Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Synopsis
- class Covariant (t :: * -> *) where
- (<$>) :: (a -> b) -> t a -> t b
- comap :: (a -> b) -> t a -> t b
- (<$) :: a -> t b -> t a
- ($>) :: t a -> b -> t b
- void :: t a -> t ()
- loeb :: t (t a -> a) -> t a
- (<&>) :: t a -> (a -> b) -> t b
- (<$$>) :: Covariant u => (a -> b) -> ((t :. u) := a) -> (t :. u) := b
- (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b
- (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b
- (<&&>) :: Covariant u => ((t :. u) := a) -> (a -> b) -> (t :. u) := b
- (<&&&>) :: (Covariant u, Covariant v) => ((t :. (u :. v)) := a) -> (a -> b) -> (t :. (u :. v)) := b
- (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((t :. (u :. (v :. w))) := a) -> (a -> b) -> (t :. (u :. (v :. w))) := b
Documentation
class Covariant (t :: * -> *) where Source #
When providing a new instance, you should ensure it satisfies the two laws: * Identity morphism: comap identity ≡ identity * Interpreted of morphisms: comap (f . g) ≡ comap f . comap g
(<$>) :: (a -> b) -> t a -> t b infixl 4 Source #
Infix version of comap
comap :: (a -> b) -> t a -> t b Source #
Prefix version of <$>
(<$) :: a -> t b -> t a infixl 4 Source #
Replace all locations in the input with the same value
($>) :: t a -> b -> t b infixl 4 Source #
Flipped version of <$
Discards the result of evaluation
loeb :: t (t a -> a) -> t a Source #
Computing a value from a structure of values
(<&>) :: t a -> (a -> b) -> t b Source #
Flipped infix version of comap
(<$$>) :: Covariant u => (a -> b) -> ((t :. u) := a) -> (t :. u) := b Source #
Infix versions of comap
with various nesting levels
(<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((t :. (u :. v)) := a) -> (t :. (u :. v)) := b Source #
(<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((t :. (u :. (v :. w))) := a) -> (t :. (u :. (v :. w))) := b Source #
(<&&>) :: Covariant u => ((t :. u) := a) -> (a -> b) -> (t :. u) := b Source #
Infix flipped versions of comap
with various nesting levels
(<&&&>) :: (Covariant u, Covariant v) => ((t :. (u :. v)) := a) -> (a -> b) -> (t :. (u :. v)) := b Source #
(<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((t :. (u :. (v :. w))) := a) -> (a -> b) -> (t :. (u :. (v :. w))) := b Source #
Instances
Covariant Wye Source # | |
Defined in Pandora.Paradigm.Basis.Wye (<$>) :: (a -> b) -> Wye a -> Wye b Source # comap :: (a -> b) -> Wye a -> Wye b Source # (<$) :: a -> Wye b -> Wye a Source # ($>) :: Wye a -> b -> Wye b Source # void :: Wye a -> Wye () Source # loeb :: Wye (Wye a -> a) -> Wye a Source # (<&>) :: Wye a -> (a -> b) -> Wye b Source # (<$$>) :: Covariant u => (a -> b) -> ((Wye :. u) := a) -> (Wye :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Wye :. (u :. v)) := a) -> (Wye :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Wye :. (u :. (v :. w))) := a) -> (Wye :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Wye :. u) := a) -> (a -> b) -> (Wye :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Wye :. (u :. v)) := a) -> (a -> b) -> (Wye :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Wye :. (u :. (v :. w))) := a) -> (a -> b) -> (Wye :. (u :. (v :. w))) := b Source # | |
Covariant Edges Source # | |
Defined in Pandora.Paradigm.Basis.Edges (<$>) :: (a -> b) -> Edges a -> Edges b Source # comap :: (a -> b) -> Edges a -> Edges b Source # (<$) :: a -> Edges b -> Edges a Source # ($>) :: Edges a -> b -> Edges b Source # void :: Edges a -> Edges () Source # loeb :: Edges (Edges a -> a) -> Edges a Source # (<&>) :: Edges a -> (a -> b) -> Edges b Source # (<$$>) :: Covariant u => (a -> b) -> ((Edges :. u) := a) -> (Edges :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Edges :. (u :. v)) := a) -> (Edges :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Edges :. (u :. (v :. w))) := a) -> (Edges :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Edges :. u) := a) -> (a -> b) -> (Edges :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Edges :. (u :. v)) := a) -> (a -> b) -> (Edges :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Edges :. (u :. (v :. w))) := a) -> (a -> b) -> (Edges :. (u :. (v :. w))) := b Source # | |
