Safe Haskell | None |
---|---|
Language | Haskell98 |
Synopsis
- class GcdDomain a => Euclidean a where
- class Semiring a => GcdDomain a where
- newtype WrappedIntegral a = WrapIntegral {
- unwrapIntegral :: a
- newtype WrappedFractional a = WrapFractional {
- unwrapFractional :: a
Documentation
class GcdDomain a => Euclidean a where Source #
Informally speaking, Euclidean
is a superclass of Integral
,
lacking toInteger
, which allows to define division with remainder
for a wider range of types, e. g., complex integers
and polynomials with rational coefficients.
Euclidean
represents a
Euclidean domain
endowed by a given Euclidean function degree
.
quotRem :: a -> a -> (a, a) Source #
Division with remainder.
\x y -> y == 0 || let (q, r) = x `quotRem` y in x == q * y + r
quot :: a -> a -> a infixl 7 Source #
Division. Must match its default definition:
\x y -> quot x y == fst (quotRem x y)
rem :: a -> a -> a infixl 7 Source #
Remainder. Must match its default definition:
\x y -> rem x y == snd (quotRem x y)
degree :: a -> Natural Source #
Euclidean (aka degree, valuation, gauge, norm) function on a
. Usually fromIntegral
. abs
.
degree
is rarely used by itself. Its purpose
is to provide an evidence of soundness of quotRem
by testing the following property:
\x y -> y == 0 || let (q, r) = x `quotRem` y in (r == 0 || degree r < degree y)
Instances
Euclidean Double Source # | |
Euclidean Float Source # | |
Euclidean Int Source # | |
Euclidean Integer Source # | |
Euclidean Natural Source # | |
Euclidean Word Source # | |
Integral a => Euclidean (Ratio a) Source # | |
(Eq a, Fractional a) => Euclidean (WrappedFractional a) Source # | |
Defined in Data.Euclidean quotRem :: WrappedFractional a -> WrappedFractional a -> (WrappedFractional a, WrappedFractional a) Source # quot :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a Source # rem :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a Source # degree :: WrappedFractional a -> Natural Source # | |
Integral a => Euclidean (WrappedIntegral a) Source # | |
Defined in Data.Euclidean quotRem :: WrappedIntegral a -> WrappedIntegral a -> (WrappedIntegral a, WrappedIntegral a) Source # quot :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a Source # rem :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a Source # degree :: WrappedIntegral a -> Natural Source # |
class Semiring a => GcdDomain a where Source #
GcdDomain
represents a
GCD domain.
This is a domain, where GCD can be defined,
but which does not necessarily allow a well-behaved
division with remainder (as in Euclidean
domains).
For example, there is no way to define rem
over
polynomials with integer coefficients such that
remainder is always "smaller" than divisor. However,
gcd
is still definable, just not by means of
Euclidean algorithm.
All methods of GcdDomain
have default implementations
in terms of Euclidean
. So most of the time
it is enough to write:
instance GcdDomain Foo instance Euclidean Foo where quotRem = ... degree = ...
Nothing
divide :: a -> a -> Maybe a infixl 7 Source #
Division without remainder.
\x y -> (x * y) `divide` y == Just x
\x y -> maybe True (\z -> x == z * y) (x `divide` y)
divide :: (Eq a, Euclidean a) => a -> a -> Maybe a infixl 7 Source #
Division without remainder.
\x y -> (x * y) `divide` y == Just x
\x y -> maybe True (\z -> x == z * y) (x `divide` y)
Greatest common divisor. Must satisfy
\x y -> isJust (x `divide` gcd x y) && isJust (y `divide` gcd x y)
\x y z -> isJust (gcd (x * z) (y * z) `divide` z)
gcd :: (Eq a, Euclidean a) => a -> a -> a Source #
Greatest common divisor. Must satisfy
\x y -> isJust (x `divide` gcd x y) && isJust (y `divide` gcd x y)
\x y z -> isJust (gcd (x * z) (y * z) `divide` z)
Lowest common multiple. Must satisfy
\x y -> isJust (lcm x y `divide` x) && isJust (lcm x y `divide` y)
\x y z -> isNothing (z `divide` x) || isNothing (z `divide` y) || isJust (z `divide` lcm x y)
lcm :: Eq a => a -> a -> a Source #
Lowest common multiple. Must satisfy
\x y -> isJust (lcm x y `divide` x) && isJust (lcm x y `divide` y)
\x y z -> isNothing (z `divide` x) || isNothing (z `divide` y) || isJust (z `divide` lcm x y)
coprime :: a -> a -> Bool Source #
Test whether two arguments are coprime. Must match its default definition:
\x y -> coprime x y == isJust (1 `divide` gcd x y)
coprime :: Eq a => a -> a -> Bool Source #
Test whether two arguments are coprime. Must match its default definition:
\x y -> coprime x y == isJust (1 `divide` gcd x y)
Instances
GcdDomain Double Source # | |
GcdDomain Float Source # | |
GcdDomain Int Source # | |
GcdDomain Integer Source # | |
GcdDomain Natural Source # | |
GcdDomain Word Source # | |
Integral a => GcdDomain (Ratio a) Source # | |
(Eq a, Fractional a) => GcdDomain (WrappedFractional a) Source # | |
Defined in Data.Euclidean divide :: WrappedFractional a -> WrappedFractional a -> Maybe (WrappedFractional a) Source # gcd :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a Source # lcm :: WrappedFractional a -> WrappedFractional a -> WrappedFractional a Source # coprime :: WrappedFractional a -> WrappedFractional a -> Bool Source # | |
Integral a => GcdDomain (WrappedIntegral a) Source # | |
Defined in Data.Euclidean divide :: WrappedIntegral a -> WrappedIntegral a -> Maybe (WrappedIntegral a) Source # gcd :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a Source # lcm :: WrappedIntegral a -> WrappedIntegral a -> WrappedIntegral a Source # coprime :: WrappedIntegral a -> WrappedIntegral a -> Bool Source # |
newtype WrappedIntegral a Source #
Instances
newtype WrappedFractional a Source #
Wrapper around Fractional
with trivial GcdDomain
and Euclidean
instances.