singletons-base-3.2: A promoted and singled version of the base library
Copyright(C) 2018 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageGHC2021

Control.Applicative.Singletons

Description

Defines the promoted and singled versions of the Applicative type class.

Synopsis

Documentation

class PApplicative f Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #

type a <*> a = Apply (Apply TFHelper_6989586621679276590Sym0 a) a

type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #

type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679276606Sym0 a) a) a

type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #

type a *> a = Apply (Apply TFHelper_6989586621679276622Sym0 a) a

type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #

type a <* a = Apply (Apply TFHelper_6989586621679276633Sym0 a) a

Instances

Instances details
PApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative List Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

class SFunctor f => SApplicative f where Source #

Minimal complete definition

sPure

Methods

sPure :: forall (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) :: Type Source #

(%<*>) :: forall (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) :: Type infixl 4 Source #

default (%<*>) :: forall (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679276590Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) :: Type Source #

sLiftA2 :: forall (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) :: Type Source #

default sLiftA2 :: forall (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679276606Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) :: Type Source #

(%*>) :: forall (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) :: Type infixl 4 Source #

default (%*>) :: forall (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679276622Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) :: Type Source #

(%<*) :: forall (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) :: Type infixl 4 Source #

default (%<*) :: forall (t :: f a) (t :: f b). (Apply (Apply (<*@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679276633Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) :: Type Source #

Instances

Instances details
SApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Identity (a ~> b)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Identity a) (t3 :: Identity b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Max (a ~> b)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Max a) (t3 :: Max b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Min (a ~> b)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Min a) (t3 :: Min b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Dual (a ~> b)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Dual a) (t3 :: Dual b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Product (a ~> b)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product a) (t3 :: Product b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Sum (a ~> b)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Sum a) (t3 :: Sum b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: NonEmpty (a ~> b)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: NonEmpty a) (t3 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Maybe (a ~> b)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Maybe a) (t3 :: Maybe b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative List Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: [a ~> b]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Either e (a ~> b)) (t2 :: Either e a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Either e a) (t3 :: Either e b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Proxy (a ~> b)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Proxy a) (t3 :: Proxy b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Compose f g (a ~> b)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Compose f g a) (t3 :: Compose f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

class PAlternative f Source #

Associated Types

type Empty :: f a Source #

type (arg :: f a) <|> (arg :: f a) :: f a infixl 3 Source #

Instances

Instances details
PAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg1 :: f a Source #

PAlternative List Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Empty :: f a Source #

type arg <|> arg1 :: f a Source #

PAlternative (Proxy :: k -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg1 :: f a Source #

PAlternative (Product f g :: k -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg1 :: f a Source #

PAlternative (Compose f g :: k2 -> Type) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Empty :: f a Source #

type arg <|> arg1 :: f a Source #

class SApplicative f => SAlternative f where Source #

Methods

sEmpty :: Sing (EmptySym0 :: f a) :: Type Source #

(%<|>) :: forall (t :: f a) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<|>@#@$) t) t :: f a) :: Type infixl 3 Source #

Instances

Instances details
SAlternative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<|>@#@$) t1) t2) Source #

SAlternative List Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<|>@#@$) t1) t2) Source #

SAlternative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t1 :: Proxy a) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<|>@#@$) t1) t2) Source #

(SAlternative f, SAlternative g) => SAlternative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<|>@#@$) t1) t2) Source #

(SAlternative f, SApplicative g) => SAlternative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sEmpty :: Sing EmptySym0 Source #

(%<|>) :: forall a (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<|>@#@$) t1) t2) Source #

type family Sing :: k -> Type #

The singleton kind-indexed type family.

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SWrappedMonoid :: WrappedMonoid m -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SConst :: Const a b -> Type where Source #

Constructors

SConst :: forall {k} a (b :: k) (x :: a). Sing x -> SConst ('Const @a @b x) 

Instances

Instances details
SDecide a => TestCoercion (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0)

SDecide a => TestEquality (SConst :: Const a b -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0)

data Const a (b :: k) #

Instances

Instances details
Generic1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep1 (Const a) :: k -> Type

Methods

from1 :: forall (a0 :: k0). Const a a0 -> Rep1 (Const a) a0

to1 :: forall (a0 :: k0). Rep1 (Const a) a0 -> Const a a0

SingI1 ('Const :: k1 -> Const k1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

liftSing :: forall (x :: k10). Sing x -> Sing ('Const x) #

Eq2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool

Ord2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering

Read2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b)

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b]

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b)

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b]

Show2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS

NFData2 (Const :: Type -> Type -> Type) 
Instance details

Defined in Control.DeepSeq

Methods

liftRnf2 :: (a -> ()) -> (b -> ()) -> Const a b -> ()

Foldable (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0

foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0

foldr :: (a -> b -> b) -> b -> Const m a -> b

foldr' :: (a -> b -> b) -> b -> Const m a -> b

foldl :: (b -> a -> b) -> b -> Const m a -> b

foldl' :: (b -> a -> b) -> b -> Const m a -> b

foldr1 :: (a -> a -> a) -> Const m a -> a

foldl1 :: (a -> a -> a) -> Const m a -> a

toList :: Const m a -> [a]

null :: Const m a -> Bool

length :: Const m a -> Int

elem :: Eq a => a -> Const m a -> Bool

maximum :: Ord a => Const m a -> a

minimum :: Ord a => Const m a -> a

sum :: Num a => Const m a -> a

product :: Num a => Const m a -> a

Eq a => Eq1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool

Ord a => Ord1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering

Read a => Read1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0)

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0]

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0)

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0]

Show a => Show1 (Const a :: Type -> Type) 
Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS

Traversable (Const m :: Type -> Type) 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b)

sequenceA :: Applicative f => Const m (f a) -> f (Const m a)

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b)

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a)

Monoid m => Applicative (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a

(<*>) :: Const m (a -> b) -> Const m a -> Const m b

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c

(*>) :: Const m a -> Const m b -> Const m b

(<*) :: Const m a -> Const m b -> Const m a

Functor (Const m :: Type -> Type) 
Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b

(<$) :: a -> Const m b -> Const m a

NFData a => NFData1 (Const a :: Type -> Type) 
Instance details

Defined in Control.DeepSeq

Methods

liftRnf :: (a0 -> ()) -> Const a a0 -> ()

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFold :: forall m0 (t1 :: Const m m0). SMonoid m0 => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m0 (t1 :: a ~> m0) (t2 :: Const m a). SMonoid m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Const m a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Const m a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Const m (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t1 :: a ~> m0 b) (t2 :: Const m a). SMonad m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m0 :: Type -> Type) a (t1 :: Const m (m0 a)). SMonad m0 => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SingI (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ConstSym0 #

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

IsString a => IsString (Const a b) 
Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b

Storable a => Storable (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

sizeOf :: Const a b -> Int

alignment :: Const a b -> Int

peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b)

pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO ()

peekByteOff :: Ptr b0 -> Int -> IO (Const a b)

pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO ()

peek :: Ptr (Const a b) -> IO (Const a b)

poke :: Ptr (Const a b) -> Const a b -> IO ()

Monoid a => Monoid (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

mempty :: Const a b

mappend :: Const a b -> Const a b -> Const a b

mconcat :: [Const a b] -> Const a b

Semigroup a => Semigroup (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(<>) :: Const a b -> Const a b -> Const a b

sconcat :: NonEmpty (Const a b) -> Const a b

stimes :: Integral b0 => b0 -> Const a b -> Const a b

Bits a => Bits (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(.&.) :: Const a b -> Const a b -> Const a b

(.|.) :: Const a b -> Const a b -> Const a b

xor :: Const a b -> Const a b -> Const a b

complement :: Const a b -> Const a b

shift :: Const a b -> Int -> Const a b

rotate :: Const a b -> Int -> Const a b

zeroBits :: Const a b

bit :: Int -> Const a b

setBit :: Const a b -> Int -> Const a b

clearBit :: Const a b -> Int -> Const a b

complementBit :: Const a b -> Int -> Const a b

testBit :: Const a b -> Int -> Bool

bitSizeMaybe :: Const a b -> Maybe Int

bitSize :: Const a b -> Int

isSigned :: Const a b -> Bool

shiftL :: Const a b -> Int -> Const a b

unsafeShiftL :: Const a b -> Int -> Const a b

shiftR :: Const a b -> Int -> Const a b

unsafeShiftR :: Const a b -> Int -> Const a b

rotateL :: Const a b -> Int -> Const a b

rotateR :: Const a b -> Int -> Const a b

popCount :: Const a b -> Int

FiniteBits a => FiniteBits (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

finiteBitSize :: Const a b -> Int

countLeadingZeros :: Const a b -> Int

countTrailingZeros :: Const a b -> Int

Bounded a => Bounded (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

minBound :: Const a b

maxBound :: Const a b

Enum a => Enum (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

succ :: Const a b -> Const a b

pred :: Const a b -> Const a b

toEnum :: Int -> Const a b

fromEnum :: Const a b -> Int

enumFrom :: Const a b -> [Const a b]

enumFromThen :: Const a b -> Const a b -> [Const a b]

enumFromTo :: Const a b -> Const a b -> [Const a b]

enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b]

Floating a => Floating (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

pi :: Const a b

exp :: Const a b -> Const a b

log :: Const a b -> Const a b

sqrt :: Const a b -> Const a b

(**) :: Const a b -> Const a b -> Const a b

logBase :: Const a b -> Const a b -> Const a b

sin :: Const a b -> Const a b

cos :: Const a b -> Const a b

tan :: Const a b -> Const a b

asin :: Const a b -> Const a b

acos :: Const a b -> Const a b

atan :: Const a b -> Const a b

sinh :: Const a b -> Const a b

cosh :: Const a b -> Const a b

tanh :: Const a b -> Const a b

asinh :: Const a b -> Const a b

acosh :: Const a b -> Const a b

atanh :: Const a b -> Const a b

log1p :: Const a b -> Const a b

expm1 :: Const a b -> Const a b

log1pexp :: Const a b -> Const a b

log1mexp :: Const a b -> Const a b

RealFloat a => RealFloat (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

floatRadix :: Const a b -> Integer

floatDigits :: Const a b -> Int

floatRange :: Const a b -> (Int, Int)

decodeFloat :: Const a b -> (Integer, Int)

encodeFloat :: Integer -> Int -> Const a b

exponent :: Const a b -> Int

significand :: Const a b -> Const a b

scaleFloat :: Int -> Const a b -> Const a b

isNaN :: Const a b -> Bool

isInfinite :: Const a b -> Bool

isDenormalized :: Const a b -> Bool

isNegativeZero :: Const a b -> Bool

isIEEE :: Const a b -> Bool

atan2 :: Const a b -> Const a b -> Const a b

Generic (Const a b) 
Instance details

Defined in Data.Functor.Const

Associated Types

type Rep (Const a b) :: Type -> Type

Methods

from :: Const a b -> Rep (Const a b) x

to :: Rep (Const a b) x -> Const a b

Ix a => Ix (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

range :: (Const a b, Const a b) -> [Const a b]

index :: (Const a b, Const a b) -> Const a b -> Int

unsafeIndex :: (Const a b, Const a b) -> Const a b -> Int

inRange :: (Const a b, Const a b) -> Const a b -> Bool

rangeSize :: (Const a b, Const a b) -> Int

unsafeRangeSize :: (Const a b, Const a b) -> Int

Num a => Num (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(+) :: Const a b -> Const a b -> Const a b

(-) :: Const a b -> Const a b -> Const a b

(*) :: Const a b -> Const a b -> Const a b

negate :: Const a b -> Const a b

abs :: Const a b -> Const a b

signum :: Const a b -> Const a b

fromInteger :: Integer -> Const a b

Read a => Read (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

readsPrec :: Int -> ReadS (Const a b)

readList :: ReadS [Const a b]

readPrec :: ReadPrec (Const a b)

readListPrec :: ReadPrec [Const a b]

Fractional a => Fractional (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(/) :: Const a b -> Const a b -> Const a b

recip :: Const a b -> Const a b

fromRational :: Rational -> Const a b

Integral a => Integral (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

quot :: Const a b -> Const a b -> Const a b

rem :: Const a b -> Const a b -> Const a b

div :: Const a b -> Const a b -> Const a b

mod :: Const a b -> Const a b -> Const a b

quotRem :: Const a b -> Const a b -> (Const a b, Const a b)

divMod :: Const a b -> Const a b -> (Const a b, Const a b)

toInteger :: Const a b -> Integer

Real a => Real (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

toRational :: Const a b -> Rational

RealFrac a => RealFrac (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

properFraction :: Integral b0 => Const a b -> (b0, Const a b)

truncate :: Integral b0 => Const a b -> b0

round :: Integral b0 => Const a b -> b0

ceiling :: Integral b0 => Const a b -> b0

floor :: Integral b0 => Const a b -> b0

Show a => Show (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

showsPrec :: Int -> Const a b -> ShowS

show :: Const a b -> String

showList :: [Const a b] -> ShowS

NFData a => NFData (Const a b) 
Instance details

Defined in Control.DeepSeq

Methods

rnf :: Const a b -> ()

Eq a => Eq (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

(==) :: Const a b -> Const a b -> Bool

(/=) :: Const a b -> Const a b -> Bool

Ord a => Ord (Const a b) 
Instance details

Defined in Data.Functor.Const

Methods

compare :: Const a b -> Const a b -> Ordering

(<) :: Const a b -> Const a b -> Bool

(<=) :: Const a b -> Const a b -> Bool

(>) :: Const a b -> Const a b -> Bool

(>=) :: Const a b -> Const a b -> Bool

max :: Const a b -> Const a b -> Const a b

min :: Const a b -> Const a b -> Const a b

SingKind a => SingKind (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Demote (Const a b) = (r :: Type) #

Methods

fromSing :: forall (a0 :: Const a b). Sing a0 -> Demote (Const a b) #

toSing :: Demote (Const a b) -> SomeSing (Const a b) #

SDecide a => SDecide (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%~) :: forall (a0 :: Const a b) (b0 :: Const a b). Sing a0 -> Sing b0 -> Decision (a0 :~: b0) #

PEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%==) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%<>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

PBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Const a b) (t2 :: Const a b) (t3 :: Const a b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

PIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

Associated Types

type FromString arg :: a Source #

SIsString a => SIsString (Const a b) Source # 
Instance details

Defined in Data.String.Singletons

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%+) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Const a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Const a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SDecide a => TestCoercion (SConst :: Const a b -> Type) 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (Coercion a0 b0)

SDecide a => TestEquality (SConst :: Const a b -> Type) 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SConst a0 -> SConst b0 -> Maybe (a0 :~: b0)

SingI a2 => SingI ('Const a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ('Const a2) #

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type MapM (arg1 :: a ~> m1 b) (arg2 :: Const m2 a)
type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Traverse (a2 :: a1 ~> f b) (a3 :: Const m a1)
type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type LiftA2 (a2 :: a1 ~> (b ~> c)) (a3 :: Const m a1) (a4 :: Const m b)
type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fmap (a2 :: a1 ~> b) (a3 :: Const m a1)
type FoldMap (a2 :: a1 ~> k2) (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FoldMap (a2 :: a1 ~> k2) (a3 :: Const m a1)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1)
type Foldr' (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr' (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Rep1 (Const a :: k -> Type) 
Instance details

Defined in Data.Functor.Const

type Rep1 (Const a :: k -> Type) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Pure (a :: k1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pure (a :: k1)
type Elem (arg :: a) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg :: a) (arg1 :: Const m a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type (a1 :: k1) <$ (a2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a1 :: k1) <$ (a2 :: Const m b)
type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) = 'Const x :: Const a b
type Fold (arg :: Const m1 m2) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Fold (arg :: Const m1 m2)
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type ToList (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToList (arg :: Const m a)
type Sequence (arg :: Const m1 (m2 a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Sequence (arg :: Const m1 (m2 a))
type SequenceA (arg :: Const m (f a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type SequenceA (arg :: Const m (f a))
type (arg :: Const m a) *> (arg1 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const m a) *> (arg1 :: Const m b)
type (arg :: Const m a) <* (arg1 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const m a) <* (arg1 :: Const m b)
type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const m (a1 ~> b)) <*> (a3 :: Const m a1)
type Rep (Const a b) 
Instance details

Defined in Data.Functor.Const

type Rep (Const a b) = D1 ('MetaData "Const" "Data.Functor.Const" "base" 'True) (C1 ('MetaCons "Const" 'PrefixI 'True) (S1 ('MetaSel ('Just "getConst") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 a)))
type Demote (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Demote (Const a b) = Const (Demote a) b
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Mempty Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mempty
type MaxBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type MinBound Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mconcat (arg :: [Const a b]) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mconcat (arg :: [Const a b])
type Sconcat (arg :: NonEmpty (Const a b)) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sconcat (arg :: NonEmpty (Const a b))
type FromEnum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromEnum (a2 :: Const a1 b)
type Pred (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Pred (a2 :: Const a1 b)
type Succ (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Succ (a2 :: Const a1 b)
type ToEnum a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ToEnum a2
type FromString a2 Source # 
Instance details

Defined in Data.String.Singletons

type FromString a2
type Abs (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Abs (a2 :: Const a1 b)
type FromInteger a2 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type FromInteger a2
type Negate (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Negate (a2 :: Const a1 b)
type Signum (a2 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Signum (a2 :: Const a1 b)
type Show_ (arg :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Show_ (arg :: Const a b)
type (arg :: Const a b) /= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) /= (arg1 :: Const a b)
type (a2 :: Const a1 b) == (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) == (a3 :: Const a1 b)
type Mappend (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Mappend (arg :: Const a b) (arg1 :: Const a b)
type (arg :: Const a b) < (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) < (arg1 :: Const a b)
type (arg :: Const a b) <= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) <= (arg1 :: Const a b)
type (arg :: Const a b) > (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) > (arg1 :: Const a b)
type (arg :: Const a b) >= (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (arg :: Const a b) >= (arg1 :: Const a b)
type Compare (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Compare (a2 :: Const a1 b) (a3 :: Const a1 b)
type Max (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Max (arg :: Const a b) (arg1 :: Const a b)
type Min (arg :: Const a b) (arg1 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Min (arg :: Const a b) (arg1 :: Const a b)
type (a2 :: Const a1 b) <> (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) <> (a3 :: Const a1 b)
type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromTo (a2 :: Const a1 b) (a3 :: Const a1 b)
type (a2 :: Const a1 b) * (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) * (a3 :: Const a1 b)
type (a2 :: Const a1 b) + (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) + (a3 :: Const a1 b)
type (a2 :: Const a1 b) - (a3 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a2 :: Const a1 b) - (a3 :: Const a1 b)
type ShowList (arg :: [Const a b]) arg1 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowList (arg :: [Const a b]) arg1
type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type EnumFromThenTo (a2 :: Const a1 b) (a3 :: Const a1 b) (a4 :: Const a1 b)
type ShowsPrec a2 (a3 :: Const a1 b) a4 Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type ShowsPrec a2 (a3 :: Const a1 b) a4
type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680339158 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680339158 :: Const a b) = GetConst a6989586621680339158

type family GetConst (a :: Const a b) :: a where ... Source #

Equations

GetConst ('Const x) = x 

sGetConst :: forall (t :: Const a b). Sing t -> Sing (Apply GetConstSym0 t :: a) :: Type Source #

type family (a :: (~>) a b) <$> (a :: f a) :: f b where ... infixl 4 Source #

Equations

a_6989586621679430458 <$> a_6989586621679430460 = Apply (Apply FmapSym0 a_6989586621679430458) a_6989586621679430460 

(%<$>) :: forall (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) :: Type infixl 4 Source #

type family (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #

Instances

Instances details
type (a1 :: k1) <$ (a2 :: Identity b) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type (a1 :: k1) <$ (a2 :: Identity b)
type (a1 :: k1) <$ (a2 :: First b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a1 :: k1) <$ (a2 :: First b)
type (a1 :: k1) <$ (a2 :: Last b) Source # 
Instance details

Defined in Data.Monoid.Singletons

type (a1 :: k1) <$ (a2 :: Last b)
type (a1 :: k1) <$ (a2 :: Down b) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a1 :: k1) <$ (a2 :: Down b)
type (a1 :: k1) <$ (a2 :: First b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: First b)
type (a1 :: k1) <$ (a2 :: Last b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Last b)
type (a1 :: k1) <$ (a2 :: Max b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Max b)
type (a1 :: k1) <$ (a2 :: Min b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a1 :: k1) <$ (a2 :: Min b)
type (a1 :: k1) <$ (a2 :: Dual b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a1 :: k1) <$ (a2 :: Dual b)
type (a1 :: k1) <$ (a2 :: Product b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a1 :: k1) <$ (a2 :: Product b)
type (a1 :: k1) <$ (a2 :: Sum b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (a1 :: k1) <$ (a2 :: Sum b)
type (a1 :: k1) <$ (a2 :: NonEmpty b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: NonEmpty b)
type (a1 :: k1) <$ (a2 :: Maybe b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: Maybe b)
type (a1 :: k1) <$ (a2 :: [b]) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a1 :: k1) <$ (a2 :: [b])
type (arg :: a) <$ (arg1 :: Proxy b) Source # 
Instance details

Defined in Data.Proxy.Singletons

type (arg :: a) <$ (arg1 :: Proxy b)
type (a2 :: k1) <$ (a3 :: Either a1 b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type (a2 :: k1) <$ (a3 :: Either a1 b)
type (a2 :: k1) <$ (a3 :: Arg a1 b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type (a2 :: k1) <$ (a3 :: Arg a1 b)
type (a2 :: k1) <$ (a3 :: (a1, b)) Source # 
Instance details

Defined in Data.Functor.Singletons

type (a2 :: k1) <$ (a3 :: (a1, b))
type (a1 :: k1) <$ (a2 :: Const m b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type (a1 :: k1) <$ (a2 :: Const m b)
type (a1 :: k1) <$ (a2 :: Product f g b) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type (a1 :: k1) <$ (a2 :: Product f g b)
type (a1 :: k1) <$ (a2 :: Sum f g b) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type (a1 :: k1) <$ (a2 :: Sum f g b)
type (a1 :: k1) <$ (a2 :: Compose f g b) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type (a1 :: k1) <$ (a2 :: Compose f g b)

(%<$) :: SFunctor f => forall (t :: a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) :: Type infixl 4 Source #

type family (a :: f a) <**> (a :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a_6989586621679276522 <**> a_6989586621679276524 = Apply (Apply (Apply LiftA2Sym0 (Apply (Apply Lambda_6989586621679276533Sym0 a_6989586621679276522) a_6989586621679276524)) a_6989586621679276522) a_6989586621679276524 

(%<**>) :: forall (t :: f a) (t :: f ((~>) a b)). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply (<**>@#@$) t) t :: f b) :: Type infixl 4 Source #

type family LiftA (a :: (~>) a b) (a :: f a) :: f b where ... Source #

Equations

LiftA f a = Apply (Apply (<*>@#@$) (Apply PureSym0 f)) a 

sLiftA :: forall (t :: (~>) a b) (t :: f a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply LiftASym0 t) t :: f b) :: Type Source #

type family LiftA3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: f a) (a :: f b) (a :: f c) :: f d where ... Source #

Equations

LiftA3 f a b c = Apply (Apply (<*>@#@$) (Apply (Apply (Apply LiftA2Sym0 f) a) b)) c 

sLiftA3 :: forall (t :: (~>) a ((~>) b ((~>) c d))) (t :: f a) (t :: f b) (t :: f c). SApplicative f => Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply LiftA3Sym0 t) t) t) t :: f d) :: Type Source #

type family Optional (a :: f a) :: f (Maybe a) where ... Source #

sOptional :: forall (t :: f a). SAlternative f => Sing t -> Sing (Apply OptionalSym0 t :: f (Maybe a)) :: Type Source #

Defunctionalization symbols

data PureSym0 :: (~>) a (f a) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing PureSym0 #

SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679276565 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679276565 :: a) = Pure a6989586621679276565 :: f a

type family PureSym1 (a6989586621679276565 :: a) :: f a where ... Source #

Equations

PureSym1 a6989586621679276565 = Pure a6989586621679276565 

data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*>@#@$) #

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679276569 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679276569 :: f (a ~> b)) = (<*>@#@$$) a6989586621679276569

data (<*>@#@$$) (a6989586621679276569 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x) #

(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*>@#@$$) d) #

SuppressUnusedWarnings ((<*>@#@$$) a6989586621679276569 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679276569 :: TyFun (f a) (f b) -> Type) (a6989586621679276570 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679276569 :: TyFun (f a) (f b) -> Type) (a6989586621679276570 :: f a) = a6989586621679276569 <*> a6989586621679276570

type family (a6989586621679276569 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679276570 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679276569 <*>@#@$$$ a6989586621679276570 = (<*>) a6989586621679276569 a6989586621679276570 

data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (*>@#@$) #

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679276581 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679276581 :: f a) = (*>@#@$$) a6989586621679276581 :: TyFun (f b) (f b) -> Type

data (*>@#@$$) (a6989586621679276581 :: f a) :: (~>) (f b) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((*>@#@$$) :: f a -> TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((*>@#@$$) x) #

(SApplicative f, SingI d) => SingI ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((*>@#@$$) d) #

SuppressUnusedWarnings ((*>@#@$$) a6989586621679276581 :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679276581 :: TyFun (f b) (f b) -> Type) (a6989586621679276582 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679276581 :: TyFun (f b) (f b) -> Type) (a6989586621679276582 :: f b) = a6989586621679276581 *> a6989586621679276582

type family (a6989586621679276581 :: f a) *>@#@$$$ (a6989586621679276582 :: f b) :: f b where ... infixl 4 Source #

Equations

a6989586621679276581 *>@#@$$$ a6989586621679276582 = (*>) a6989586621679276581 a6989586621679276582 

data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*@#@$) #

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679276586 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679276586 :: f a) = (<*@#@$$) a6989586621679276586 :: TyFun (f b) (f a) -> Type

data (<*@#@$$) (a6989586621679276586 :: f a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*@#@$$) :: f a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*@#@$$) x) #

(SApplicative f, SingI d) => SingI ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*@#@$$) d) #

SuppressUnusedWarnings ((<*@#@$$) a6989586621679276586 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679276586 :: TyFun (f b) (f a) -> Type) (a6989586621679276587 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679276586 :: TyFun (f b) (f a) -> Type) (a6989586621679276587 :: f b) = a6989586621679276586 <* a6989586621679276587

type family (a6989586621679276586 :: f a) <*@#@$$$ (a6989586621679276587 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679276586 <*@#@$$$ a6989586621679276587 = (<*) a6989586621679276586 a6989586621679276587 

type family EmptySym0 :: f a where ... Source #

Equations

EmptySym0 = Empty 

data (<|>@#@$) :: (~>) (f a) ((~>) (f a) (f a)) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<|>@#@$) #

SuppressUnusedWarnings ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679276690 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$) :: TyFun (f a) (f a ~> f a) -> Type) (a6989586621679276690 :: f a) = (<|>@#@$$) a6989586621679276690

data (<|>@#@$$) (a6989586621679276690 :: f a) :: (~>) (f a) (f a) infixl 3 Source #

Instances

Instances details
SAlternative f => SingI1 ((<|>@#@$$) :: f a -> TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<|>@#@$$) x) #

(SAlternative f, SingI d) => SingI ((<|>@#@$$) d :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<|>@#@$$) d) #

SuppressUnusedWarnings ((<|>@#@$$) a6989586621679276690 :: TyFun (f a) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679276690 :: TyFun (f a) (f a) -> Type) (a6989586621679276691 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<|>@#@$$) a6989586621679276690 :: TyFun (f a) (f a) -> Type) (a6989586621679276691 :: f a) = a6989586621679276690 <|> a6989586621679276691

type family (a6989586621679276690 :: f a) <|>@#@$$$ (a6989586621679276691 :: f a) :: f a where ... infixl 3 Source #

Equations

a6989586621679276690 <|>@#@$$$ a6989586621679276691 = (<|>) a6989586621679276690 a6989586621679276691 

data ConstSym0 z Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (Const a b) -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sing :: Sing ConstSym0 #

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (ConstSym0 :: TyFun a (Const a b) -> Type) (x :: a) = 'Const x :: Const a b

type family ConstSym1 x where ... Source #

Equations

ConstSym1 x = 'Const x 

data GetConstSym0 :: (~>) (Const a b) a Source #

Instances

Instances details
SingI (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

SuppressUnusedWarnings (GetConstSym0 :: TyFun (Const a b) a -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680339158 :: Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Apply (GetConstSym0 :: TyFun (Const a b) a -> Type) (a6989586621680339158 :: Const a b) = GetConst a6989586621680339158

type family GetConstSym1 (a6989586621680339158 :: Const a b) :: a where ... Source #

Equations

GetConstSym1 a6989586621680339158 = GetConst a6989586621680339158 

data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing (<$>@#@$) #

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679430465 :: a ~> b) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679430465 :: a ~> b) = (<$>@#@$$) a6989586621679430465 :: TyFun (f a) (f b) -> Type

data (<$>@#@$$) (a6989586621679430465 :: (~>) a b) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$>@#@$$) :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$>@#@$$) x) #

(SFunctor f, SingI d) => SingI ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing ((<$>@#@$$) d) #