Covariant Graph Source # | |
Defined in Pandora.Paradigm.Structure.Specific.Graph (<$>) :: (a -> b) -> Graph a -> Graph b Source # comap :: (a -> b) -> Graph a -> Graph b Source # (<$) :: a -> Graph b -> Graph a Source # ($>) :: Graph a -> b -> Graph b Source # void :: Graph a -> Graph () Source # loeb :: Graph (Graph a -> a) -> Graph a Source # (<&>) :: Graph a -> (a -> b) -> Graph b Source # (<$$>) :: Covariant u => (a -> b) -> ((Graph :. u) := a) -> (Graph :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Graph :. (u :. v)) := a) -> (Graph :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Graph :. (u :. (v :. w))) := a) -> (Graph :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Graph :. u) := a) -> (a -> b) -> (Graph :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Graph :. (u :. v)) := a) -> (a -> b) -> (Graph :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Graph :. (u :. (v :. w))) := a) -> (a -> b) -> (Graph :. (u :. (v :. w))) := b Source # | |
Covariant Maybe Source # | |
Defined in Pandora.Paradigm.Basis.Maybe (<$>) :: (a -> b) -> Maybe a -> Maybe b Source # comap :: (a -> b) -> Maybe a -> Maybe b Source # (<$) :: a -> Maybe b -> Maybe a Source # ($>) :: Maybe a -> b -> Maybe b Source # void :: Maybe a -> Maybe () Source # loeb :: Maybe (Maybe a -> a) -> Maybe a Source # (<&>) :: Maybe a -> (a -> b) -> Maybe b Source # (<$$>) :: Covariant u => (a -> b) -> ((Maybe :. u) := a) -> (Maybe :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Maybe :. (u :. v)) := a) -> (Maybe :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Maybe :. (u :. (v :. w))) := a) -> (Maybe :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Maybe :. u) := a) -> (a -> b) -> (Maybe :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Maybe :. (u :. v)) := a) -> (a -> b) -> (Maybe :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Maybe :. (u :. (v :. w))) := a) -> (a -> b) -> (Maybe :. (u :. (v :. w))) := b Source # | |
Covariant Stack Source # | |
Defined in Pandora.Paradigm.Structure.Specific.Stack (<$>) :: (a -> b) -> Stack a -> Stack b Source # comap :: (a -> b) -> Stack a -> Stack b Source # (<$) :: a -> Stack b -> Stack a Source # ($>) :: Stack a -> b -> Stack b Source # void :: Stack a -> Stack () Source # loeb :: Stack (Stack a -> a) -> Stack a Source # (<&>) :: Stack a -> (a -> b) -> Stack b Source # (<$$>) :: Covariant u => (a -> b) -> ((Stack :. u) := a) -> (Stack :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Stack :. (u :. v)) := a) -> (Stack :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Stack :. (u :. (v :. w))) := a) -> (Stack :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Stack :. u) := a) -> (a -> b) -> (Stack :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Stack :. (u :. v)) := a) -> (a -> b) -> (Stack :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Stack :. (u :. (v :. w))) := a) -> (a -> b) -> (Stack :. (u :. (v :. w))) := b Source # | |
Covariant Identity Source # | |
Defined in Pandora.Paradigm.Basis.Identity (<$>) :: (a -> b) -> Identity a -> Identity b Source # comap :: (a -> b) -> Identity a -> Identity b Source # (<$) :: a -> Identity b -> Identity a Source # ($>) :: Identity a -> b -> Identity b Source # void :: Identity a -> Identity () Source # loeb :: Identity (Identity a -> a) -> Identity a Source # (<&>) :: Identity a -> (a -> b) -> Identity b Source # (<$$>) :: Covariant u => (a -> b) -> ((Identity :. u) := a) -> (Identity :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Identity :. (u :. v)) := a) -> (Identity :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Identity :. (u :. (v :. w))) := a) -> (Identity :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Identity :. u) := a) -> (a -> b) -> (Identity :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Identity :. (u :. v)) := a) -> (a -> b) -> (Identity :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Identity :. (u :. (v :. w))) := a) -> (a -> b) -> (Identity :. (u :. (v :. w))) := b Source # | |
Covariant (Environmental e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environmental (<$>) :: (a -> b) -> Environmental e a -> Environmental e b Source # comap :: (a -> b) -> Environmental e a -> Environmental e b Source # (<$) :: a -> Environmental e b -> Environmental e a Source # ($>) :: Environmental e a -> b -> Environmental e b Source # void :: Environmental e a -> Environmental e () Source # loeb :: Environmental e (Environmental e a -> a) -> Environmental e a Source # (<&>) :: Environmental e a -> (a -> b) -> Environmental e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Environmental e :. u) := a) -> (Environmental e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Environmental e :. (u :. v)) := a) -> (Environmental e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Environmental e :. (u :. (v :. w))) := a) -> (Environmental e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Environmental e :. u) := a) -> (a -> b) -> (Environmental e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Environmental e :. (u :. v)) := a) -> (a -> b) -> (Environmental e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Environmental e :. (u :. (v :. w))) := a) -> (a -> b) -> (Environmental e :. (u :. (v :. w))) := b Source # | |
Covariant (Yoneda t) Source # | |
Defined in Pandora.Paradigm.Basis.Yoneda (<$>) :: (a -> b) -> Yoneda t a -> Yoneda t b Source # comap :: (a -> b) -> Yoneda t a -> Yoneda t b Source # (<$) :: a -> Yoneda t b -> Yoneda t a Source # ($>) :: Yoneda t a -> b -> Yoneda t b Source # void :: Yoneda t a -> Yoneda t () Source # loeb :: Yoneda t (Yoneda t a -> a) -> Yoneda t a Source # (<&>) :: Yoneda t a -> (a -> b) -> Yoneda t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Yoneda t :. u) := a) -> (Yoneda t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Yoneda t :. (u :. v)) := a) -> (Yoneda t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Yoneda t :. (u :. (v :. w))) := a) -> (Yoneda t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Yoneda t :. u) := a) -> (a -> b) -> (Yoneda t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Yoneda t :. (u :. v)) := a) -> (a -> b) -> (Yoneda t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Yoneda t :. (u :. (v :. w))) := a) -> (a -> b) -> (Yoneda t :. (u :. (v :. w))) := b Source # | |
Covariant (Proxy :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Basis.Proxy (<$>) :: (a -> b) -> Proxy a -> Proxy b Source # comap :: (a -> b) -> Proxy a -> Proxy b Source # (<$) :: a -> Proxy b -> Proxy a Source # ($>) :: Proxy a -> b -> Proxy b Source # void :: Proxy a -> Proxy () Source # loeb :: Proxy (Proxy a -> a) -> Proxy a Source # (<&>) :: Proxy a -> (a -> b) -> Proxy b Source # (<$$>) :: Covariant u => (a -> b) -> ((Proxy :. u) := a) -> (Proxy :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Proxy :. (u :. v)) := a) -> (Proxy :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Proxy :. (u :. (v :. w))) := a) -> (Proxy :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Proxy :. u) := a) -> (a -> b) -> (Proxy :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Proxy :. (u :. v)) := a) -> (a -> b) -> (Proxy :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Proxy :. (u :. (v :. w))) := a) -> (a -> b) -> (Proxy :. (u :. (v :. w))) := b Source # | |
Covariant (Variation e) Source # | |
Defined in Pandora.Paradigm.Basis.Variation (<$>) :: (a -> b) -> Variation e a -> Variation e b Source # comap :: (a -> b) -> Variation e a -> Variation e b Source # (<$) :: a -> Variation e b -> Variation e a Source # ($>) :: Variation e a -> b -> Variation e b Source # void :: Variation e a -> Variation e () Source # loeb :: Variation e (Variation e a -> a) -> Variation e a Source # (<&>) :: Variation e a -> (a -> b) -> Variation e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Variation e :. u) := a) -> (Variation e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Variation e :. (u :. v)) := a) -> (Variation e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Variation e :. (u :. (v :. w))) := a) -> (Variation e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Variation e :. u) := a) -> (a -> b) -> (Variation e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Variation e :. (u :. v)) := a) -> (a -> b) -> (Variation e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Variation e :. (u :. (v :. w))) := a) -> (a -> b) -> (Variation e :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Jet t) Source # | |
