Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
type family Schematic (c :: (* -> * -> *) -> (* -> *) -> k) (t :: * -> *) = (r :: (* -> *) -> * -> *) | r -> t Source #
Instances
type Schematic Monad Maybe Source # | |
type Schematic Monad (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion | |
type Schematic Monad (State s) Source # | |
type Schematic Monad (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment | |
type Schematic Monad (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator | |
type Schematic Comonad (Store s) Source # | |
type Schematic Comonad (Imprint e) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint | |
type Schematic Comonad (Equipment e) Source # | |
class Interpreted m t where Source #
run :: m (t a) (Primary t a) Source #
unite :: m (Primary t a) (t a) Source #
(||=) :: (Semigroupoid m, Interpreted m u) => m (Primary t a) (Primary u b) -> m (t a) (u b) infixr 2 Source #
(=||) :: (Semigroupoid m, Interpreted m u) => m (t a) (u b) -> m (Primary t a) (Primary u b) infixr 2 Source #
(<$||=) :: (Semigroupoid m, Covariant m m j, Interpreted m u) => m (Primary t a) (Primary u b) -> m (j := t a) (j := u b) Source #
(<$$||=) :: (Semigroupoid m, Covariant m m j, Covariant m m k, Interpreted m u) => m (Primary t a) (Primary u b) -> m ((j :. k) := t a) ((j :. k) := u b) Source #
(<$$$||=) :: (Semigroupoid m, Covariant m m j, Covariant m m k, Covariant m m l, Interpreted m u) => m (Primary t a) (Primary u b) -> m ((j :. (k :. l)) := t a) ((j :. (k :. l)) := u b) Source #
(<$$$$||=) :: (Semigroupoid m, Covariant m m j, Covariant m m k, Covariant m m l, Covariant m m n, Interpreted m u) => m (Primary t a) (Primary u b) -> m ((j :. (k :. (l :. n))) := t a) ((j :. (k :. (l :. n))) := u b) Source #
(=||$>) :: (Covariant m m j, Interpreted m u) => m (t a) (u b) -> m (j := Primary t a) (j := Primary u b) Source #
(=||$$>) :: (Covariant m m j, Covariant m m k, Interpreted m u) => m (t a) (u b) -> m ((j :. k) := Primary t a) ((j :. k) := Primary u b) Source #
(=||$$$>) :: (Covariant m m j, Covariant m m k, Covariant m m l, Interpreted m u) => m (t a) (u b) -> m ((j :. (k :. l)) := Primary t a) ((j :. (k :. l)) := Primary u b) Source #
(=||$$$$>) :: (Covariant m m j, Covariant m m k, Covariant m m l, Covariant m m n, Interpreted m u) => m (t a) (u b) -> m ((j :. (k :. (l :. n))) := Primary t a) ((j :. (k :. (l :. n))) := Primary u b) Source #
Instances
Interpreted ((->) :: Type -> Type -> Type) Predicate Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Predicate run :: Predicate a -> Primary Predicate a Source # unite :: Primary Predicate a -> Predicate a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary Predicate a -> Primary u b) -> Predicate a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Predicate a -> u b) -> Primary Predicate a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary Predicate a -> Primary u b) -> (j := Predicate a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary Predicate a -> Primary u b) -> ((j :. k) := Predicate a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary Predicate a -> Primary u b) -> ((j :. (k :. l)) := Predicate a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary Predicate a -> Primary u b) -> ((j :. (k :. (l :. n))) := Predicate a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Predicate a -> u b) -> (j := Primary Predicate a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Predicate a -> u b) -> ((j :. k) := Primary Predicate a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Predicate a -> u b) -> ((j :. (k :. l)) := Primary Predicate a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Predicate a -> u b) -> ((j :. (k :. (l :. n))) := Primary Predicate a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) Endo Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Endo run :: Endo a -> Primary Endo a Source # unite :: Primary Endo a -> Endo a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary Endo a -> Primary u b) -> Endo a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Endo a -> u b) -> Primary Endo a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary Endo a -> Primary u b) -> (j := Endo a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary Endo a -> Primary u b) -> ((j :. k) := Endo a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary Endo a -> Primary u b) -> ((j :. (k :. l)) := Endo a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary Endo a -> Primary u b) -> ((j :. (k :. (l :. n))) := Endo a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Endo a -> u b) -> (j := Primary Endo a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Endo a -> u b) -> ((j :. k) := Primary Endo a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Endo a -> u b) -> ((j :. (k :. l)) := Primary Endo a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Endo a -> u b) -> ((j :. (k :. (l :. n))) := Primary Endo a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) Maybe Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe run :: Maybe a -> Primary Maybe a Source # unite :: Primary Maybe a -> Maybe a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary Maybe a -> Primary u b) -> Maybe a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Maybe a -> u b) -> Primary Maybe a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary Maybe a -> Primary u b) -> (j := Maybe a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary Maybe a -> Primary u b) -> ((j :. k) := Maybe a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary Maybe a -> Primary u b) -> ((j :. (k :. l)) := Maybe a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary Maybe a -> Primary u b) -> ((j :. (k :. (l :. n))) := Maybe a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Maybe a -> u b) -> (j := Primary Maybe a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Maybe