SuppressUnusedWarnings ((<$>@#@$$) a6989586621679430465 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679430465 :: TyFun (f a) (f b) -> Type) (a6989586621679430466 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679430465 :: TyFun (f a) (f b) -> Type) (a6989586621679430466 :: f a) = a6989586621679430465 <$> a6989586621679430466

type family (a6989586621679430465 :: (~>) a b) <$>@#@$$$ (a6989586621679430466 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679430465 <$>@#@$$$ a6989586621679430466 = (<$>) a6989586621679430465 a6989586621679430466 

data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<$@#@$) #

SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679276546 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679276546 :: a) = (<$@#@$$) a6989586621679276546 :: TyFun (f b) (f a) -> Type

data (<$@#@$$) (a6989586621679276546 :: a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$@#@$$) x) #

(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<$@#@$$) d) #

SuppressUnusedWarnings ((<$@#@$$) a6989586621679276546 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679276546 :: TyFun (f b) (f a) -> Type) (a6989586621679276547 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679276546 :: TyFun (f b) (f a) -> Type) (a6989586621679276547 :: f b) = a6989586621679276546 <$ a6989586621679276547

type family (a6989586621679276546 :: a) <$@#@$$$ (a6989586621679276547 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679276546 <$@#@$$$ a6989586621679276547 = (<$) a6989586621679276546 a6989586621679276547 

data (<**>@#@$) :: (~>) (f a) ((~>) (f ((~>) a b)) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<**>@#@$) #

SuppressUnusedWarnings ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679276529 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$) :: TyFun (f a) (f (a ~> b) ~> f b) -> Type) (a6989586621679276529 :: f a) = (<**>@#@$$) a6989586621679276529 :: TyFun (f (a ~> b)) (f b) -> Type

data (<**>@#@$$) (a6989586621679276529 :: f a) :: (~>) (f ((~>) a b)) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<**>@#@$$) :: f a -> TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<**>@#@$$) x) #

(SApplicative f, SingI d) => SingI ((<**>@#@$$) d :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<**>@#@$$) d) #

SuppressUnusedWarnings ((<**>@#@$$) a6989586621679276529 :: TyFun (f (a ~> b)) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679276529 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679276530 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<**>@#@$$) a6989586621679276529 :: TyFun (f (a ~> b)) (f b) -> Type) (a6989586621679276530 :: f (a ~> b)) = a6989586621679276529 <**> a6989586621679276530

type family (a6989586621679276529 :: f a) <**>@#@$$$ (a6989586621679276530 :: f ((~>) a b)) :: f b where ... infixl 4 Source #

Equations

a6989586621679276529 <**>@#@$$$ a6989586621679276530 = (<**>) a6989586621679276529 a6989586621679276530 

data LiftASym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #

Instances

Instances details
SApplicative f => SingI (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftASym0 #

SuppressUnusedWarnings (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679276518 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679276518 :: a ~> b) = LiftASym1 a6989586621679276518 :: TyFun (f a) (f b) -> Type

data LiftASym1 (a6989586621679276518 :: (~>) a b) :: (~>) (f a) (f b) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftASym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftASym1 x) #

(SApplicative f, SingI d) => SingI (LiftASym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftASym1 d) #

SuppressUnusedWarnings (LiftASym1 a6989586621679276518 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679276518 :: TyFun (f a) (f b) -> Type) (a6989586621679276519 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftASym1 a6989586621679276518 :: TyFun (f a) (f b) -> Type) (a6989586621679276519 :: f a) = LiftA a6989586621679276518 a6989586621679276519

type family LiftASym2 (a6989586621679276518 :: (~>) a b) (a6989586621679276519 :: f a) :: f b where ... Source #

Equations

LiftASym2 a6989586621679276518 a6989586621679276519 = LiftA a6989586621679276518 a6989586621679276519 

data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftA2Sym0 #

SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679276575 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679276575 :: a ~> (b ~> c)) = LiftA2Sym1 a6989586621679276575 :: TyFun (f a) (f b ~> f c) -> Type

data LiftA2Sym1 (a6989586621679276575 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c)) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA2Sym1 :: (a ~> (b ~> c)) -> TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym1 x) #

(SApplicative f, SingI d) => SingI (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym1 d) #

SuppressUnusedWarnings (LiftA2Sym1 a6989586621679276575 :: TyFun (f a) (f b ~> f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679276575 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679276576 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym1 a6989586621679276575 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679276576 :: f a) = LiftA2Sym2 a6989586621679276575 a6989586621679276576

data LiftA2Sym2 (a6989586621679276575 :: (~>) a ((~>) b c)) (a6989586621679276576 :: f a) :: (~>) (f b) (f c) Source #

Instances

Instances details
(SApplicative f, SingI d) => SingI1 (LiftA2Sym2 d :: f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym2 d x) #

SApplicative f => SingI2 (LiftA2Sym2 :: (a ~> (b ~> c)) -> f a -> TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA2Sym2 x y) #

(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA2Sym2 d1 d2) #

SuppressUnusedWarnings (LiftA2Sym2 a6989586621679276575 a6989586621679276576 :: TyFun (f b) (f c) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679276575 a6989586621679276576 :: TyFun (f b) (f c) -> Type) (a6989586621679276577 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA2Sym2 a6989586621679276575 a6989586621679276576 :: TyFun (f b) (f c) -> Type) (a6989586621679276577 :: f b) = LiftA2 a6989586621679276575 a6989586621679276576 a6989586621679276577

type family LiftA2Sym3 (a6989586621679276575 :: (~>) a ((~>) b c)) (a6989586621679276576 :: f a) (a6989586621679276577 :: f b) :: f c where ... Source #

Equations

LiftA2Sym3 a6989586621679276575 a6989586621679276576 a6989586621679276577 = LiftA2 a6989586621679276575 a6989586621679276576 a6989586621679276577 

data LiftA3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) (f a) ((~>) (f b) ((~>) (f c) (f d)))) Source #

Instances

Instances details
SApplicative f => SingI (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing LiftA3Sym0 #

SuppressUnusedWarnings (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679276507 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) (f a ~> (f b ~> (f c ~> f d))) -> Type) (a6989586621679276507 :: a ~> (b ~> (c ~> d))) = LiftA3Sym1 a6989586621679276507 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type

data LiftA3Sym1 (a6989586621679276507 :: (~>) a ((~>) b ((~>) c d))) :: (~>) (f a) ((~>) (f b) ((~>) (f c) (f d))) Source #

Instances

Instances details
SApplicative f => SingI1 (LiftA3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym1 x) #

(SApplicative f, SingI d2) => SingI (LiftA3Sym1 d2 :: TyFun (f a) (f b ~> (f c ~> f d1)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym1 d2) #

SuppressUnusedWarnings (LiftA3Sym1 a6989586621679276507 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679276507 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679276508 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym1 a6989586621679276507 :: TyFun (f a) (f b ~> (f c ~> f d)) -> Type) (a6989586621679276508 :: f a) = LiftA3Sym2 a6989586621679276507 a6989586621679276508

data LiftA3Sym2 (a6989586621679276507 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679276508 :: f a) :: (~>) (f b) ((~>) (f c) (f d)) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI1 (LiftA3Sym2 d2 :: f a -> TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym2 d2 x) #

SApplicative f => SingI2 (LiftA3Sym2 :: (a ~> (b ~> (c ~> d))) -> f a -> TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA3Sym2 x y) #

(SApplicative f, SingI d2, SingI d3) => SingI (LiftA3Sym2 d2 d3 :: TyFun (f b) (f c ~> f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym2 d2 d3) #

SuppressUnusedWarnings (LiftA3Sym2 a6989586621679276507 a6989586621679276508 :: TyFun (f b) (f c ~> f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679276507 a6989586621679276508 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679276509 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym2 a6989586621679276507 a6989586621679276508 :: TyFun (f b) (f c ~> f d) -> Type) (a6989586621679276509 :: f b) = LiftA3Sym3 a6989586621679276507 a6989586621679276508 a6989586621679276509

data LiftA3Sym3 (a6989586621679276507 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679276508 :: f a) (a6989586621679276509 :: f b) :: (~>) (f c) (f d) Source #

Instances

Instances details
(SApplicative f, SingI d2) => SingI2 (LiftA3Sym3 d2 :: f a -> f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA3Sym3 d2 x y) #

(SApplicative f, SingI d2, SingI d3) => SingI1 (LiftA3Sym3 d2 d3 :: f b -> TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LiftA3Sym3 d2 d3 x) #

(SApplicative f, SingI d2, SingI d3, SingI d4) => SingI (LiftA3Sym3 d2 d3 d4 :: TyFun (f c) (f d1) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (LiftA3Sym3 d2 d3 d4) #

SuppressUnusedWarnings (LiftA3Sym3 a6989586621679276507 a6989586621679276508 a6989586621679276509 :: TyFun (f c) (f d) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679276507 a6989586621679276508 a6989586621679276509 :: TyFun (f c) (f d) -> Type) (a6989586621679276510 :: f c) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (LiftA3Sym3 a6989586621679276507 a6989586621679276508 a6989586621679276509 :: TyFun (f c) (f d) -> Type) (a6989586621679276510 :: f c) = LiftA3 a6989586621679276507 a6989586621679276508 a6989586621679276509 a6989586621679276510

data OptionalSym0 :: (~>) (f a) (f (Maybe a)) Source #

Instances

Instances details
SAlternative f => SingI (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

SuppressUnusedWarnings (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621680671868 :: f a) Source # 
Instance details

Defined in Control.Applicative.Singletons

type Apply (OptionalSym0 :: TyFun (f a) (f (Maybe a)) -> Type) (a6989586621680671868 :: f a) = Optional a6989586621680671868

type family OptionalSym1 (a6989586621680671868 :: f a) :: f (Maybe a) where ... Source #

Equations

OptionalSym1 a6989586621680671868 = Optional a6989586621680671868 

Orphan instances

PApplicative Down Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

SApplicative Down Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

PApplicative ((,) a) Source # 
Instance details

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #