singletons-base-3.4: A promoted and singled version of the base library
Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Data.List.Singletons

Description

Defines functions and datatypes relating to the singleton for '[]', including singled versions of a few of the definitions in Data.List.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.List. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The singleton for lists

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SList (a1 :: [a]) where Source #

Constructors

SNil :: forall a. SList ('[] :: [a]) 
SCons :: forall a (n1 :: a) (n2 :: [a]). Sing n1 -> Sing n2 -> SList (n1 ': n2) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: [a]) (b :: [a]). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: [a]) (b :: [a]). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

Eq (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

(==) :: SList z -> SList z -> Bool #

(/=) :: SList z -> SList z -> Bool #

Basic functions

type family (a1 :: [a]) ++ (a2 :: [a]) :: [a] where ... infixr 5 Source #

Equations

('[] :: [a]) ++ (ys :: [a]) = ys 
(x ': xs :: [a]) ++ (ys :: [a]) = Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) x) (Apply (Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) xs) ys) 

(%++) :: forall a (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) infixr 5 Source #

type family Head (a1 :: [a]) :: a where ... Source #

Equations

Head (a2 ': _1 :: [a1]) = a2 
Head ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.head: empty list" 

sHead :: forall a (t :: [a]). Sing t -> Sing (Apply (HeadSym0 :: TyFun [a] a -> Type) t) Source #

type family Last (a1 :: [a]) :: a where ... Source #

Equations

Last ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.last: empty list" 
Last ('[x] :: [a]) = x 
Last (_1 ': (x ': xs) :: [k2]) = Apply (LastSym0 :: TyFun [k2] k2 -> Type) (Apply (Apply ((:@#@$) :: TyFun k2 ([k2] ~> [k2]) -> Type) x) xs) 

sLast :: forall a (t :: [a]). Sing t -> Sing (Apply (LastSym0 :: TyFun [a] a -> Type) t) Source #

type family Tail (a1 :: [a]) :: [a] where ... Source #

Equations

Tail (_1 ': t :: [a]) = t 
Tail ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol [a] -> Type) "Data.Singletons.List.tail: empty list" 

sTail :: forall a (t :: [a]). Sing t -> Sing (Apply (TailSym0 :: TyFun [a] [a] -> Type) t) Source #

type family Init (a1 :: [a]) :: [a] where ... Source #

Equations

Init ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol [a] -> Type) "Data.Singletons.List.init: empty list" 
Init (x ': xs :: [k1]) = Apply (Apply (Let6989586621679825065Init'Sym2 x xs :: TyFun k1 ([k1] ~> [k1]) -> Type) x) xs 

sInit :: forall a (t :: [a]). Sing t -> Sing (Apply (InitSym0 :: TyFun [a] [a] -> Type) t) Source #

type family Null (arg :: t a) :: Bool Source #

Instances

Instances details
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Last a)
type Null (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Max a)
type Null (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Min a)
type Null (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: NonEmpty a)
type Null (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Null (a2 :: Identity a1)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Last a)
type Null (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Dual a1)
type Null (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Product a1)
type Null (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Sum a1)
type Null (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Maybe a)
type Null (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: [a1])
type Null (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Arg a1 a2)
type Null (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a3 :: Either a1 a2)
type Null (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Proxy a1)
type Null (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: (a1, a2))
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Null (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Null (arg :: Product f g a)
type Null (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Null (arg :: Sum f g a)
type Null (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Null (arg :: Compose f g a)

sNull :: forall a (t1 :: t a). SFoldable t => Sing t1 -> Sing (Apply (NullSym0 :: TyFun (t a) Bool -> Type) t1) Source #

type family Length (arg :: t a) :: Natural Source #

Instances

Instances details
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Last a)
type Length (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Max a)
type Length (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Min a)
type Length (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: NonEmpty a)
type Length (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Length (a2 :: Identity a1)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Last a)
type Length (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Dual a1)
type Length (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Product a1)
type Length (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Sum a1)
type Length (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Maybe a)
type Length (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: [a1])
type Length (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Arg a1 a2)
type Length (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a3 :: Either a1 a2)
type Length (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Proxy a1)
type Length (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: (a1, a2))
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Length (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Length (arg :: Product f g a)
type Length (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Length (arg :: Sum f g a)
type Length (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Length (arg :: Compose f g a)

sLength :: forall a (t1 :: t a). SFoldable t => Sing t1 -> Sing (Apply (LengthSym0 :: TyFun (t a) Natural -> Type) t1) Source #

List transformations

type family Map (a1 :: a ~> b) (a2 :: [a]) :: [b] where ... Source #

Equations

Map (_1 :: a ~> b) ('[] :: [a]) = NilSym0 :: [b] 
Map (f :: a ~> b) (x ': xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun b ([b] ~> [b]) -> Type) (Apply f x)) (Apply (Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) f) xs) 

sMap :: forall a b (t1 :: a ~> b) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) t1) t2) Source #

type family Reverse (a1 :: [a]) :: [a] where ... Source #

Equations

Reverse (l :: [a6989586621679820372]) = Apply (Apply (Let6989586621679825049RevSym1 l :: TyFun [a6989586621679820372] ([a6989586621679820372] ~> [a6989586621679820372]) -> Type) l) (NilSym0 :: [a6989586621679820372]) 

sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply (ReverseSym0 :: TyFun [a] [a] -> Type) t) Source #

type family Intersperse (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Intersperse (_1 :: a) ('[] :: [a]) = NilSym0 :: [a] 
Intersperse (sep :: k1) (x ': xs :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (Apply (Apply (PrependToAllSym0 :: TyFun k1 ([k1] ~> [k1]) -> Type) sep) xs) 

sIntersperse :: forall a (t1 :: a) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) t1) t2) Source #

type family Intercalate (a1 :: [a]) (a2 :: [[a]]) :: [a] where ... Source #

Equations

Intercalate (xs :: [a]) (xss :: [[a]]) = Apply (ConcatSym0 :: TyFun [[a]] [a] -> Type) (Apply (Apply (IntersperseSym0 :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) xss) 

sIntercalate :: forall a (t1 :: [a]) (t2 :: [[a]]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) t1) t2) Source #

type family Transpose (a1 :: [[a]]) :: [[a]] where ... Source #

Equations

Transpose ('[] :: [[a]]) = NilSym0 :: [[a]] 
Transpose (('[] :: [a]) ': xss :: [[a]]) = Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) xss 
Transpose ((x ': xs) ': xss :: [[a]]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) x) (Apply (Apply (MapSym0 :: TyFun ([a] ~> a) ([[a]] ~> [a]) -> Type) (HeadSym0 :: TyFun [a] a -> Type)) xss))) (Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) (Apply (Apply (MapSym0 :: TyFun ([a] ~> [a]) ([[a]] ~> [[a]]) -> Type) (TailSym0 :: TyFun [a] [a] -> Type)) xss))) 

sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) t) Source #

type family Subsequences (a1 :: [a]) :: [[a]] where ... Source #

Equations

Subsequences (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (NilSym0 :: [a])) (Apply (NonEmptySubsequencesSym0 :: TyFun [a] [[a]] -> Type) xs) 

sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) t) Source #

type family Permutations (a1 :: [a]) :: [[a]] where ... Source #

Equations

Permutations (xs0 :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs0) (Apply (Apply (Let6989586621679824956PermsSym2 a xs0 :: TyFun [a] (TyFun [a] [[a]] -> Type) -> Type) xs0) (NilSym0 :: [a])) 

sPermutations :: forall a (t :: [a]). Sing t -> Sing (Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) t) Source #

Reducing lists (folds)

type family Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) t1) t2) t3) Source #

type family Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a)
type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) t1) t2) t3) Source #

type family Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: t a) :: a Source #

Instances

Instances details
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing (Apply (Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) t1) t2) Source #

type family Foldl1' (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: a where ... Source #

Equations

Foldl1' (f :: k2 ~> (k2 ~> k2)) (x ': xs :: [k2]) = Apply (Apply (Apply (Foldl'Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (k2 ~> ([k2] ~> k2)) -> Type) f) x) xs 
Foldl1' (_1 :: a ~> (a ~> a)) ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.foldl1': empty list" 

sFoldl1' :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) t1) t2) Source #

type family Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1))
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) t1) t2) t3) Source #

type family Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: t a) :: a Source #

Instances

Instances details
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing (Apply (Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) t1) t2) Source #

Special folds

type family Concat (a1 :: t [a]) :: [a] where ... Source #

Equations

Concat (xs :: t [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ([a] ~> ([a] ~> [a])) ([a] ~> (t [a] ~> [a])) -> Type) (Apply (Lambda_6989586621680404165Sym0 :: TyFun (t [a]) (TyFun [a] (TyFun [a] [a] -> Type) -> Type) -> Type) xs)) (NilSym0 :: [a])) xs 

sConcat :: forall (t1 :: Type -> Type) a (t2 :: t1 [a]). SFoldable t1 => Sing t2 -> Sing (Apply (ConcatSym0 :: TyFun (t1 [a]) [a] -> Type) t2) Source #

type family ConcatMap (a1 :: a ~> [b]) (a2 :: t a) :: [b] where ... Source #

Equations

ConcatMap (f :: a1 ~> [a2]) (xs :: t a1) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a1 ~> ([a2] ~> [a2])) ([a2] ~> (t a1 ~> [a2])) -> Type) (Apply (Apply (Lambda_6989586621680404156Sym0 :: TyFun (a1 ~> [a2]) (TyFun (t a1) (TyFun a1 (TyFun [a2] [a2] -> Type) -> Type) -> Type) -> Type) f) xs)) (NilSym0 :: [a2])) xs 

sConcatMap :: forall a b (t1 :: Type -> Type) (t2 :: a ~> [b]) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t1 a ~> [b]) -> Type) t2) t3) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And (a_6989586621680404143 :: t Bool) = Apply (Apply (Apply ((.@#@$) :: TyFun (All ~> Bool) ((t Bool ~> All) ~> (t Bool ~> Bool)) -> Type) GetAllSym0) (Apply (FoldMapSym0 :: TyFun (Bool ~> All) (t Bool ~> All) -> Type) All_Sym0)) a_6989586621680404143 

sAnd :: forall (t1 :: Type -> Type) (t2 :: t1 Bool). SFoldable t1 => Sing t2 -> Sing (Apply (AndSym0 :: TyFun (t1 Bool) Bool -> Type) t2) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or (a_6989586621680404137 :: t Bool) = Apply (Apply (Apply ((.@#@$) :: TyFun (Any ~> Bool) ((t Bool ~> Any) ~> (t Bool ~> Bool)) -> Type) GetAnySym0) (Apply (FoldMapSym0 :: TyFun (Bool ~> Any) (t Bool ~> Any) -> Type) Any_Sym0)) a_6989586621680404137 

sOr :: forall (t1 :: Type -> Type) (t2 :: t1 Bool). SFoldable t1 => Sing t2 -> Sing (Apply (OrSym0 :: TyFun (t1 Bool) Bool -> Type) t2) Source #

type family Any (a1 :: a ~> Bool) (a2 :: t a) :: Bool where ... Source #

Equations

Any (p :: a ~> Bool) (a_6989586621680404128 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (Any ~> Bool) ((t a ~> Any) ~> (t a ~> Bool)) -> Type) GetAnySym0) (Apply (FoldMapSym0 :: TyFun (a ~> Any) (t a ~> Any) -> Type) (Apply (Apply ((.@#@$) :: TyFun (Bool ~> Any) ((a ~> Bool) ~> (a ~> Any)) -> Type) Any_Sym0) p))) a_6989586621680404128 

sAny :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (AnySym0 :: TyFun (a ~> Bool) (t1 a ~> Bool) -> Type) t2) t3) Source #

type family All (a1 :: a ~> Bool) (a2 :: t a) :: Bool where ... Source #

Equations

All (p :: a ~> Bool) (a_6989586621680404119 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (All ~> Bool) ((t a ~> All) ~> (t a ~> Bool)) -> Type) GetAllSym0) (Apply (FoldMapSym0 :: TyFun (a ~> All) (t a ~> All) -> Type) (Apply (Apply ((.@#@$) :: TyFun (Bool ~> All) ((a ~> Bool) ~> (a ~> All)) -> Type) All_Sym0) p))) a_6989586621680404119 

sAll :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (AllSym0 :: TyFun (a ~> Bool) (t1 a ~> Bool) -> Type) t2) t3) Source #

type family Sum (arg :: t a) :: a Source #

Instances

Instances details
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Last a)
type Sum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Max a)
type Sum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Min a)
type Sum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: NonEmpty a)
type Sum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Sum (a :: Identity k2)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Last a)
type Sum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Dual k2)
type Sum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Product k2)
type Sum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Sum k2)
type Sum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Maybe a)
type Sum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: [k2])
type Sum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Arg a1 a2)
type Sum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Either a1 a2)
type Sum (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Proxy k2)
type Sum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: (a1, a2))
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type Sum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sum (arg :: Product f g a)
type Sum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sum (arg :: Sum f g a)
type Sum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sum (arg :: Compose f g a)

sSum :: forall a (t1 :: t a). (SFoldable t, SNum a) => Sing t1 -> Sing (Apply (SumSym0 :: TyFun (t a) a -> Type) t1) Source #

type family Product (arg :: t a) :: a Source #

Instances

Instances details
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Last a)
type Product (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Max a)
type Product (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Min a)
type Product (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: NonEmpty a)
type Product (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Product (a :: Identity k2)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Last a)
type Product (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Dual k2)
type Product (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Product k2)
type Product (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Sum k2)
type Product (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Maybe a)
type Product (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: [k2])
type Product (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Arg a1 a2)
type Product (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Either a1 a2)
type Product (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Proxy k2)
type Product (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: (a1, a2))
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Product (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Product (arg :: Product f g a)
type Product (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Product (arg :: Sum f g a)
type Product (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Product (arg :: Compose f g a)

sProduct :: forall a (t1 :: t a). (SFoldable t, SNum a) => Sing t1 -> Sing (Apply (ProductSym0 :: TyFun (t a) a -> Type) t1) Source #

type family Maximum (arg :: t a) :: a Source #

Instances

Instances details
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Max a)
type Maximum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Min a)
type Maximum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: NonEmpty a)
type Maximum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Maximum (a :: Identity k2)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Last a)
type Maximum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Dual k2)
type Maximum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Product k2)
type Maximum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Sum k2)
type Maximum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Maybe a)
type Maximum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: [k2])
type Maximum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Arg a1 a2)
type Maximum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Either a1 a2)
type Maximum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Proxy a)
type Maximum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: (a1, a2))
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Maximum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Maximum (arg :: Product f g a)
type Maximum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Maximum (arg :: Sum f g a)
type Maximum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Maximum (arg :: Compose f g a)

sMaximum :: forall a (t1 :: t a). (SFoldable t, SOrd a) => Sing t1 -> Sing (Apply (MaximumSym0 :: TyFun (t a) a -> Type) t1) Source #

type family Minimum (arg :: t a) :: a Source #

Instances

Instances details
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Max a)
type Minimum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Min a)
type Minimum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: NonEmpty a)
type Minimum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Minimum (a :: Identity k2)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Last a)
type Minimum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Dual k2)
type Minimum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Product k2)
type Minimum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Sum k2)
type Minimum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Maybe a)
type Minimum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: [k2])
type Minimum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Arg a1 a2)
type Minimum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Either a1 a2)
type Minimum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Proxy a)
type Minimum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: (a1, a2))
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Minimum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Minimum (arg :: Product f g a)
type Minimum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Minimum (arg :: Sum f g a)
type Minimum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Minimum (arg :: Compose f g a)

sMinimum :: forall a (t1 :: t a). (SFoldable t, SOrd a) => Sing t1 -> Sing (Apply (MinimumSym0 :: TyFun (t a) a -> Type) t1) Source #

Building lists

Scans

type family Scanl (a1 :: b ~> (a ~> b)) (a2 :: b) (a3 :: [a]) :: [b] where ... Source #

Equations

Scanl (f :: a ~> (k1 ~> a)) (q :: a) (ls :: [k1]) = Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) q) (Case_6989586621679824858 f q ls ls) 

sScanl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) t1) t2) t3) Source #

type family Scanl1 (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: [a] where ... Source #

Equations

Scanl1 (f :: k1 ~> (k1 ~> k1)) (x ': xs :: [k1]) = Apply (Apply (Apply (ScanlSym0 :: TyFun (k1 ~> (k1 ~> k1)) (k1 ~> ([k1] ~> [k1])) -> Type) f) x) xs 
Scanl1 (_1 :: a ~> (a ~> a)) ('[] :: [a]) = NilSym0 :: [a] 

sScanl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) t1) t2) Source #

type family Scanr (a1 :: a ~> (b ~> b)) (a2 :: b) (a3 :: [a]) :: [b] where ... Source #

Equations

Scanr (_1 :: a ~> (k1 ~> k1)) (q0 :: k1) ('[] :: [a]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) q0) (NilSym0 :: [k1]) 
Scanr (f :: k ~> (k1 ~> k1)) (q0 :: k1) (x ': xs :: [k]) = Case_6989586621679824835 f q0 x xs (Let6989586621679824833Scrutinee_6989586621679820733Sym4 f q0 x xs) 

sScanr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) t1) t2) t3) Source #

type family Scanr1 (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: [a] where ... Source #

Equations

Scanr1 (_1 :: a ~> (a ~> a)) ('[] :: [a]) = NilSym0 :: [a] 
Scanr1 (_1 :: k1 ~> (k1 ~> k1)) ('[x] :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (NilSym0 :: [k1]) 
Scanr1 (f :: k ~> (k ~> k)) (x ': (wild_6989586621679820745 ': wild_6989586621679820747) :: [k]) = Case_6989586621679824816 f x wild_6989586621679820745 wild_6989586621679820747 (Let6989586621679824814Scrutinee_6989586621679820739Sym4 f x wild_6989586621679820745 wild_6989586621679820747) 

sScanr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) t1) t2) Source #

Accumulating maps

type family MapAccumL (a1 :: a ~> (b ~> (a, c))) (a2 :: a) (a3 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumL (f :: a ~> (b ~> (a, c))) (s :: a) (t2 :: t1 b) = Apply (Apply (RunStateLSym0 :: TyFun (StateL a (t1 c)) (a ~> (a, t1 c)) -> Type) (Apply (Apply (TraverseSym0 :: TyFun (b ~> StateL a c) (t1 b ~> StateL a (t1 c)) -> Type) (Apply (Apply ((.@#@$) :: TyFun ((a ~> (a, c)) ~> StateL a c) ((b ~> (a ~> (a, c))) ~> (b ~> StateL a c)) -> Type) (StateLSym0 :: TyFun (a ~> (a, c)) (StateL a c) -> Type)) (Apply (FlipSym0 :: TyFun (a ~> (b ~> (a, c))) (b ~> (a ~> (a, c))) -> Type) f))) t2)) s 

sMapAccumL :: forall (t1 :: Type -> Type) a b c (t2 :: a ~> (b ~> (a, c))) (t3 :: a) (t4 :: t1 b). STraversable t1 => Sing t2 -> Sing t3 -> Sing t4 -> Sing (Apply (Apply (Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t1 b ~> (a, t1 c))) -> Type) t2) t3) t4) Source #

type family MapAccumR (a1 :: a ~> (b ~> (a, c))) (a2 :: a) (a3 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumR (f :: k1 ~> (a ~> (k1, b))) (s :: k1) (t2 :: t1 a) = Apply (Apply (RunStateRSym0 :: TyFun (StateR k1 (t1 b)) (k1 ~> (k1, t1 b)) -> Type) (Apply (Apply (TraverseSym0 :: TyFun (a ~> StateR k1 b) (t1 a ~> StateR k1 (t1 b)) -> Type) (Apply (Apply ((.@#@$) :: TyFun ((k1 ~> (k1, b)) ~> StateR k1 b) ((a ~> (k1 ~> (k1, b))) ~> (a ~> StateR k1 b)) -> Type) (StateRSym0 :: TyFun (k1 ~> (k1, b)) (StateR k1 b) -> Type)) (Apply (FlipSym0 :: TyFun (k1 ~> (a ~> (k1, b))) (a ~> (k1 ~> (k1, b))) -> Type) f))) t2)) s 

sMapAccumR :: forall a b c (t1 :: Type -> Type) (t2 :: a ~> (b ~> (a, c))) (t3 :: a) (t4 :: t1 b). STraversable t1 => Sing t2 -> Sing t3 -> Sing t4 -> Sing (Apply (Apply (Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t1 b ~> (a, t1 c))) -> Type) t2) t3) t4) Source #

Cyclical lists

type family Replicate (a1 :: Natural) (a2 :: a) :: [a] where ... Source #

Equations

Replicate n (x :: k) = Case_6989586621679823948 n x (Let6989586621679823946Scrutinee_6989586621679820841Sym2 n x) 

sReplicate :: forall a (t1 :: Natural) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) t1) t2) Source #

Unfolding

type family Unfoldr (a1 :: b ~> Maybe (a, b)) (a2 :: b) :: [a] where ... Source #

Equations

Unfoldr (f :: k2 ~> Maybe (k3, k2)) (b :: k2) = Case_6989586621679824703 f b (Let6989586621679824701Scrutinee_6989586621679820749Sym2 f b) 

sUnfoldr :: forall b a (t1 :: b ~> Maybe (a, b)) (t2 :: b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) t1) t2) Source #

Sublists

Extracting sublists

type family Take (a1 :: Natural) (a2 :: [a]) :: [a] where ... Source #

Equations

Take _1 ('[] :: [a]) = NilSym0 :: [a] 
Take n (x ': xs :: [k]) = Case_6989586621679824104 n x xs (Let6989586621679824102Scrutinee_6989586621679820825Sym3 n x xs) 

sTake :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) t1) t2) Source #

type family Drop (a1 :: Natural) (a2 :: [a]) :: [a] where ... Source #

Equations

Drop _1 ('[] :: [a]) = NilSym0 :: [a] 
Drop n (x ': xs :: [k]) = Case_6989586621679824091 n x xs (Let6989586621679824089Scrutinee_6989586621679820827Sym3 n x xs) 

sDrop :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) t1) t2) Source #

type family SplitAt (a1 :: Natural) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAt n (xs :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Apply (Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) n) xs)) (Apply (Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) n) xs) 

sSplitAt :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) t1) t2) Source #

type family TakeWhile (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

TakeWhile (_1 :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
TakeWhile (p :: k1 ~> Bool) (x ': xs :: [k1]) = Case_6989586621679824221 p x xs (Let6989586621679824219Scrutinee_6989586621679820815Sym3 p x xs) 

sTakeWhile :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) t1) t2) Source #

type family DropWhile (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

DropWhile (_1 :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
DropWhile (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Case_6989586621679824208 p x xs' (Let6989586621679824206Scrutinee_6989586621679820817Sym3 p x xs') 

sDropWhile :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) t1) t2) Source #

type family DropWhileEnd (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

DropWhileEnd (p :: a ~> Bool) (a_6989586621679824177 :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (Apply (Lambda_6989586621679824186Sym0 :: TyFun (a ~> Bool) (TyFun [a] (TyFun a (TyFun [a] [a] -> Type) -> Type) -> Type) -> Type) p) a_6989586621679824177)) (NilSym0 :: [a])) a_6989586621679824177 

sDropWhileEnd :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) t1) t2) Source #

type family Span (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Span (_1 :: a ~> Bool) ('[] :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Let6989586621679824147XsSym0 :: [a])) (Let6989586621679824147XsSym0 :: [a]) 
Span (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Case_6989586621679824156 p x xs' (Let6989586621679824154Scrutinee_6989586621679820821Sym3 p x xs') 

sSpan :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) t1) t2) Source #

type family Break (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Break (_1 :: a ~> Bool) ('[] :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Let6989586621679824112XsSym0 :: [a])) (Let6989586621679824112XsSym0 :: [a]) 
Break (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Case_6989586621679824121 p x xs' (Let6989586621679824119Scrutinee_6989586621679820823Sym3 p x xs') 

sBreak :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) t1) t2) Source #

type family StripPrefix (a1 :: [a]) (a2 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefix ('[] :: [a]) (ys :: [a]) = Apply (JustSym0 :: TyFun [a] (Maybe [a]) -> Type) ys 
StripPrefix (arg_6989586621679973768 :: [k]) (arg_6989586621679973770 :: [k]) = Case_6989586621679975082 arg_6989586621679973768 arg_6989586621679973770 (Apply (Apply (Tuple2Sym0 :: TyFun [k] ([k] ~> ([k], [k])) -> Type) arg_6989586621679973768) arg_6989586621679973770) 

type family Group (a1 :: [a]) :: [[a]] where ... Source #

Equations

Group (xs :: [a]) = Apply (Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) xs 

sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) t) Source #

type family Inits (a1 :: [a]) :: [[a]] where ... Source #

Equations

Inits (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (NilSym0 :: [a])) (Case_6989586621679824689 xs xs) 

sInits :: forall a (t :: [a]). Sing t -> Sing (Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) t) Source #

type family Tails (a1 :: [a]) :: [[a]] where ... Source #

Equations

Tails (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) (Case_6989586621679824681 xs xs) 

sTails :: forall a (t :: [a]). Sing t -> Sing (Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) t) Source #

Predicates

type family IsPrefixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOf ('[] :: [a]) ('[] :: [a]) = TrueSym0 
IsPrefixOf ('[] :: [a]) (_1 ': _2 :: [a]) = TrueSym0 
IsPrefixOf (_1 ': _2 :: [a]) ('[] :: [a]) = FalseSym0 
IsPrefixOf (x ': xs :: [a]) (y ': ys :: [a]) = Apply (Apply (&&@#@$) (Apply (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x) y)) (Apply (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) xs) ys) 

sIsPrefixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

type family IsSuffixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOf (x :: [a]) (y :: [a]) = Apply (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (Apply (ReverseSym0 :: TyFun [a] [a] -> Type) x)) (Apply (ReverseSym0 :: TyFun [a] [a] -> Type) y) 

sIsSuffixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

type family IsInfixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsInfixOf (needle :: [a]) (haystack :: [a]) = Apply (Apply (AnySym0 :: TyFun ([a] ~> Bool) ([[a]] ~> Bool) -> Type) (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) needle)) (Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) haystack) 

sIsInfixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

Searching lists

Searching by equality

type family Elem (arg :: a) (arg1 :: t a) :: Bool Source #

Instances

Instances details
type Elem (arg :: a) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: First a)
type Elem (arg :: a) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Last a)
type Elem (arg :: a) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Max a)
type Elem (arg :: a) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Min a)
type Elem (arg1 :: a) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: NonEmpty a)
type Elem (arg1 :: a) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: First a)
type Elem (arg1 :: a) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Last a)
type Elem (arg1 :: a) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Maybe a)
type Elem (a1 :: k1) (a2 :: Identity k1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Elem (a1 :: k1) (a2 :: Identity k1)
type Elem (a1 :: k1) (a2 :: Dual k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Dual k1)
type Elem (a1 :: k1) (a2 :: Product k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Product k1)
type Elem (a1 :: k1) (a2 :: Sum k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Sum k1)
type Elem (a1 :: k1) (a2 :: [k1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: [k1])
type Elem (arg :: a1) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a1) (arg1 :: Arg a2 a1)
type Elem (arg1 :: a1) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: Either a2 a1)
type Elem (arg1 :: a1) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: (a2, a1))
type Elem (a1 :: k1) (a2 :: Proxy k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Proxy k1)
type Elem (arg :: a) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg :: a) (arg1 :: Const m a)
type Elem (arg :: a) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Elem (arg :: a) (arg1 :: Product f g a)
type Elem (arg :: a) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Elem (arg :: a) (arg1 :: Sum f g a)
type Elem (arg :: a) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Elem (arg :: a) (arg1 :: Compose f g a)

sElem :: forall a (t1 :: a) (t2 :: t a). (SFoldable t, SEq a) => Sing t1 -> Sing t2 -> Sing (Apply (Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) t1) t2) Source #

type family NotElem (a1 :: a) (a2 :: t a) :: Bool where ... Source #

Equations

NotElem (x :: k1) (a_6989586621680404070 :: t k1) = Apply (Apply (Apply ((.@#@$) :: TyFun (Bool ~> Bool) ((t k1 ~> Bool) ~> (t k1 ~> Bool)) -> Type) NotSym0) (Apply (ElemSym0 :: TyFun k1 (t k1 ~> Bool) -> Type) x)) a_6989586621680404070 

sNotElem :: forall a (t1 :: Type -> Type) (t2 :: a) (t3 :: t1 a). (SFoldable t1, SEq a) => Sing t2 -> Sing t3 -> Sing (Apply (Apply (NotElemSym0 :: TyFun a (t1 a ~> Bool) -> Type) t2) t3) Source #

type family Lookup (a1 :: a) (a2 :: [(a, b)]) :: Maybe b where ... Source #

Equations

Lookup (_key :: a) ('[] :: [(a, b)]) = NothingSym0 :: Maybe b 
Lookup (key :: k1) ('(x, y) ': xys :: [(k1, k)]) = Case_6989586621679824014 key x y xys (Let6989586621679824012Scrutinee_6989586621679820837Sym4 key x y xys) 

sLookup :: forall a b (t1 :: a) (t2 :: [(a, b)]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) t1) t2) Source #

Searching with a predicate

type family Find (a1 :: a ~> Bool) (a2 :: t a) :: Maybe a where ... Source #

Equations

Find (p :: a ~> Bool) (a_6989586621680404052 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (First a ~> Maybe a) ((t a ~> First a) ~> (t a ~> Maybe a)) -> Type) (GetFirstSym0 :: TyFun (First a) (Maybe a) -> Type)) (Apply (FoldMapSym0 :: TyFun (a ~> First a) (t a ~> First a) -> Type) (Apply (Apply (Lambda_6989586621680404061Sym0 :: TyFun (a ~> Bool) (TyFun (t a) (TyFun a (First a) -> Type) -> Type) -> Type) p) a_6989586621680404052))) a_6989586621680404052 

sFind :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (FindSym0 :: TyFun (a ~> Bool) (t1 a ~> Maybe a) -> Type) t2) t3) Source #

type family Filter (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

Filter (_p :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
Filter (p :: k1 ~> Bool) (x ': xs :: [k1]) = Case_6989586621679824322 p x xs (Let6989586621679824320Scrutinee_6989586621679820803Sym3 p x xs) 

sFilter :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) t1) t2) Source #

type family Partition (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Partition (p :: a ~> Bool) (xs :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> (([a], [a]) ~> ([a], [a]))) (([a], [a]) ~> ([a] ~> ([a], [a]))) -> Type) (Apply (SelectSym0 :: TyFun (a ~> Bool) (a ~> (([a], [a]) ~> ([a], [a]))) -> Type) p)) (Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (NilSym0 :: [a])) (NilSym0 :: [a]))) xs 

sPartition :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) t1) t2) Source #

Indexing lists

type family (a1 :: [a]) !! (a2 :: Natural) :: a where ... infixl 9 Source #

Equations

('[] :: [a]) !! _1 = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.!!: index too large" 
(x ': xs :: [k]) !! n = Case_6989586621679823929 x xs n (Let6989586621679823927Scrutinee_6989586621679820843Sym3 x xs n) 

(%!!) :: forall a (t1 :: [a]) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) t1) t2) infixl 9 Source #

type family ElemIndex (a1 :: a) (a2 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndex (x :: a) (a_6989586621679824293 :: [a]) = Apply (Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x)) a_6989586621679824293 

sElemIndex :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) t1) t2) Source #

type family ElemIndices (a1 :: a) (a2 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndices (x :: a) (a_6989586621679824284 :: [a]) = Apply (Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x)) a_6989586621679824284 

sElemIndices :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) t1) t2) Source #

type family FindIndex (a1 :: a ~> Bool) (a2 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndex (p :: a ~> Bool) (a_6989586621679824275 :: [a]) = Apply (Apply (Apply ((.@#@$) :: TyFun ([Natural] ~> Maybe Natural) (([a] ~> [Natural]) ~> ([a] ~> Maybe Natural)) -> Type) (ListToMaybeSym0 :: TyFun [Natural] (Maybe Natural) -> Type)) (Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) p)) a_6989586621679824275 

sFindIndex :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) t1) t2) Source #

type family FindIndices (a1 :: a ~> Bool) (a2 :: [a]) :: [Natural] where ... Source #

Equations

FindIndices (p :: a ~> Bool) (xs :: [a]) = Apply (Apply (MapSym0 :: TyFun ((a, Natural) ~> Natural) ([(a, Natural)] ~> [Natural]) -> Type) (SndSym0 :: TyFun (a, Natural) Natural -> Type)) (Apply (Apply (FilterSym0 :: TyFun ((a, Natural) ~> Bool) ([(a, Natural)] ~> [(a, Natural)]) -> Type) (Apply (Apply (Lambda_6989586621679824267Sym0 :: TyFun (a ~> Bool) (TyFun [a] (TyFun (a, Natural) Bool -> Type) -> Type) -> Type) p) xs)) (Apply (Apply (ZipSym0 :: TyFun [a] ([Natural] ~> [(a, Natural)]) -> Type) xs) (Apply (Apply (Let6989586621679824261BuildListSym2 p xs :: TyFun Natural ([a] ~> [Natural]) -> Type) (FromInteger 0 :: Natural)) xs))) 

sFindIndices :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) t1) t2) Source #

Zipping and unzipping lists

type family Zip (a1 :: [a]) (a2 :: [b]) :: [(a, b)] where ... Source #

Equations

Zip (x ': xs :: [a]) (y ': ys :: [b]) = Apply (Apply ((:@#@$) :: TyFun (a, b) ([(a, b)] ~> [(a, b)]) -> Type) (Apply (Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) x) y)) (Apply (Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) xs) ys) 
Zip ('[] :: [a]) ('[] :: [b]) = NilSym0 :: [(a, b)] 
Zip (_1 ': _2 :: [a]) ('[] :: [b]) = NilSym0 :: [(a, b)] 
Zip ('[] :: [a]) (_1 ': _2 :: [b]) = NilSym0 :: [(a, b)] 

sZip :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) t1) t2) Source #

type family Zip3 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3 (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) = Apply (Apply ((:@#@$) :: TyFun (a1, b1, c1) ([(a1, b1, c1)] ~> [(a1, b1, c1)]) -> Type) (Apply (Apply (Apply (Tuple3Sym0 :: TyFun a1 (b1 ~> (c1 ~> (a1, b1, c1))) -> Type) a2) b2) c2)) (Apply (Apply (Apply (Zip3Sym0 :: TyFun [a1] ([b1] ~> ([c1] ~> [(a1, b1, c1)])) -> Type) as) bs) cs) 
Zip3 ('[] :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) ('[] :: [b]) (_1 ': _2 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) (_1 ': _2 :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) (_1 ': _2 :: [b]) (_3 ': _4 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) ('[] :: [b]) (_3 ': _4 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) (_3 ': _4 :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 

sZip3 :: forall a b c (t1 :: [a]) (t2 :: [b]) (t3 :: [c]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) t1) t2) t3) Source #

type family Zip4 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4 (a_6989586621679975053 :: [a]) (a_6989586621679975055 :: [b]) (a_6989586621679975057 :: [c]) (a_6989586621679975059 :: [d]) = Apply (Apply (Apply (Apply (Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (a, b, c, d))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)])))) -> Type) (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type)) a_6989586621679975053) a_6989586621679975055) a_6989586621679975057) a_6989586621679975059 

type family Zip5 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5 (a_6989586621679975027 :: [a]) (a_6989586621679975029 :: [b]) (a_6989586621679975031 :: [c]) (a_6989586621679975033 :: [d]) (a_6989586621679975035 :: [e]) = Apply (Apply (Apply (Apply (Apply (Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))))) -> Type) (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type)) a_6989586621679975027) a_6989586621679975029) a_6989586621679975031) a_6989586621679975033) a_6989586621679975035 

type family Zip6 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) (a6 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6 (a_6989586621679974996 :: [a]) (a_6989586621679974998 :: [b]) (a_6989586621679975000 :: [c]) (a_6989586621679975002 :: [d]) (a_6989586621679975004 :: [e]) (a_6989586621679975006 :: [f]) = Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))))) -> Type) (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type)) a_6989586621679974996) a_6989586621679974998) a_6989586621679975000) a_6989586621679975002) a_6989586621679975004) a_6989586621679975006 

type family Zip7 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) (a6 :: [f]) (a7 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7 (a_6989586621679974960 :: [a]) (a_6989586621679974962 :: [b]) (a_6989586621679974964 :: [c]) (a_6989586621679974966 :: [d]) (a_6989586621679974968 :: [e]) (a_6989586621679974970 :: [f]) (a_6989586621679974972 :: [g]) = Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))))) -> Type) (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type)) a_6989586621679974960) a_6989586621679974962) a_6989586621679974964) a_6989586621679974966) a_6989586621679974968) a_6989586621679974970) a_6989586621679974972 

type family ZipWith (a1 :: a ~> (b ~> c)) (a2 :: [a]) (a3 :: [b]) :: [c] where ... Source #