a -> u b) -> ((j :. k) := Primary Maybe a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Maybe a -> u b) -> ((j :. (k :. l)) := Primary Maybe a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Maybe a -> u b) -> ((j :. (k :. (l :. n))) := Primary Maybe a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion type Primary (Conclusion e) a Source # run :: Conclusion e a -> Primary (Conclusion e) a Source # unite :: Primary (Conclusion e) a -> Conclusion e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Conclusion e) a -> Primary u b) -> Conclusion e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Conclusion e a -> u b) -> Primary (Conclusion e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Conclusion e) a -> Primary u b) -> (j := Conclusion e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Conclusion e) a -> Primary u b) -> ((j :. k) := Conclusion e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Conclusion e) a -> Primary u b) -> ((j :. (k :. l)) := Conclusion e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Conclusion e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Conclusion e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Conclusion e a -> u b) -> (j := Primary (Conclusion e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Conclusion e a -> u b) -> ((j :. k) := Primary (Conclusion e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Conclusion e a -> u b) -> ((j :. (k :. l)) := Primary (Conclusion e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Conclusion e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Conclusion e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Comprehension t) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Comprehension type Primary (Comprehension t) a Source # run :: Comprehension t a -> Primary (Comprehension t) a Source # unite :: Primary (Comprehension t) a -> Comprehension t a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Comprehension t) a -> Primary u b) -> Comprehension t a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Comprehension t a -> u b) -> Primary (Comprehension t) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Comprehension t) a -> Primary u b) -> (j := Comprehension t a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Comprehension t) a -> Primary u b) -> ((j :. k) := Comprehension t a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Comprehension t) a -> Primary u b) -> ((j :. (k :. l)) := Comprehension t a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Comprehension t) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Comprehension t a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Comprehension t a -> u b) -> (j := Primary (Comprehension t) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Comprehension t a -> u b) -> ((j :. k) := Primary (Comprehension t) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Comprehension t a -> u b) -> ((j :. (k :. l)) := Primary (Comprehension t) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Comprehension t a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Comprehension t) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Store s) Source # | |
Defined in Pandora.Paradigm.Inventory.Store run :: Store s a -> Primary (Store s) a Source # unite :: Primary (Store s) a -> Store s a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Store s) a -> Primary u b) -> Store s a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Store s a -> u b) -> Primary (Store s) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Store s) a -> Primary u b) -> (j := Store s a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Store s) a -> Primary u b) -> ((j :. k) := Store s a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Store s) a -> Primary u b) -> ((j :. (k :. l)) := Store s a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Store s) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Store s a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Store s a -> u b) -> (j := Primary (Store s) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Store s a -> u b) -> ((j :. k) := Primary (Store s) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Store s a -> u b) -> ((j :. (k :. l)) := Primary (Store s) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Store s a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Store s) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.State run :: State s a -> Primary (State s) a Source # unite :: Primary (State s) a -> State s a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (State s) a -> Primary u b) -> State s a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (State s a -> u b) -> Primary (State s) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (State s) a -> Primary u b) -> (j := State s a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (State s) a -> Primary u b) -> ((j :. k) := State s a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (State s) a -> Primary u b) -> ((j :. (k :. l)) := State s a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (State s) a -> Primary u b) -> ((j :. (k :. (l :. n))) := State s a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (State s a -> u b) -> (j := Primary (State s) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (State s a -> u b) -> ((j :. k) := Primary (State s) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (State s a -> u b) -> ((j :. (k :. l)) := Primary (State s) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (State s a -> u b) -> ((j :. (k :. (l :. n))) := Primary (State s) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Imprint e) Source # | |
Defined in Pandora.Paradigm.Inventory.Imprint run :: Imprint e a -> Primary (Imprint e) a Source # unite :: Primary (Imprint e) a -> Imprint e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Imprint e) a -> Primary u b) -> Imprint e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Imprint e a -> u b) -> Primary (Imprint e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Imprint e) a -> Primary u b) -> (j := Imprint e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Imprint e) a -> Primary u b) -> ((j :. k) := Imprint e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Imprint e) a -> Primary u b) -> ((j :. (k :. l)) := Imprint e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Imprint e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Imprint e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Imprint e a -> u b) -> (j := Primary (Imprint e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Imprint e a -> u b) -> ((j :. k) := Primary (Imprint e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Imprint e a -> u b) -> ((j :. (k :. l)) := Primary (Imprint e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Imprint e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Imprint e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Equipment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Equipment run :: Equipment e a -> Primary (Equipment e) a Source # unite :: Primary (Equipment e) a -> Equipment e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Equipment e) a -> Primary u b) -> Equipment e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Equipment e a -> u b) -> Primary (Equipment e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Equipment e) a -> Primary u b) -> (j := Equipment e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Equipment e) a -> Primary u b) -> ((j :. k) := Equipment e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Equipment e) a -> Primary u b) -> ((j :. (k :. l)) := Equipment e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Equipment e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Equipment e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Equipment e a -> u b) -> (j := Primary (Equipment e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Equipment e a -> u b) -> ((j :. k) := Primary (Equipment e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Equipment e a -> u b) -> ((j :. (k :. l)) := Primary (Equipment e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Equipment e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Equipment e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment type Primary (Environment e) a Source # run :: Environment e a -> Primary (Environment e) a Source # unite :: Primary (Environment e) a -> Environment e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Environment e) a -> Primary u b) -> Environment e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Environment e a -> u b) -> Primary (Environment e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Environment e) a -> Primary u b) -> (j := Environment e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Environment e) a -> Primary u b) -> ((j :. k) := Environment e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Environment e) a -> Primary u b) -> ((j :. (k :. l)) := Environment e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Environment e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Environment e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Environment e a -> u b) -> (j := Primary (Environment e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Environment e a -> u b) -> ((j :. k) := Primary (Environment e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Environment e a -> u b) -> ((j :. (k :. l)) := Primary (Environment e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Environment e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Environment e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator type Primary (Accumulator e) a Source # run :: Accumulator e a -> Primary (Accumulator e) a Source # unite :: Primary (Accumulator e) a -> Accumulator e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Accumulator e) a -> Primary u b) -> Accumulator e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Accumulator e a -> u b) -> Primary (Accumulator e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Accumulator e) a -> Primary u b) -> (j := Accumulator e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Accumulator e) a -> Primary u b) -> ((j :. k) := Accumulator e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Accumulator e) a -> Primary u b) -> ((j :. (k :. l)) := Accumulator e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Accumulator e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Accumulator e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Accumulator e a -> u b) -> (j := Primary (Accumulator e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Accumulator e a -> u b) -> ((j :. k) := Primary (Accumulator e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Accumulator e a -> u b) -> ((j :. (k :. l)) := Primary (Accumulator e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Accumulator e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Accumulator e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Straight v e) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Interpreted run :: Straight v e a -> Primary (Straight v e) a Source # unite :: Primary (Straight v e) a -> Straight v e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> Straight v e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Straight v e a -> u b) -> Primary (Straight v e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> (j := Straight v e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. k) := Straight v e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. (k :. l)) := Straight v e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Straight v e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Straight v e a -> u b) -> (j := Primary (Straight v e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. k) := Primary (Straight v e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. (k :. l)) := Primary (Straight v e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Straight v e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Flip v a) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Interpreted run :: Flip v a a0 -> Primary (Flip v a) a0 Source # unite :: Primary (Flip v a) a0 -> Flip v a a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> Flip v a a0 -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Flip v a a0 -> u b) -> Primary (Flip v a) a0 -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> (j := Flip v a a0) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. k) := Flip v a a0) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. (k :. l)) := Flip v a a0) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> ((j :. (k :. (l :. n))) := Flip v a a0) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Flip v a a0 -> u b) -> (j := Primary (Flip v a) a0) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Flip v a a0 -> u b) -> ((j :. k) := Primary (Flip v a) a0) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Flip v a a0 -> u b) -> ((j :. (k :. l)) := Primary (Flip v a) a0) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Flip v a a0 -> u b) -> ((j :. (k :. (l :. n))) := Primary (Flip v a) a0) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Schematic Monad t u) => Interpreted ((->) :: Type -> Type -> Type) (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic run :: (t :> u) a -> Primary (t :> u) a Source # unite :: Primary (t :> u) a -> (t :> u) a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (t :> u) a -> Primary u0 b) -> (t :> u) a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => ((t :> u) a -> u0 b) -> Primary (t :> u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (t :> u) a -> Primary u0 b) -> (j := (t :> u) a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (t :> u) a -> Primary u0 b) -> ((j :. k) := (t :> u) a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (t :> u) a -> Primary u0 b) -> ((j :. (k :. l)) := (t :> u) a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (t :> u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := (t :> u) a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => ((t :> u) a -> u0 b) -> (j := Primary (t :> u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => ((t :> u) a -> u0 b) -> ((j :. k) := Primary (t :> u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => ((t :> u) a -> u0 b) -> ((j :. (k :. l)) := Primary (t :> u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => ((t :> u) a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (t :> u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards run :: Backwards t a -> Primary (Backwards t) a Source # unite :: Primary (Backwards t) a -> Backwards t a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Backwards t) a -> Primary u b) -> Backwards t a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Backwards t a -> u b) -> Primary (Backwards t) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Backwards t) a -> Primary u b) -> (j := Backwards t a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. k) := Backwards t a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. (k :. l)) := Backwards t a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Backwards t) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Backwards t a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Backwards t a -> u b) -> (j := Primary (Backwards t) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Backwards t a -> u b) -> ((j :. k) := Primary (Backwards t) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Backwards t a -> u b) -> ((j :. (k :. l)) := Primary (Backwards t) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Backwards t a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Backwards t) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Reverse t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Reverse run :: Reverse t a -> Primary (Reverse t) a Source # unite :: Primary (Reverse t) a -> Reverse t a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Reverse t) a -> Primary u b) -> Reverse t a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Reverse t a -> u b) -> Primary (Reverse t) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Reverse t) a -> Primary u b) -> (j := Reverse t a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Reverse t) a -> Primary u b) -> ((j :. k) := Reverse t a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Reverse t) a -> Primary u b) -> ((j :. (k :. l)) := Reverse t a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Reverse t) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Reverse t a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Reverse t a -> u b) -> (j := Primary (Reverse t) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Reverse t a -> u b) -> ((j :. k) := Primary (Reverse t) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Reverse t a -> u b) -> ((j :. (k :. l)) := Primary (Reverse t) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Reverse t a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Reverse t) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Schematic Comonad t u) => Interpreted ((->) :: Type -> Type -> Type) (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Comonadic run :: (t :< u) a -> Primary (t :< u) a Source # unite :: Primary (t :< u) a -> (t :< u) a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (t :< u) a -> Primary u0 b) -> (t :< u) a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => ((t :< u) a -> u0 b) -> Primary (t :< u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (t :< u) a -> Primary u0 b) -> (j := (t :< u) a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (t :< u) a -> Primary u0 b) -> ((j :. k) := (t :< u) a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (t :< u) a -> Primary u0 b) -> ((j :. (k :. l)) := (t :< u) a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (t :< u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := (t :< u) a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => ((t :< u) a -> u0 b) -> (j := Primary (t :< u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => ((t :< u) a -> u0 b) -> ((j :. k) := Primary (t :< u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => ((t :< u) a -> u0 b) -> ((j :. (k :. l)) := Primary (t :< u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => ((t :< u) a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (t :< u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Prefixed t k) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Prefixed run :: Prefixed t k a -> Primary (Prefixed t k) a Source # unite :: Primary (Prefixed t k) a -> Prefixed t k a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Prefixed t k) a -> Primary u b) -> Prefixed t k a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Prefixed t k a -> u b) -> Primary (Prefixed t k) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Prefixed t k) a -> Primary u b) -> (j := Prefixed t k a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k0, Interpreted (->) u) => (Primary (Prefixed t k) a -> Primary u b) -> ((j :. k0) := Prefixed t k a) -> ((j :. k0) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k0, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Prefixed t k) a -> Primary u b) -> ((j :. (k0 :. l)) := Prefixed t k a) -> ((j :. (k0 :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k0, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Prefixed t k) a -> Primary u b) -> ((j :. (k0 :. (l :. n))) := Prefixed t k a) -> ((j :. (k0 :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Prefixed t k a -> u b) -> (j := Primary (Prefixed t k) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k0, Interpreted (->) u) => (Prefixed t k a -> u b) -> ((j :. k0) := Primary (Prefixed t k) a) -> ((j :. k0) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k0, Covariant (->) (->) l, Interpreted (->) u) => (Prefixed t k a -> u b) -> ((j :. (k0 :. l)) := Primary (Prefixed t k) a) -> ((j :. (k0 :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k0, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Prefixed t k a -> u b) -> ((j :. (k0 :. (l :. n))) := Primary (Prefixed t k) a) -> ((j :. (k0 :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Continuation r t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Continuation type Primary (Continuation r t) a Source # run :: Continuation r t a -> Primary (Continuation r t) a Source # unite :: Primary (Continuation r t) a -> Continuation r t a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Continuation r t) a -> Primary u b) -> Continuation r t a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Continuation r t a -> u b) -> Primary (Continuation r t) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Continuation r t) a -> Primary u b) -> (j := Continuation r t a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Continuation r t) a -> Primary u b) -> ((j :. k) := Continuation r t a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Continuation r t) a -> Primary u b) -> ((j :. (k :. l)) := Continuation r t a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Continuation r t) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Continuation r t a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Continuation r t a -> u b) -> (j := Primary (Continuation r t) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Continuation r t a -> u b) -> ((j :. k) := Primary (Continuation r t) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Continuation r t a -> u b) -> ((j :. (k :. l)) := Primary (Continuation r t) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Continuation r t a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Continuation r t) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (P_Q_T p q t a) Source # | |
Defined in Pandora.Paradigm.Schemes.P_Q_T run :: P_Q_T p q t a a0 -> Primary (P_Q_T p q t a) a0 Source # unite :: Primary (P_Q_T p q t a) a0 -> P_Q_T p q t a a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (P_Q_T p q t a) a0 -> Primary u b) -> P_Q_T p q t a a0 -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (P_Q_T p q t a a0 -> u b) -> Primary (P_Q_T p q t a) a0 -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (P_Q_T p q t a) a0 -> Primary u b) -> (j := P_Q_T p q t a a0) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (P_Q_T p q t a) a0 -> Primary u b) -> ((j :. k) := P_Q_T p q t a a0) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (P_Q_T p q t a) a0 -> Primary u b) -> ((j :. (k :. l)) := P_Q_T p q t a a0) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (P_Q_T p q t a) a0 -> Primary u b) -> ((j :. (k :. (l :. n))) := P_Q_T p q t a a0) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (P_Q_T p q t a a0 -> u b) -> (j := Primary (P_Q_T p q t a) a0) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (P_Q_T p q t a a0 -> u b) -> ((j :. k) := Primary (P_Q_T p q t a) a0) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (P_Q_T p q t a a0 -> u b) -> ((j :. (k :. l)) := Primary (P_Q_T p q t a) a0) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (P_Q_T p q t a a0 -> u b) -> ((j :. (k :. (l :. n))) := Primary (P_Q_T p q t a) a0) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Kan ('Left :: Type -> Wye Type) t u b) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Kan run :: Kan 'Left t u b a -> Primary (Kan 'Left t u b) a Source # unite :: Primary (Kan 'Left t u b) a -> Kan 'Left t u b a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (Kan 'Left t u b) a -> Primary u0 b0) -> Kan 'Left t u b a -> u0 b0 Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (Kan 'Left t u b a -> u0 b0) -> Primary (Kan 'Left t u b) a -> Primary u0 b0 Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (Kan 'Left t u b) a -> Primary u0 b0) -> (j := Kan 'Left t u b a) -> (j := u0 b0) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (Kan 'Left t u b) a -> Primary u0 b0) -> ((j :. k) := Kan 'Left t u b a) -> ((j :. k) := u0 b0) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (Kan 'Left t u b) a -> Primary u0 b0) -> ((j :. (k :. l)) := Kan 'Left t u b a) -> ((j :. (k :. l)) := u0 b0) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (Kan 'Left t u b) a -> Primary u0 b0) -> ((j :. (k :. (l :. n))) := Kan 'Left t u b a) -> ((j :. (k :. (l :. n))) := u0 b0) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (Kan 'Left t u b a -> u0 b0) -> (j := Primary (Kan 'Left t u b) a) -> (j := Primary u0 b0) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Kan 'Left t u b a -> u0 b0) -> ((j :. k) := Primary (Kan 'Left t u b) a) -> ((j :. k) := Primary u0 b0) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Kan 'Left t u b a -> u0 b0) -> ((j :. (k :. l)) := Primary (Kan 'Left t u b) a) -> ((j :. (k :. l)) := Primary u0 b0) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Kan 'Left t u b a -> u0 b0) -> ((j :. (k :. (l :. n))) := Primary (Kan 'Left t u b) a) -> ((j :. (k :. (l :. n))) := Primary u0 b0) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Kan ('Right :: Type -> Wye Type) t u b) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Kan run :: Kan 'Right t u b a -> Primary (Kan 'Right t u b) a Source # unite :: Primary (Kan 'Right t u b) a -> Kan 'Right t u b a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (Kan 'Right t u b) a -> Primary u0 b0) -> Kan 'Right t u b a -> u0 b0 Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (Kan 'Right t u b a -> u0 b0) -> Primary (Kan 'Right t u b) a -> Primary u0 b0 Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (Kan 'Right t u b) a -> Primary u0 b0) -> (j := Kan 'Right t u b a) -> (j := u0 b0) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (Kan 'Right t u b) a -> Primary u0 b0) -> ((j :. k) := Kan 'Right t u b a) -> ((j :. k) := u0 b0) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (Kan 'Right t u b) a -> Primary u0 b0) -> ((j :. (k :. l)) := Kan 'Right t u b a) -> ((j :. (k :. l)) := u0 b0) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (Kan 'Right t u b) a -> Primary u0 b0) -> ((j :. (k :. (l :. n))) := Kan 'Right t u b a) -> ((j :. (k :. (l :. n))) := u0 b0) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (Kan 'Right t u b a -> u0 b0) -> (j := Primary (Kan 'Right t u b) a) -> (j := Primary u0 b0) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Kan 'Right t u b a -> u0 b0) -> ((j :. k) := Primary (Kan 'Right t u b) a) -> ((j :. k) := Primary u0 b0) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Kan 'Right t u b a -> u0 b0) -> ((j :. (k :. l)) := Primary (Kan 'Right t u b) a) -> ((j :. (k :. l)) := Primary u0 b0) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Kan 'Right t u b a -> u0 b0) -> ((j :. (k :. (l :. n))) := Primary (Kan 'Right t u b) a) -> ((j :. (k :. (l :. n))) := Primary u0 b0) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (P_T p t a) Source # | |
Defined in Pandora.Paradigm.Schemes.P_T run :: P_T p t a a0 -> Primary (P_T p t a) a0 Source # unite :: Primary (P_T p t a) a0 -> P_T p t a a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (P_T p t a) a0 -> Primary u b) -> P_T p t a a0 -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (P_T p t a a0 -> u b) -> Primary (P_T p t a) a0 -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (P_T p t a) a0 -> Primary u b) -> (j := P_T p t a a0) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (P_T p t a) a0 -> Primary u b) -> ((j :. k) := P_T p t a a0) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (P_T p t a) a0 -> Primary u b) -> ((j :. (k :. l)) := P_T p t a a0) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (P_T p t a) a0 -> Primary u b) -> ((j :. (k :. (l :. n))) := P_T p t a a0) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (P_T p t a a0 -> u b) -> (j := Primary (P_T p t a) a0) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (P_T p t a a0 -> u b) -> ((j :. k) := Primary (P_T p t a) a0) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (P_T p t a a0 -> u b) -> ((j :. (k :. l)) := Primary (P_T p t a) a0) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (P_T p t a a0 -> u b) -> ((j :. (k :. (l :. n))) := Primary (P_T p t a) a0) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (PQ_ p q a) Source # | |
Defined in Pandora.Paradigm.Schemes.PQ_ run :: PQ_ p q a a0 -> Primary (PQ_ p q a) a0 Source # unite :: Primary (PQ_ p q a) a0 -> PQ_ p q a a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (PQ_ p q a) a0 -> Primary u b) -> PQ_ p q a a0 -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (PQ_ p q a a0 -> u b) -> Primary (PQ_ p q a) a0 -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (PQ_ p q a) a0 -> Primary u b) -> (j := PQ_ p q a a0) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (PQ_ p q a) a0 -> Primary u b) -> ((j :. k) := PQ_ p q a a0) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (PQ_ p q a) a0 -> Primary u b) -> ((j :. (k :. l)) := PQ_ p q a a0) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (PQ_ p q a) a0 -> Primary u b) -> ((j :. (k :. (l :. n))) := PQ_ p q a a0) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (PQ_ p q a a0 -> u b) -> (j := Primary (PQ_ p q a) a0) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (PQ_ p q a a0 -> u b) -> ((j :. k) := Primary (PQ_ p q a) a0) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (PQ_ p q a a0 -> u b) -> ((j :. (k :. l)) := Primary (PQ_ p q a) a0) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (PQ_ p q a a0 -> u b) -> ((j :. (k :. (l :. n))) := Primary (PQ_ p q a) a0) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (PTU p t u a) Source # | |
Defined in Pandora.Paradigm.Schemes.PTU run :: PTU p t u a a0 -> Primary (PTU p t u a) a0 Source # unite :: Primary (PTU p t u a) a0 -> PTU p t u a a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (PTU p t u a) a0 -> Primary u0 b) -> PTU p t u a a0 -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (PTU p t u a a0 -> u0 b) -> Primary (PTU p t u a) a0 -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (PTU p t u a) a0 -> Primary u0 b) -> (j := PTU p t u a a0) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (PTU p t u a) a0 -> Primary u0 b) -> ((j :. k) := PTU p t u a a0) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (PTU p t u a) a0 -> Primary u0 b) -> ((j :. (k :. l)) := PTU p t u a a0) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (PTU p t u a) a0 -> Primary u0 b) -> ((j :. (k :. (l :. n))) := PTU p t u a a0) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (PTU p t u a a0 -> u0 b) -> (j := Primary (PTU p t u a) a0) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (PTU p t u a a0 -> u0 b) -> ((j :. k) := Primary (PTU p t u a) a0) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (PTU p t u a a0 -> u0 b) -> ((j :. (k :. l)) := Primary (PTU p t u a) a0) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (PTU p t u a a0 -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (PTU p t u a) a0) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (UT ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT run :: UT ct cu t u a -> Primary (UT ct cu t u) a Source # unite :: Primary (UT ct cu t u) a -> UT ct cu t u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> UT ct cu t u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> Primary (UT ct cu t u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> (j := UT ct cu t u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. k) := UT ct cu t u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. l)) := UT ct cu t u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (UT ct cu t u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := UT ct cu t u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> (j := Primary (UT ct cu t u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. k) := Primary (UT ct cu t u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. l)) := Primary (UT ct cu t u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (UT ct cu t u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (UT ct cu t u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (TU ct cu t u) Source # | |
Defined in Pandora.Paradigm.Schemes.TU run :: TU ct cu t u a -> Primary (TU ct cu t u) a Source # unite :: Primary (TU ct cu t u) a -> TU ct cu t u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> TU ct cu t u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (TU ct cu t u a -> u0 b) -> Primary (TU ct cu t u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> (j := TU ct cu t u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. k) := TU ct cu t u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. (k :. l)) := TU ct cu t u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (TU ct cu t u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := TU ct cu t u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (TU ct cu t u a -> u0 b) -> (j := Primary (TU ct cu t u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (TU ct cu t u a -> u0 b) -> ((j :. k) := Primary (TU ct cu t u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (TU ct cu t u a -> u0 b) -> ((j :. (k :. l)) := Primary (TU ct cu t u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (TU ct cu t u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (TU ct cu t u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (U_T ct cu t p u) Source # | |
Defined in Pandora.Paradigm.Schemes.U_T run :: U_T ct cu t p u a -> Primary (U_T ct cu t p u) a Source # unite :: Primary (U_T ct cu t p u) a -> U_T ct cu t p u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (U_T ct cu t p u) a -> Primary u0 b) -> U_T ct cu t p u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (U_T ct cu t p u a -> u0 b) -> Primary (U_T ct cu t p u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (U_T ct cu t p u) a -> Primary u0 b) -> (j := U_T ct cu t p u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (U_T ct cu t p u) a -> Primary u0 b) -> ((j :. k) := U_T ct cu t p u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (U_T ct cu t p u) a -> Primary u0 b) -> ((j :. (k :. l)) := U_T ct cu t p u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (U_T ct cu t p u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := U_T ct cu t p u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (U_T ct cu t p u a -> u0 b) -> (j := Primary (U_T ct cu t p u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (U_T ct cu t p u a -> u0 b) -> ((j :. k) := Primary (U_T ct cu t p u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (U_T ct cu t p u a -> u0 b) -> ((j :. (k :. l)) := Primary (U_T ct cu t p u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (U_T ct cu t p u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (U_T ct cu t p u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (UTU ct cu t u u') Source # | |
