Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
newtype UT ct cu t u a Source #
Instances
(Covariant m m t, Covariant m m u, Interpreted m (t <.:> u)) => Covariant m m (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Catchable e (Conclusion e <.:> u :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion catch :: forall (a :: k). (Conclusion e <.:> u) a -> (e -> (Conclusion e <.:> u) a) -> (Conclusion e <.:> u) a Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <:.> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (w <.:> u) Source # | |
(Semigroup e, Extendable ((->) :: Type -> Type -> Type) u) => Extendable ((->) :: Type -> Type -> Type) (((->) e :: Type -> Type) <.:> u) Source # | |
(Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Bindable ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) (t <.:> u) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Monoidal (<--) ((->) :: Type -> Type -> Type) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (UT ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT run :: UT ct cu t u a -> Primary (UT ct cu t u) a Source # unite :: Primary (UT ct cu t u) a -> UT ct cu t u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> UT ct cu t u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> Primary (UT ct cu t u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> (j := UT ct cu t u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. k) := UT ct cu t u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. l)) := UT ct cu t u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := UT ct cu t u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> (j := Primary (UT ct cu t u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. k) := Primary (UT ct cu t u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. l)) := Primary (UT ct cu t u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (UT ct cu t u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
type Primary (UT ct cu t u) a Source # | |
Defined in Pandora.Paradigm.Schemes.UT |
type (>.:<) = UT Contravariant Contravariant infixr 3 Source #