Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Documentation
a :*: b infixr 1 |
Instances
Covariant (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product (<$>) :: (a0 -> b) -> Product a a0 -> Product a b Source # comap :: (a0 -> b) -> Product a a0 -> Product a b Source # (<$) :: a0 -> Product a b -> Product a a0 Source # ($>) :: Product a a0 -> b -> Product a b Source # void :: Product a a0 -> Product a () Source # loeb :: Product a (Product a a0 -> a0) -> Product a a0 Source # (<&>) :: Product a a0 -> (a0 -> b) -> Product a b Source # (<$$>) :: Covariant u => (a0 -> b) -> ((Product a :. u) := a0) -> (Product a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Product a :. (u :. v)) := a0) -> (Product a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Product a :. (u :. (v :. w))) := a0) -> (Product a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Product a :. u) := a0) -> (a0 -> b) -> (Product a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Product a :. (u :. v)) := a0) -> (a0 -> b) -> (Product a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Product a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Product a :. (u :. (v :. w))) := b Source # | |
Extendable (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product (=>>) :: Product a a0 -> (Product a a0 -> b) -> Product a b Source # (<<=) :: (Product a a0 -> b) -> Product a a0 -> Product a b Source # extend :: (Product a a0 -> b) -> Product a a0 -> Product a b Source # duplicate :: Product a a0 -> (Product a :. Product a) := a0 Source # (=<=) :: (Product a b -> c) -> (Product a a0 -> b) -> Product a a0 -> c Source # (=>=) :: (Product a a0 -> b) -> (Product a b -> c) -> Product a a0 -> c Source # | |
Extractable (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product | |
Comonad (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product | |
Traversable (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product (->>) :: (Pointable u, Applicative u) => Product a a0 -> (a0 -> u b) -> (u :. Product a) := b Source # traverse :: (Pointable u, Applicative u) => (a0 -> u b) -> Product a a0 -> (u :. Product a) := b Source # sequence :: (Pointable u, Applicative u) => (Product a :. u) a0 -> (u :. Product a) := a0 Source # (->>>) :: (Pointable u, Applicative u, Traversable v) => ((v :. Product a) := a0) -> (a0 -> u b) -> (u :. (v :. Product a)) := b Source # (->>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w) => ((w :. (v :. Product a)) := a0) -> (a0 -> u b) -> (u :. (w :. (v :. Product a))) := b Source # (->>>>>) :: (Pointable u, Applicative u, Traversable v, Traversable w, Traversable j) => ((j :. (w :. (v :. Product a))) := a0) -> (a0 -> u b) -> (u :. (j :. (w :. (v :. Product a)))) := b Source # | |
Adjoint (Product a) ((->) a :: Type -> Type) Source # | |
(Semigroup a, Semigroup b) => Semigroup (Product a b) Source # | |
(Ringoid a, Ringoid b) => Ringoid (Product a b) Source # | |
(Monoid a, Monoid b) => Monoid (Product a b) Source # | |
Defined in Pandora.Paradigm.Basis.Product | |
(Group a, Group b) => Group (Product a b) Source # | |
(Supremum a, Supremum b) => Supremum (Product a b) Source # | |
(Infimum a, Infimum b) => Infimum (Product a b) Source # | |
(Lattice a, Lattice b) => Lattice (Product a b) Source # | |
Defined in Pandora.Paradigm.Basis.Product | |
(Setoid a, Setoid b) => Setoid (Product a b) Source # | |
Covariant u => Covariant (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful (<$>) :: (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # comap :: (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<$) :: a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # ($>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> b -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # void :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) () Source # loeb :: TUV Co Co Co ((->) s) u ((:*:) s) (TUV Co Co Co ((->) s) u ((:*:) s) a -> a) -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # (<&>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # | |
Bindable u => Bindable (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful (>>=) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> (a -> TUV Co Co Co ((->) s) u ((:*:) s) b) -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (=<<) :: (a -> TUV Co Co Co ((->) s) u ((:*:) s) b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # bind :: (a -> TUV Co Co Co ((->) s) u ((:*:) s) b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # join :: ((TUV Co Co Co ((->) s) u ((:*:) s) :. TUV Co Co Co ((->) s) u ((:*:) s)) := a) -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # (>=>) :: (a -> TUV Co Co Co ((->) s) u ((:*:) s) b) -> (b -> TUV Co Co Co ((->) s) u ((:*:) s) c) -> a -> TUV Co Co Co ((->) s) u ((:*:) s) c Source # (<=<) :: (b -> TUV Co Co Co ((->) s) u ((:*:) s) c) -> (a -> TUV Co Co Co ((->) s) u ((:*:) s) b) -> a -> TUV Co Co Co ((->) s) u ((:*:) s) c Source # | |
Bindable u => Applicative (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful (<*>) :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # apply :: TUV Co Co Co ((->) s) u ((:*:) s) (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (*>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<*) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # forever :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<**>) :: Applicative u0 => ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<***>) :: (Applicative u0, Applicative v) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<****>) :: (Applicative u0, Applicative v, Applicative w) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := (a -> b)) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # | |
Pointable u => Pointable (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Monad u => Monad (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful |