u) a -> (a -> u0 b) -> (u0 :.: (v :.: TU Co Co t u)) b Source # (->>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w) => (w :.: (v :.: TU Co Co t u)) a -> (a -> u0 b) -> (u0 :.: (w :.: (v :.: TU Co Co t u))) b Source # (->>>>>) :: (Pointable u0, Applicative u0, Traversable v, Traversable w, Traversable j) => (j :.: (w :.: (v :.: TU Co Co t u))) a -> (a -> u0 b) -> (u0 :.: (j :.: (w :.: (v :.: TU Co Co t u)))) b Source # | |
(t :-|: u, v :-|: w) => Adjoint (TU Co Co t v) (TU Co Co u w) Source # | |
type Outline (TU ct cu t u) a Source # | |
Defined in Pandora.Paradigm.Junction.Schemes.TU |