Defined in Pandora.Paradigm.Basis.Jet (<$>) :: (a -> b) -> Jet t a -> Jet t b Source # comap :: (a -> b) -> Jet t a -> Jet t b Source # (<$) :: a -> Jet t b -> Jet t a Source # ($>) :: Jet t a -> b -> Jet t b Source # void :: Jet t a -> Jet t () Source # loeb :: Jet t (Jet t a -> a) -> Jet t a Source # (<&>) :: Jet t a -> (a -> b) -> Jet t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Jet t :. u) := a) -> (Jet t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Jet t :. (u :. v)) := a) -> (Jet t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Jet t :. (u :. (v :. w))) := a) -> (Jet t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Jet t :. u) := a) -> (a -> b) -> (Jet t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Jet t :. (u :. v)) := a) -> (a -> b) -> (Jet t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Jet t :. (u :. (v :. w))) := a) -> (a -> b) -> (Jet t :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Free t) Source # | |
Defined in Pandora.Paradigm.Basis.Free (<$>) :: (a -> b) -> Free t a -> Free t b Source # comap :: (a -> b) -> Free t a -> Free t b Source # (<$) :: a -> Free t b -> Free t a Source # ($>) :: Free t a -> b -> Free t b Source # void :: Free t a -> Free t () Source # loeb :: Free t (Free t a -> a) -> Free t a Source # (<&>) :: Free t a -> (a -> b) -> Free t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Free t :. u) := a) -> (Free t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Free t :. (u :. v)) := a) -> (Free t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Free t :. (u :. (v :. w))) := a) -> (Free t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Free t :. u) := a) -> (a -> b) -> (Free t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Free t :. (u :. v)) := a) -> (a -> b) -> (Free t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Free t :. (u :. (v :. w))) := a) -> (a -> b) -> (Free t :. (u :. (v :. w))) := b Source # | |
Covariant (Validation e) Source # | |
Defined in Pandora.Paradigm.Basis.Validation (<$>) :: (a -> b) -> Validation e a -> Validation e b Source # comap :: (a -> b) -> Validation e a -> Validation e b Source # (<$) :: a -> Validation e b -> Validation e a Source # ($>) :: Validation e a -> b -> Validation e b Source # void :: Validation e a -> Validation e () Source # loeb :: Validation e (Validation e a -> a) -> Validation e a Source # (<&>) :: Validation e a -> (a -> b) -> Validation e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Validation e :. u) := a) -> (Validation e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Validation e :. (u :. v)) := a) -> (Validation e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Validation e :. (u :. (v :. w))) := a) -> (Validation e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Validation e :. u) := a) -> (a -> b) -> (Validation e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Validation e :. (u :. v)) := a) -> (a -> b) -> (Validation e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Validation e :. (u :. (v :. w))) := a) -> (a -> b) -> (Validation e :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Twister t) Source # | |
Defined in Pandora.Paradigm.Basis.Twister (<$>) :: (a -> b) -> Twister t a -> Twister t b Source # comap :: (a -> b) -> Twister t a -> Twister t b Source # (<$) :: a -> Twister t b -> Twister t a Source # ($>) :: Twister t a -> b -> Twister t b Source # void :: Twister t a -> Twister t () Source # loeb :: Twister t (Twister t a -> a) -> Twister t a Source # (<&>) :: Twister t a -> (a -> b) -> Twister t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Twister t :. u) := a) -> (Twister t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Twister t :. (u :. v)) := a) -> (Twister t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Twister t :. (u :. (v :. w))) := a) -> (Twister t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Twister t :. u) := a) -> (a -> b) -> (Twister t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Twister t :. (u :. v)) := a) -> (a -> b) -> (Twister t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Twister t :. (u :. (v :. w))) := a) -> (a -> b) -> (Twister t :. (u :. (v :. w))) := b Source # | |
Covariant (Product a) Source # | |
Defined in Pandora.Paradigm.Basis.Product (<$>) :: (a0 -> b) -> Product a a0 -> Product a b Source # comap :: (a0 -> b) -> Product a a0 -> Product a b Source # (<$) :: a0 -> Product a b -> Product a a0 Source # ($>) :: Product a a0 -> b -> Product a b Source # void :: Product a a0 -> Product a () Source # loeb :: Product a (Product a a0 -> a0) -> Product a a0 Source # (<&>) :: Product a a0 -> (a0 -> b) -> Product a b Source # (<$$>) :: Covariant u => (a0 -> b) -> ((Product a :. u) := a0) -> (Product a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Product a :. (u :. v)) := a0) -> (Product a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Product a :. (u :. (v :. w))) := a0) -> (Product a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Product a :. u) := a0) -> (a0 -> b) -> (Product a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Product a :. (u :. v)) := a0) -> (a0 -> b) -> (Product a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Product a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Product a :. (u :. (v :. w))) := b Source # | |
Covariant (Storage p) Source # | |
Defined in Pandora.Paradigm.Inventory.Storage (<$>) :: (a -> b) -> Storage p a -> Storage p b Source # comap :: (a -> b) -> Storage p a -> Storage p b Source # (<$) :: a -> Storage p b -> Storage p a Source # ($>) :: Storage p a -> b -> Storage p b Source # void :: Storage p a -> Storage p () Source # loeb :: Storage p (Storage p a -> a) -> Storage p a Source # (<&>) :: Storage p a -> (a -> b) -> Storage p b Source # (<$$>) :: Covariant u => (a -> b) -> ((Storage p :. u) := a) -> (Storage p :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Storage p :. (u :. v)) := a) -> (Storage p :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Storage p :. (u :. (v :. w))) := a) -> (Storage p :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Storage p :. u) := a) -> (a -> b) -> (Storage p :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Storage p :. (u :. v)) := a) -> (a -> b) -> (Storage p :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Storage p :. (u :. (v :. w))) := a) -> (a -> b) -> (Storage p :. (u :. (v :. w))) := b Source # | |
Covariant (Stateful s) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful (<$>) :: (a -> b) -> Stateful s a -> Stateful s b Source # comap :: (a -> b) -> Stateful s a -> Stateful s b Source # (<$) :: a -> Stateful s b -> Stateful s a Source # ($>) :: Stateful s a -> b -> Stateful s b Source # void :: Stateful s a -> Stateful s () Source # loeb :: Stateful s (Stateful s a -> a) -> Stateful s a Source # (<&>) :: Stateful s a -> (a -> b) -> Stateful s b Source # (<$$>) :: Covariant u => (a -> b) -> ((Stateful s :. u) := a) -> (Stateful s :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Stateful s :. (u :. v)) := a) -> (Stateful s :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Stateful s :. (u :. (v :. w))) := a) -> (Stateful s :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Stateful s :. u) := a) -> (a -> b) -> (Stateful s :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Stateful s :. (u :. v)) := a) -> (a -> b) -> (Stateful s :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Stateful s :. (u :. (v :. w))) := a) -> (a -> b) -> (Stateful s :. (u :. (v :. w))) := b Source # | |
Covariant t => Covariant (Jack t) Source # | |
