pandora-0.4.5: A box of patterns and paradigms
Safe HaskellSafe-Inferred
LanguageHaskell2010

Pandora.Paradigm.Primary.Transformer.Flip

Documentation

newtype Flip (v :: * -> * -> *) a e Source #

Constructors

Flip (v e a) 

Instances

Instances details
Semigroupoid (Flip ((->) :: Type -> Type -> Type)) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Methods

(.) :: Flip (->) b c -> Flip (->) a b -> Flip (->) a c Source #

Category (Flip ((->) :: Type -> Type -> Type)) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Methods

identity :: Flip (->) a a Source #

($) :: Flip (->) (Flip (->) a b) (Flip (->) a b) Source #

(#) :: Flip (->) (Flip (->) a b) (Flip (->) a b) Source #

Morphable ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Associated Types

type Morphing ('Into (Flip Conclusion e)) Maybe :: Type -> Type Source #

Morphable ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Associated Types

type Morphing ('Into ('Here Maybe)) (Flip Wedge a2) :: Type -> Type Source #

Morphable ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Associated Types

type Morphing ('Into ('That Maybe)) (Flip These a2) :: Type -> Type Source #

Invariant (Flip Store r) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Store

Methods

(<$<) :: (a -> b) -> (b -> a) -> Flip Store r a -> Flip Store r b Source #

invmap :: (a -> b) -> (b -> a) -> Flip Store r a -> Flip Store r b Source #

Invariant (Flip (Lens available) tgt) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Optics

Methods

(<$<) :: (a -> b) -> (b -> a) -> Flip (Lens available) tgt a -> Flip (Lens available) tgt b Source #

invmap :: (a -> b) -> (b -> a) -> Flip (Lens available) tgt a -> Flip (Lens available) tgt b Source #

Invariant (Flip State r) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.State

Methods

(<$<) :: (a -> b) -> (b -> a) -> Flip State r a -> Flip State r b Source #

invmap :: (a -> b) -> (b -> a) -> Flip State r a -> Flip State r b Source #

Interpreted (Flip v a) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Transformer

Associated Types

type Primary (Flip v a) a Source #

Methods

run :: Flip v a a0 -> Primary (Flip v a) a0 Source #

unite :: Primary (Flip v a) a0 -> Flip v a a0 Source #

(||=) :: Interpreted u => (Primary (Flip v a) a0 -> Primary u b) -> Flip v a a0 -> u b Source #

(=||) :: Interpreted u => (Flip v a a0 -> u b) -> Primary (Flip v a) a0 -> Primary u b Source #

(<$||=) :: (Covariant j (->) (->), Interpreted u) => (Primary (Flip v a) a0 -> Primary u b) -> (j := Flip v a a0) -> j := u b Source #

(<$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Interpreted u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. k) := Flip v a a0) -> (j :. k) := u b Source #

(<$$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Interpreted u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. (k :. l)) := Flip v a a0) -> (j :. (k :. l)) := u b Source #

(<$$$$||=) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Covariant m (->) (->), Interpreted u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. (k :. (l :. m))) := Flip v a a0) -> (j :. (k :. (l :. m))) := u b Source #

(=||$>) :: (Covariant j (->) (->), Interpreted u) => (Flip v a a0 -> u b) -> (j := Primary (Flip v a) a0) -> j := Primary u b Source #

(=||$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Interpreted u) => (Flip v a a0 -> u b) -> ((j :. k) := Primary (Flip v a) a0) -> (j :. k) := Primary u b Source #

(=||$$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Interpreted u) => (Flip v a a0 -> u b) -> ((j :. (k :. l)) := Primary (Flip v a) a0) -> (j :. (k :. l)) := Primary u b Source #

(=||$$$$>) :: (Covariant j (->) (->), Covariant k (->) (->), Covariant l (->) (->), Covariant m (->) (->), Interpreted u) => (Flip v a a0 -> u b) -> ((j :. (k :. (l :. m))) := Primary (Flip v a) a0) -> (j :. (k :. (l :. m))) := Primary u b Source #

Substructure ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # 
Instance details

Defined in Pandora.Paradigm.Structure

Associated Types

type Available 'Left (Flip (:*:) a2) :: Type -> Type Source #

type Substance 'Left (Flip (:*:) a2) :: Type -> Type Source #

Extractable (Flip (:*:) a) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Methods

extract :: Flip (:*:) a a0 -> a0 Source #

Covariant (Flip (Constant :: Type -> Type -> Type) b) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Constant

Methods

(-<$>-) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source #

Covariant (Flip (:+:) a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Algebraic.Sum

Methods

(-<$>-) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source #

Covariant (Flip (:*:) a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Algebraic.Product

Methods

(-<$>-) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source #

Covariant (Flip (Tagged :: Type -> Type -> Type) a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Tagged

Methods

(-<$>-) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source #

Covariant (Flip Validation a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Validation

Methods

(-<$>-) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source #

Covariant (Flip Conclusion e) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Functor.Conclusion

Methods

(-<$>-) :: (a -> b) -> Flip Conclusion e a -> Flip Conclusion e b Source #

Contravariant (Flip ((->) :: Type -> Type -> Type) a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Algebraic.Exponential

Methods

(->$<-) :: (a0 -> b) -> Flip (->) a b -> Flip (->) a a0 Source #

Contravariant (Flip Imprint a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Imprint

Methods

(->$<-) :: (a0 -> b) -> Flip Imprint a b -> Flip Imprint a a0 Source #

Contravariant (Flip Environment a) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Inventory.Environment

Methods

(->$<-) :: (a0 -> b) -> Flip Environment a b -> Flip Environment a a0 Source #

Adjoint (Flip (:*:) s) ((->) s :: Type -> Type) ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

Methods

(-|) :: (Flip (:*:) s a -> b) -> a -> (s -> b) Source #

(|-) :: (a -> (s -> b)) -> Flip (:*:) s a -> b Source #

type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # 
Instance details

Defined in Pandora.Paradigm.Primary

type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe = ((->) e :: Type -> Type) <:.> Flip Conclusion e
type Morphing ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

type Morphing ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) = Maybe
type Morphing ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # 
Instance details

Defined in Pandora.Paradigm.Primary

type Morphing ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) = Maybe
type Primary (Flip v a) e Source # 
Instance details

Defined in Pandora.Paradigm.Primary.Transformer

type Primary (Flip v a) e = v e a
type Available ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # 
Instance details

Defined in Pandora.Paradigm.Structure

type Available ('Left :: a1 -> Wye a1) (Flip (:*:) a2) = Identity
type Substance ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # 
Instance details

Defined in Pandora.Paradigm.Structure

type Substance ('Left :: a1 -> Wye a1) (Flip (:*:) a2) = Identity