Defined in Pandora.Paradigm.Schemes.UTU run :: UTU ct cu t u u' a -> Primary (UTU ct cu t u u') a Source # unite :: Primary (UTU ct cu t u u') a -> UTU ct cu t u u' a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (UTU ct cu t u u') a -> Primary u0 b) -> UTU ct cu t u u' a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (UTU ct cu t u u' a -> u0 b) -> Primary (UTU ct cu t u u') a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (UTU ct cu t u u') a -> Primary u0 b) -> (j := UTU ct cu t u u' a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (UTU ct cu t u u') a -> Primary u0 b) -> ((j :. k) := UTU ct cu t u u' a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (UTU ct cu t u u') a -> Primary u0 b) -> ((j :. (k :. l)) := UTU ct cu t u u' a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (UTU ct cu t u u') a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := UTU ct cu t u u' a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (UTU ct cu t u u' a -> u0 b) -> (j := Primary (UTU ct cu t u u') a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (UTU ct cu t u u' a -> u0 b) -> ((j :. k) := Primary (UTU ct cu t u u') a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (UTU ct cu t u u' a -> u0 b) -> ((j :. (k :. l)) := Primary (UTU ct cu t u u') a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (UTU ct cu t u u' a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (UTU ct cu t u u') a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (T_U ct cu p t u) Source # | |
Defined in Pandora.Paradigm.Schemes.T_U run :: T_U ct cu p t u a -> Primary (T_U ct cu p t u) a Source # unite :: Primary (T_U ct cu p t u) a -> T_U ct cu p t u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (T_U ct cu p t u) a -> Primary u0 b) -> T_U ct cu p t u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (T_U ct cu p t u a -> u0 b) -> Primary (T_U ct cu p t u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (T_U ct cu p t u) a -> Primary u0 b) -> (j := T_U ct cu p t u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (T_U ct cu p t u) a -> Primary u0 b) -> ((j :. k) := T_U ct cu p t u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (T_U ct cu p t u) a -> Primary u0 b) -> ((j :. (k :. l)) := T_U ct cu p t u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (T_U ct cu p t u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := T_U ct cu p t u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (T_U ct cu p t u a -> u0 b) -> (j := Primary (T_U ct cu p t u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (T_U ct cu p t u a -> u0 b) -> ((j :. k) := Primary (T_U ct cu p t u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (T_U ct cu p t u a -> u0 b) -> ((j :. (k :. l)) := Primary (T_U ct cu p t u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (T_U ct cu p t u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (T_U ct cu p t u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (TUT ct ct' cu t t' u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT run :: TUT ct ct' cu t t' u a -> Primary (TUT ct ct' cu t t' u) a Source # unite :: Primary (TUT ct ct' cu t t' u) a -> TUT ct ct' cu t t' u a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> TUT ct ct' cu t t' u a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (TUT ct ct' cu t t' u a -> u0 b) -> Primary (TUT ct ct' cu t t' u) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> (j := TUT ct ct' cu t t' u a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. k) := TUT ct ct' cu t t' u a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. (k :. l)) := TUT ct ct' cu t t' u a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (TUT ct ct' cu t t' u) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := TUT ct ct' cu t t' u a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (TUT ct ct' cu t t' u a -> u0 b) -> (j := Primary (TUT ct ct' cu t t' u) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. k) := Primary (TUT ct ct' cu t t' u) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. (k :. l)) := Primary (TUT ct ct' cu t t' u) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (TUT ct ct' cu t t' u a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (TUT ct ct' cu t t' u) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (TUVW ct cu cv cw t u v w) Source # | |
Defined in Pandora.Paradigm.Schemes.TUVW run :: TUVW ct cu cv cw t u v w a -> Primary (TUVW ct cu cv cw t u v w) a Source # unite :: Primary (TUVW ct cu cv cw t u v w) a -> TUVW ct cu cv cw t u v w a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u0) => (Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b) -> TUVW ct cu cv cw t u v w a -> u0 b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u0) => (TUVW ct cu cv cw t u v w a -> u0 b) -> Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u0) => (Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b) -> (j := TUVW ct cu cv cw t u v w a) -> (j := u0 b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b) -> ((j :. k) := TUVW ct cu cv cw t u v w a) -> ((j :. k) := u0 b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b) -> ((j :. (k :. l)) := TUVW ct cu cv cw t u v w a) -> ((j :. (k :. l)) := u0 b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (Primary (TUVW ct cu cv cw t u v w) a -> Primary u0 b) -> ((j :. (k :. (l :. n))) := TUVW ct cu cv cw t u v w a) -> ((j :. (k :. (l :. n))) := u0 b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u0) => (TUVW ct cu cv cw t u v w a -> u0 b) -> (j := Primary (TUVW ct cu cv cw t u v w) a) -> (j := Primary u0 b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u0) => (TUVW ct cu cv cw t u v w a -> u0 b) -> ((j :. k) := Primary (TUVW ct cu cv cw t u v w) a) -> ((j :. k) := Primary u0 b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u0) => (TUVW ct cu cv cw t u v w a -> u0 b) -> ((j :. (k :. l)) := Primary (TUVW ct cu cv cw t u v w) a) -> ((j :. (k :. l)) := Primary u0 b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u0) => (TUVW ct cu cv cw t u v w a -> u0 b) -> ((j :. (k :. (l :. n))) := Primary (TUVW ct cu cv cw t u v w) a) -> ((j :. (k :. (l :. n))) := Primary u0 b) Source # |
(-=:) :: (Liftable m t, Interpreted m (t u), Interpreted m (t v), Covariant m m u) => m (t u a) (t v b) -> m (u a) (Primary (t v) b) Source #