Defined in Pandora.Paradigm.Basis.Jack (<$>) :: (a -> b) -> Jack t a -> Jack t b Source # comap :: (a -> b) -> Jack t a -> Jack t b Source # (<$) :: a -> Jack t b -> Jack t a Source # ($>) :: Jack t a -> b -> Jack t b Source # void :: Jack t a -> Jack t () Source # loeb :: Jack t (Jack t a -> a) -> Jack t a Source # (<&>) :: Jack t a -> (a -> b) -> Jack t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Jack t :. u) := a) -> (Jack t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Jack t :. (u :. v)) := a) -> (Jack t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Jack t :. (u :. (v :. w))) := a) -> (Jack t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Jack t :. u) := a) -> (a -> b) -> (Jack t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Jack t :. (u :. v)) := a) -> (a -> b) -> (Jack t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Jack t :. (u :. (v :. w))) := a) -> (a -> b) -> (Jack t :. (u :. (v :. w))) := b Source # | |
Covariant (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Basis.Conclusion (<$>) :: (a -> b) -> Conclusion e a -> Conclusion e b Source # comap :: (a -> b) -> Conclusion e a -> Conclusion e b Source # (<$) :: a -> Conclusion e b -> Conclusion e a Source # ($>) :: Conclusion e a -> b -> Conclusion e b Source # void :: Conclusion e a -> Conclusion e () Source # loeb :: Conclusion e (Conclusion e a -> a) -> Conclusion e a Source # (<&>) :: Conclusion e a -> (a -> b) -> Conclusion e b Source # (<$$>) :: Covariant u => (a -> b) -> ((Conclusion e :. u) := a) -> (Conclusion e :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Conclusion e :. (u :. v)) := a) -> (Conclusion e :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Conclusion e :. (u :. (v :. w))) := a) -> (Conclusion e :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Conclusion e :. u) := a) -> (a -> b) -> (Conclusion e :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Conclusion e :. (u :. v)) := a) -> (a -> b) -> (Conclusion e :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Conclusion e :. (u :. (v :. w))) := a) -> (a -> b) -> (Conclusion e :. (u :. (v :. w))) := b Source # | |
Covariant (Tagged tag) Source # | |
Defined in Pandora.Paradigm.Basis.Tagged (<$>) :: (a -> b) -> Tagged tag a -> Tagged tag b Source # comap :: (a -> b) -> Tagged tag a -> Tagged tag b Source # (<$) :: a -> Tagged tag b -> Tagged tag a Source # ($>) :: Tagged tag a -> b -> Tagged tag b Source # void :: Tagged tag a -> Tagged tag () Source # loeb :: Tagged tag (Tagged tag a -> a) -> Tagged tag a Source # (<&>) :: Tagged tag a -> (a -> b) -> Tagged tag b Source # (<$$>) :: Covariant u => (a -> b) -> ((Tagged tag :. u) := a) -> (Tagged tag :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Tagged tag :. (u :. v)) := a) -> (Tagged tag :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Tagged tag :. (u :. (v :. w))) := a) -> (Tagged tag :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Tagged tag :. u) := a) -> (a -> b) -> (Tagged tag :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Tagged tag :. (u :. v)) := a) -> (a -> b) -> (Tagged tag :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Tagged tag :. (u :. (v :. w))) := a) -> (a -> b) -> (Tagged tag :. (u :. (v :. w))) := b Source # | |
Covariant (Constant a :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Basis.Constant (<$>) :: (a0 -> b) -> Constant a a0 -> Constant a b Source # comap :: (a0 -> b) -> Constant a a0 -> Constant a b Source # (<$) :: a0 -> Constant a b -> Constant a a0 Source # ($>) :: Constant a a0 -> b -> Constant a b Source # void :: Constant a a0 -> Constant a () Source # loeb :: Constant a (Constant a a0 -> a0) -> Constant a a0 Source # (<&>) :: Constant a a0 -> (a0 -> b) -> Constant a b Source # (<$$>) :: Covariant u => (a0 -> b) -> ((Constant a :. u) := a0) -> (Constant a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> ((Constant a :. (u :. v)) := a0) -> (Constant a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> ((Constant a :. (u :. (v :. w))) := a0) -> (Constant a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Constant a :. u) := a0) -> (a0 -> b) -> (Constant a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Constant a :. (u :. v)) := a0) -> (a0 -> b) -> (Constant a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Constant a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> (Constant a :. (u :. (v :. w))) := b Source # | |
Covariant ((->) a :: Type -> Type) Source # | |
Defined in Pandora.Pattern.Functor.Covariant (<$>) :: (a0 -> b) -> (a -> a0) -> a -> b Source # comap :: (a0 -> b) -> (a -> a0) -> a -> b Source # (<$) :: a0 -> (a -> b) -> a -> a0 Source # ($>) :: (a -> a0) -> b -> a -> b Source # void :: (a -> a0) -> a -> () Source # loeb :: (a -> ((a -> a0) -> a0)) -> a -> a0 Source # (<&>) :: (a -> a0) -> (a0 -> b) -> a -> b Source # (<$$>) :: Covariant u => (a0 -> b) -> (((->) a :. u) := a0) -> ((->) a :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a0 -> b) -> (((->) a :. (u :. v)) := a0) -> ((->) a :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a0 -> b) -> (((->) a :. (u :. (v :. w))) := a0) -> ((->) a :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => (((->) a :. u) := a0) -> (a0 -> b) -> ((->) a :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => (((->) a :. (u :. v)) := a0) -> (a0 -> b) -> ((->) a :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => (((->) a :. (u :. (v :. w))) := a0) -> (a0 -> b) -> ((->) a :. (u :. (v :. w))) := b Source # | |
Covariant (Ran t u b) Source # | |
Defined in Pandora.Paradigm.Basis.Kan (<$>) :: (a -> b0) -> Ran t u b a -> Ran t u b b0 Source # comap :: (a -> b0) -> Ran t u b a -> Ran t u b b0 Source # (<$) :: a -> Ran t u b b0 -> Ran t u b a Source # ($>) :: Ran t u b a -> b0 -> Ran t u b b0 Source # void :: Ran t u b a -> Ran t u b () Source # loeb :: Ran t u b (Ran t u b a -> a) -> Ran t u b a Source # (<&>) :: Ran t u b a -> (a -> b0) -> Ran t u b b0 Source # (<$$>) :: Covariant u0 => (a -> b0) -> ((Ran t u b :. u0) := a) -> (Ran t u b :. u0) := b0 Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b0) -> ((Ran t u b :. (u0 :. v)) := a) -> (Ran t u b :. (u0 :. v)) := b0 Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b0) -> ((Ran t u b :. (u0 :. (v :. w))) := a) -> (Ran t u b :. (u0 :. (v :. w))) := b0 Source # (<&&>) :: Covariant u0 => ((Ran t u b :. u0) := a) -> (a -> b0) -> (Ran t u b :. u0) := b0 Source # (<&&&>) :: (Covariant u0, Covariant v) => ((Ran t u b :. (u0 :. v)) := a) -> (a -> b0) -> (Ran t u b :. (u0 :. v)) := b0 Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((Ran t u b :. (u0 :. (v :. w))) := a) -> (a -> b0) -> (Ran t u b :. (u0 :. (v :. w))) := b0 Source # | |
Covariant t => Covariant (Continuation r t) Source # | |
Defined in Pandora.Paradigm.Basis.Continuation (<$>) :: (a -> b) -> Continuation r t a -> Continuation r t b Source # comap :: (a -> b) -> Continuation r t a -> Continuation r t b Source # (<$) :: a -> Continuation r t b -> Continuation r t a Source # ($>) :: Continuation r t a -> b -> Continuation r t b Source # void :: Continuation r t a -> Continuation r t () Source # loeb :: Continuation r t (Continuation r t a -> a) -> Continuation r t a Source # (<&>) :: Continuation r t a -> (a -> b) -> Continuation r t b Source # (<$$>) :: Covariant u => (a -> b) -> ((Continuation r t :. u) := a) -> (Continuation r t :. u) := b Source # (<$$$>) :: (Covariant u, Covariant v) => (a -> b) -> ((Continuation r t :. (u :. v)) := a) -> (Continuation r t :. (u :. v)) := b Source # (<$$$$>) :: (Covariant u, Covariant v, Covariant w) => (a -> b) -> ((Continuation r t :. (u :. (v :. w))) := a) -> (Continuation r t :. (u :. (v :. w))) := b Source # (<&&>) :: Covariant u => ((Continuation r t :. u) := a) -> (a -> b) -> (Continuation r t :. u) := b Source # (<&&&>) :: (Covariant u, Covariant v) => ((Continuation r t :. (u :. v)) := a) -> (a -> b) -> (Continuation r t :. (u :. v)) := b Source # (<&&&&>) :: (Covariant u, Covariant v, Covariant w) => ((Continuation r t :. (u :. (v :. w))) := a) -> (a -> b) -> (Continuation r t :. (u :. (v :. w))) := b Source # | |
Covariant u => Covariant (UT Co Co Maybe u) Source # | |
Defined in Pandora.Paradigm.Basis.Maybe (<$>) :: (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source # comap :: (a -> b) -> UT Co Co Maybe u a -> UT Co Co Maybe u b Source # (<$) :: a -> UT Co Co Maybe u b -> UT Co Co Maybe u a Source # ($>) :: UT Co Co Maybe u a -> b -> UT Co Co Maybe u b Source # void :: UT Co Co Maybe u a -> UT Co Co Maybe u () Source # loeb :: UT Co Co Maybe u (UT Co Co Maybe u a -> a) -> UT Co Co Maybe u a Source # (<&>) :: UT Co Co Maybe u a -> (a -> b) -> UT Co Co Maybe u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((UT Co Co Maybe u :. u0) := a) -> (UT Co Co Maybe u :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Co Co Maybe u :. (u0 :. v)) := a) -> (UT Co Co Maybe u :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Co Co Maybe u :. (u0 :. (v :. w))) := a) -> (UT Co Co Maybe u :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((UT Co Co Maybe u :. u0) := a) -> (a -> b) -> (UT Co Co Maybe u :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((UT Co Co Maybe u :. (u0 :. v)) := a) -> (a -> b) -> (UT Co Co Maybe u :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Co Co Maybe u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Co Co Maybe u :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (UT Co Co (Conclusion e) u) Source # | |
Defined in Pandora.Paradigm.Basis.Conclusion (<$>) :: (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source # comap :: (a -> b) -> UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u b Source # (<$) :: a -> UT Co Co (Conclusion e) u b -> UT Co Co (Conclusion e) u a Source # ($>) :: UT Co Co (Conclusion e) u a -> b -> UT Co Co (Conclusion e) u b Source # void :: UT Co Co (Conclusion e) u a -> UT Co Co (Conclusion e) u () Source # loeb :: UT Co Co (Conclusion e) u (UT Co Co (Conclusion e) u a -> a) -> UT Co Co (Conclusion e) u a Source # (<&>) :: UT Co Co (Conclusion e) u a -> (a -> b) -> UT Co Co (Conclusion e) u b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((UT Co Co (Conclusion e) u :. u0) := a) -> (UT Co Co (Conclusion e) u :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((UT Co Co (Conclusion e) u :. (u0 :. v)) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((UT Co Co (Conclusion e) u :. u0) := a) -> (a -> b) -> (UT Co Co (Conclusion e) u :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((UT Co Co (Conclusion e) u :. (u0 :. v)) := a) -> (a -> b) -> (UT Co Co (Conclusion e) u :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := a) -> (a -> b) -> (UT Co Co (Conclusion e) u :. (u0 :. (v :. w))) := b Source # | |
Covariant u => Covariant (TUV Co Co Co ((->) s :: Type -> Type) u ((:*:) s)) Source # | |
Defined in Pandora.Paradigm.Inventory.Stateful (<$>) :: (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # comap :: (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<$) :: a -> TUV Co Co Co ((->) s) u ((:*:) s) b -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # ($>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> b -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # void :: TUV Co Co Co ((->) s) u ((:*:) s) a -> TUV Co Co Co ((->) s) u ((:*:) s) () Source # loeb :: TUV Co Co Co ((->) s) u ((:*:) s) (TUV Co Co Co ((->) s) u ((:*:) s) a -> a) -> TUV Co Co Co ((->) s) u ((:*:) s) a Source # (<&>) :: TUV Co Co Co ((->) s) u ((:*:) s) a -> (a -> b) -> TUV Co Co Co ((->) s) u ((:*:) s) b Source # (<$$>) :: Covariant u0 => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<$$$>) :: (Covariant u0, Covariant v) => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<$$$$>) :: (Covariant u0, Covariant v, Covariant w) => (a -> b) -> ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # (<&&>) :: Covariant u0 => ((TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. u0) := b Source # (<&&&>) :: (Covariant u0, Covariant v) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. v)) := b Source # (<&&&&>) :: (Covariant u0, Covariant v, Covariant w) => ((TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := a) -> (a -> b) -> (TUV Co Co Co ((->) s) u ((:*:) s) :. (u0 :. (v :. w))) := b Source # |