Equations

ZipWith (f :: a ~> (b ~> c)) (x ': xs :: [a]) (y ': ys :: [b]) = Apply (Apply ((:@#@$) :: TyFun c ([c] ~> [c]) -> Type) (Apply (Apply f x) y)) (Apply (Apply (Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) f) xs) ys) 
ZipWith (_1 :: a ~> (b ~> c)) ('[] :: [a]) ('[] :: [b]) = NilSym0 :: [c] 
ZipWith (_1 :: a ~> (b ~> c)) (_2 ': _3 :: [a]) ('[] :: [b]) = NilSym0 :: [c] 
ZipWith (_1 :: a ~> (b ~> c)) ('[] :: [a]) (_2 ': _3 :: [b]) = NilSym0 :: [c] 

sZipWith :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) t1) t2) t3) Source #

type family ZipWith3 (a1 :: a ~> (b ~> (c ~> d))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) :: [d] where ... Source #

Equations

ZipWith3 (z :: a1 ~> (b1 ~> (c1 ~> d))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) = Apply (Apply ((:@#@$) :: TyFun d ([d] ~> [d]) -> Type) (Apply (Apply (Apply z a2) b2) c2)) (Apply (Apply (Apply (Apply (ZipWith3Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> d))) ([a1] ~> ([b1] ~> ([c1] ~> [d]))) -> Type) z) as) bs) cs) 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) ('[] :: [b]) (_2 ': _3 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) (_2 ': _3 :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) (_2 ': _3 :: [b]) (_4 ': _5 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) ('[] :: [b]) (_4 ': _5 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) (_4 ': _5 :: [b]) ('[] :: [c]) = NilSym0 :: [d] 

sZipWith3 :: forall a b c d (t1 :: a ~> (b ~> (c ~> d))) (t2 :: [a]) (t3 :: [b]) (t4 :: [c]). Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing (Apply (Apply (Apply (Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) t1) t2) t3) t4) Source #

type family ZipWith4 (a1 :: a ~> (b ~> (c ~> (d ~> e)))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) :: [e] where ... Source #

Equations

ZipWith4 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> e)))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) = Apply (Apply ((:@#@$) :: TyFun e ([e] ~> [e]) -> Type) (Apply (Apply (Apply (Apply z a2) b2) c2) d2)) (Apply (Apply (Apply (Apply (Apply (ZipWith4Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> e)))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> [e])))) -> Type) z) as) bs) cs) ds) 
ZipWith4 (_1 :: a ~> (b ~> (c ~> (d ~> e)))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) = NilSym0 :: [e] 

type family ZipWith5 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) :: [f] where ... Source #

Equations

ZipWith5 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> f))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) = Apply (Apply ((:@#@$) :: TyFun f ([f] ~> [f]) -> Type) (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2)) (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith5Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> f))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> [f]))))) -> Type) z) as) bs) cs) ds) es) 
ZipWith5 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) = NilSym0 :: [f] 

type family ZipWith6 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) (a7 :: [f]) :: [g] where ... Source #

Equations

ZipWith6 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> g)))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) (f2 ': fs :: [f1]) = Apply (Apply ((:@#@$) :: TyFun g ([g] ~> [g]) -> Type) (Apply (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2) f2)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith6Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> g)))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> ([f1] ~> [g])))))) -> Type) z) as) bs) cs) ds) es) fs) 
ZipWith6 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) (_7 :: [f]) = NilSym0 :: [g] 

type family ZipWith7 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) (a7 :: [f]) (a8 :: [g]) :: [h] where ... Source #

Equations

ZipWith7 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> (g1 ~> h))))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) (f2 ': fs :: [f1]) (g2 ': gs :: [g1]) = Apply (Apply ((:@#@$) :: TyFun h ([h] ~> [h]) -> Type) (Apply (Apply (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2) f2) g2)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith7Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> (g1 ~> h))))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> ([f1] ~> ([g1] ~> [h]))))))) -> Type) z) as) bs) cs) ds) es) fs) gs) 
ZipWith7 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) (_7 :: [f]) (_8 :: [g]) = NilSym0 :: [h] 

type family Unzip (a1 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

Unzip (xs :: [(k2, k3)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3) ~> (([k2], [k3]) ~> ([k2], [k3]))) (([k2], [k3]) ~> ([(k2, k3)] ~> ([k2], [k3]))) -> Type) (Apply (Lambda_6989586621679824576Sym0 :: TyFun [(k2, k3)] (TyFun (k2, k3) (TyFun ([k2], [k3]) ([k2], [k3]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Tuple2Sym0 :: TyFun [k2] ([k3] ~> ([k2], [k3])) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3]))) xs 

sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) t) Source #

type family Unzip3 (a1 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3 (xs :: [(k2, k3, k4)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4) ~> (([k2], [k3], [k4]) ~> ([k2], [k3], [k4]))) (([k2], [k3], [k4]) ~> ([(k2, k3, k4)] ~> ([k2], [k3], [k4]))) -> Type) (Apply (Lambda_6989586621679824558Sym0 :: TyFun [(k2, k3, k4)] (TyFun (k2, k3, k4) (TyFun ([k2], [k3], [k4]) ([k2], [k3], [k4]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Apply (Tuple3Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k2], [k3], [k4]))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4]))) xs 

sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) t) Source #

type family Unzip4 (a1 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4 (xs :: [(k2, k3, k4, k5)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5) ~> (([k2], [k3], [k4], [k5]) ~> ([k2], [k3], [k4], [k5]))) (([k2], [k3], [k4], [k5]) ~> ([(k2, k3, k4, k5)] ~> ([k2], [k3], [k4], [k5]))) -> Type) (Apply (Lambda_6989586621679824538Sym0 :: TyFun [(k2, k3, k4, k5)] (TyFun (k2, k3, k4, k5) (TyFun ([k2], [k3], [k4], [k5]) ([k2], [k3], [k4], [k5]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Apply (Apply (Tuple4Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k2], [k3], [k4], [k5])))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5]))) xs 

sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) t) Source #

type family Unzip5 (a1 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5 (xs :: [(k2, k3, k4, k5, k6)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6) ~> (([k2], [k3], [k4], [k5], [k6]) ~> ([k2], [k3], [k4], [k5], [k6]))) (([k2], [k3], [k4], [k5], [k6]) ~> ([(k2, k3, k4, k5, k6)] ~> ([k2], [k3], [k4], [k5], [k6]))) -> Type) (Apply (Lambda_6989586621679824516Sym0 :: TyFun [(k2, k3, k4, k5, k6)] (TyFun (k2, k3, k4, k5, k6) (TyFun ([k2], [k3], [k4], [k5], [k6]) ([k2], [k3], [k4], [k5], [k6]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Apply (Apply (Apply (Tuple5Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k2], [k3], [k4], [k5], [k6]))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6]))) xs 

sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) t) Source #

type family Unzip6 (a1 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6 (xs :: [(k2, k3, k4, k5, k6, k7)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6, k7) ~> (([k2], [k3], [k4], [k5], [k6], [k7]) ~> ([k2], [k3], [k4], [k5], [k6], [k7]))) (([k2], [k3], [k4], [k5], [k6], [k7]) ~> ([(k2, k3, k4, k5, k6, k7)] ~> ([k2], [k3], [k4], [k5], [k6], [k7]))) -> Type) (Apply (Lambda_6989586621679824492Sym0 :: TyFun [(k2, k3, k4, k5, k6, k7)] (TyFun (k2, k3, k4, k5, k6, k7) (TyFun ([k2], [k3], [k4], [k5], [k6], [k7]) ([k2], [k3], [k4], [k5], [k6], [k7]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Apply (Apply (Apply (Apply (Tuple6Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k7] ~> ([k2], [k3], [k4], [k5], [k6], [k7])))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6])) (NilSym0 :: [k7]))) xs 

sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) t) Source #

type family Unzip7 (a1 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7 (xs :: [(k2, k3, k4, k5, k6, k7, k8)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6, k7, k8) ~> (([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))) (([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ~> ([(k2, k3, k4, k5, k6, k7, k8)] ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))) -> Type) (Apply (Lambda_6989586621679824466Sym0 :: TyFun [(k2, k3, k4, k5, k6, k7, k8)] (TyFun (k2, k3, k4, k5, k6, k7, k8) (TyFun ([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ([k2], [k3], [k4], [k5], [k6], [k7], [k8]) -> Type) -> Type) -> Type) xs)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Tuple7Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k7] ~> ([k8] ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6])) (NilSym0 :: [k7])) (NilSym0 :: [k8]))) xs 

sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) t) Source #

Special lists

Functions on Symbols

type family Unlines (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unlines ('[] :: [Symbol]) = "" 
Unlines (l ': ls) = Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) l) (Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) "\n") (Apply UnlinesSym0 ls)) 

sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t) Source #

type family Unwords (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unwords ('[] :: [Symbol]) = "" 
Unwords (w ': ws) = Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) w) (Apply (Let6989586621679824452GoSym2 w ws) ws) 

sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t) Source #

"Set" operations

type family Nub (a1 :: [a]) :: [a] where ... Source #

Equations

Nub (l :: [a]) = Apply (Apply (Let6989586621679823907Nub'Sym2 a l) l) (NilSym0 :: [a]) 

sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply (NubSym0 :: TyFun [a] [a] -> Type) t) Source #

type family Delete (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Delete (a_6989586621679824436 :: k1) (a_6989586621679824438 :: [k1]) = Apply (Apply (Apply (DeleteBySym0 :: TyFun (k1 ~> (k1 ~> Bool)) (k1 ~> ([k1] ~> [k1])) -> Type) ((==@#@$) :: TyFun k1 (k1 ~> Bool) -> Type)) a_6989586621679824436) a_6989586621679824438 

sDelete :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) t1) t2) Source #

type family (a1 :: [a]) \\ (a2 :: [a]) :: [a] where ... infix 5 Source #

Equations

(a_6989586621679824425 :: [a]) \\ (a_6989586621679824427 :: [a]) = Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type))) a_6989586621679824425) a_6989586621679824427 

(%\\) :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) infix 5 Source #

type family Union (a1 :: [a]) (a2 :: [a]) :: [a] where ... Source #

Equations

Union (a_6989586621679823852 :: [a]) (a_6989586621679823854 :: [a]) = Apply (Apply (Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) a_6989586621679823852) a_6989586621679823854 

sUnion :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) Source #

type family Intersect (a1 :: [a]) (a2 :: [a]) :: [a] where ... Source #

Equations

Intersect (a_6989586621679824243 :: [a]) (a_6989586621679824245 :: [a]) = Apply (Apply (Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) a_6989586621679824243) a_6989586621679824245 

sIntersect :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) Source #

Ordered lists

type family Insert (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Insert (e :: k1) (ls :: [k1]) = Apply (Apply (Apply (InsertBySym0 :: TyFun (k1 ~> (k1 ~> Ordering)) (k1 ~> ([k1] ~> [k1])) -> Type) (CompareSym0 :: TyFun k1 (k1 ~> Ordering) -> Type)) e) ls 

sInsert :: forall a (t1 :: a) (t2 :: [a]). SOrd a => Sing t1 -> Sing t2 -> Sing (Apply (Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) t1) t2) Source #

type family Sort (a1 :: [a]) :: [a] where ... Source #

Equations

Sort (a_6989586621679824043 :: [a]) = Apply (Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (CompareSym0 :: TyFun a (a ~> Ordering) -> Type)) a_6989586621679824043 

sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply (SortSym0 :: TyFun [a] [a] -> Type) t) Source #

Generalized functions

The "By" operations

User-supplied equality (replacing an Eq context)

The predicate is assumed to define an equivalence.

type family NubBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) :: [a] where ... Source #

Equations

NubBy (eq :: k1 ~> (k1 ~> Bool)) (l :: [k1]) = Apply (Apply (Let6989586621679823891NubBy'Sym2 eq l) l) (NilSym0 :: [k1]) 

sNubBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) t1) t2) Source #

type family DeleteBy (a1 :: a ~> (a ~> Bool)) (a2 :: a) (a3 :: [a]) :: [a] where ... Source #

Equations

DeleteBy (_1 :: a ~> (a ~> Bool)) (_2 :: a) ('[] :: [a]) = NilSym0 :: [a] 
DeleteBy (eq :: k1 ~> (k1 ~> Bool)) (x :: k1) (y ': ys :: [k1]) = Case_6989586621679824422 eq x y ys (Let6989586621679824420Scrutinee_6989586621679820787Sym4 eq x y ys) 

sDeleteBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: a) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) t1) t2) t3) Source #

type family DeleteFirstsBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBy (eq :: a ~> (a ~> Bool)) (a_6989586621679824395 :: [a]) (a_6989586621679824397 :: [a]) = Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) eq))) a_6989586621679824395) a_6989586621679824397 

sDeleteFirstsBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) t1) t2) t3) Source #

type family UnionBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

UnionBy (eq :: a ~> (a ~> Bool)) (xs :: [a]) (ys :: [a]) = Apply (Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) xs) (Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) eq))) (Apply (Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) eq) ys)) xs) 

sUnionBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) t1) t2) t3) Source #

type family IntersectBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

IntersectBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) ('[] :: [a]) = NilSym0 :: [a] 
IntersectBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) (_2 ': _3 :: [a]) = NilSym0 :: [a] 
IntersectBy (_1 :: a ~> (a ~> Bool)) (_2 ': _3 :: [a]) ('[] :: [a]) = NilSym0 :: [a] 
IntersectBy (eq :: b ~> (b ~> Bool)) (wild_6989586621679820807 ': wild_6989586621679820809 :: [b]) (wild_6989586621679820811 ': wild_6989586621679820813 :: [b]) = Apply (Apply ((>>=@#@$) :: TyFun [b] ((b ~> [b]) ~> [b]) -> Type) (Let6989586621679824236XsSym5 eq wild_6989586621679820807 wild_6989586621679820809 wild_6989586621679820811 wild_6989586621679820813)) (Apply (Apply (Apply (Apply (Apply (Lambda_6989586621679824239Sym0 :: TyFun (b ~> (b ~> Bool)) (TyFun b (TyFun [b] (TyFun b (TyFun [b] (TyFun b [b] -> Type) -> Type) -> Type) -> Type) -> Type) -> Type) eq) wild_6989586621679820807) wild_6989586621679820809) wild_6989586621679820811) wild_6989586621679820813) 

sIntersectBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) t1) t2) t3) Source #

type family GroupBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) :: [[a]] where ... Source #

Equations

GroupBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) = NilSym0 :: [[a]] 
GroupBy (eq :: a ~> (a ~> Bool)) (x ': xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) x) (Let6989586621679824025YsSym3 eq x xs))) (Apply (Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) eq) (Let6989586621679824025ZsSym3 eq x xs)) 

sGroupBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) t1) t2) Source #

User-supplied comparison (replacing an Ord context)

The function is assumed to define a total ordering.

type family SortBy (a1 :: a ~> (a ~> Ordering)) (a2 :: [a]) :: [a] where ... Source #

Equations

SortBy (cmp :: a ~> (a ~> Ordering)) (a_6989586621679824386 :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) cmp)) (NilSym0 :: [a])) a_6989586621679824386 

sSortBy :: forall a (t1 :: a ~> (a ~> Ordering)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) t1) t2) Source #

type family InsertBy (a1 :: a ~> (a ~> Ordering)) (a2 :: a) (a3 :: [a]) :: [a] where ... Source #

Equations

InsertBy (_1 :: k1 ~> (k1 ~> Ordering)) (x :: k1) ('[] :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (NilSym0 :: [k1]) 
InsertBy (cmp :: k1 ~> (k1 ~> Ordering)) (x :: k1) (y ': ys' :: [k1]) = Case_6989586621679824383 cmp x y ys' (Let6989586621679824381Scrutinee_6989586621679820789Sym4 cmp x y ys') 

sInsertBy :: forall a (t1 :: a ~> (a ~> Ordering)) (t2 :: a) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) t1) t2) t3) Source #

type family MaximumBy (a1 :: a ~> (a ~> Ordering)) (a2 :: t a) :: a where ... Source #

Equations

MaximumBy (cmp :: k2 ~> (k2 ~> Ordering)) (a_6989586621680404099 :: t k2) = Apply (Apply (Foldl1Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (t k2 ~> k2) -> Type) (Let6989586621680404108Max'Sym2 cmp a_6989586621680404099)) a_6989586621680404099 

sMaximumBy :: forall a (t1 :: Type -> Type) (t2 :: a ~> (a ~> Ordering)) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t1 a ~> a) -> Type) t2) t3) Source #

type family MinimumBy (a1 :: a ~> (a ~> Ordering)) (a2 :: t a) :: a where ... Source #

Equations

MinimumBy (cmp :: k2 ~> (k2 ~> Ordering)) (a_6989586621680404079 :: t k2) = Apply (Apply (Foldl1Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (t k2 ~> k2) -> Type) (Let6989586621680404088Min'Sym2 cmp a_6989586621680404079)) a_6989586621680404079 

sMinimumBy :: forall a (t1 :: Type -> Type) (t2 :: a ~> (a ~> Ordering)) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Apply (Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t1 a ~> a) -> Type) t2) t3) Source #

The "generic" operations

The prefix `generic' indicates an overloaded function that is a generalized version of a Prelude function.

type family GenericLength (a1 :: [a]) :: i where ... Source #

Equations

GenericLength ('[] :: [a]) = FromInteger 0 :: i 
GenericLength (_1 ': xs :: [a]) = Apply (Apply ((+@#@$) :: TyFun i (i ~> i) -> Type) (FromInteger 1 :: i)) (Apply (GenericLengthSym0 :: TyFun [a] i -> Type) xs) 

sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (Apply (GenericLengthSym0 :: TyFun [a] i -> Type) t) Source #

Defunctionalization symbols

type family NilSym0 :: [a] where ... Source #

Equations

NilSym0 = '[] :: [a] 

data (:@#@$) (a1 :: TyFun a ([a] ~> [a])) infixr 5 Source #

Instances

Instances details
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679047148 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679047148 :: a) = (:@#@$$) a6989586621679047148

data (a6989586621679047148 :: a) :@#@$$ (b :: TyFun [a] [a]) infixr 5 Source #

Instances

Instances details
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((:@#@$$) x) #

SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$$) d) #

SuppressUnusedWarnings ((:@#@$$) a6989586621679047148 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679047148 :: TyFun [a] [a] -> Type) (a6989586621679047149 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679047148 :: TyFun [a] [a] -> Type) (a6989586621679047149 :: [a]) = a6989586621679047148 ': a6989586621679047149

type family (a6989586621679047148 :: a) :@#@$$$ (a6989586621679047149 :: [a]) :: [a] where ... infixr 5 Source #

Equations

(a6989586621679047148 :: a) :@#@$$$ (a6989586621679047149 :: [a]) = a6989586621679047148 ': a6989586621679047149 

type family (a6989586621679181814 :: [a]) ++@#@$$$ (a6989586621679181815 :: [a]) :: [a] where ... infixr 5 Source #

Equations

(a6989586621679181814 :: [a]) ++@#@$$$ (a6989586621679181815 :: [a]) = a6989586621679181814 ++ a6989586621679181815 

data (a6989586621679181814 :: [a]) ++@#@$$ (b :: TyFun [a] [a]) infixr 5 Source #

Instances

Instances details
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((++@#@$$) x) #

SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$$) d) #

SuppressUnusedWarnings ((++@#@$$) a6989586621679181814 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679181814 :: TyFun [a] [a] -> Type) (a6989586621679181815 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679181814 :: TyFun [a] [a] -> Type) (a6989586621679181815 :: [a]) = a6989586621679181814 ++ a6989586621679181815

data (++@#@$) (a1 :: TyFun [a] ([a] ~> [a])) infixr 5 Source #

Instances

Instances details
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679181814 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679181814 :: [a]) = (++@#@$$) a6989586621679181814

data HeadSym0 (a1 :: TyFun [a] a) Source #

Instances

Instances details
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (HeadSym0 :: TyFun [a] a -> Type) #

SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679825084 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679825084 :: [a]) = Head a6989586621679825084

type family HeadSym1 (a6989586621679825084 :: [a]) :: a where ... Source #

Equations

HeadSym1 (a6989586621679825084 :: [a]) = Head a6989586621679825084 

data LastSym0 (a1 :: TyFun [a] a) Source #

Instances

Instances details
SingI (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LastSym0 :: TyFun [a] a -> Type) #

SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679825078 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679825078 :: [a]) = Last a6989586621679825078

type family LastSym1 (a6989586621679825078 :: [a]) :: a where ... Source #

Equations

LastSym1 (a6989586621679825078 :: [a]) = Last a6989586621679825078 

data TailSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TailSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679825074 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679825074 :: [a]) = Tail a6989586621679825074

type family TailSym1 (a6989586621679825074 :: [a]) :: [a] where ... Source #

Equations

TailSym1 (a6989586621679825074 :: [a]) = Tail a6989586621679825074 

data InitSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InitSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679825062 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679825062 :: [a]) = Init a6989586621679825062

type family InitSym1 (a6989586621679825062 :: [a]) :: [a] where ... Source #

Equations

InitSym1 (a6989586621679825062 :: [a]) = Init a6989586621679825062 

data NullSym0 (a1 :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NullSym0 :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680404321 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680404321 :: t a) = Null a6989586621680404321

type family NullSym1 (a6989586621680404321 :: t a) :: Bool where ... Source #

Equations

NullSym1 (a6989586621680404321 :: t a) = Null a6989586621680404321 

data LengthSym0 (a1 :: TyFun (t a) Natural) Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (LengthSym0 :: TyFun (t a) Natural -> Type) #

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680404324 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680404324 :: t a) = Length a6989586621680404324

type family LengthSym1 (a6989586621680404324 :: t a) :: Natural where ... Source #

Equations

LengthSym1 (a6989586621680404324 :: t a) = Length a6989586621680404324 

data MapSym0 (a1 :: TyFun (a ~> b) ([a] ~> [b])) Source #

Instances

Instances details
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) #

SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679181823 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679181823 :: a ~> b) = MapSym1 a6989586621679181823

data MapSym1 (a6989586621679181823 :: a ~> b) (b1 :: TyFun [a] [b]) Source #

Instances

Instances details
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing (MapSym1 x) #

SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym1 d) #

SuppressUnusedWarnings (MapSym1 a6989586621679181823 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679181823 :: TyFun [a] [b] -> Type) (a6989586621679181824 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679181823 :: TyFun [a] [b] -> Type) (a6989586621679181824 :: [a]) = Map a6989586621679181823 a6989586621679181824

type family MapSym2 (a6989586621679181823 :: a ~> b) (a6989586621679181824 :: [a]) :: [b] where ... Source #

Equations

MapSym2 (a6989586621679181823 :: a ~> b) (a6989586621679181824 :: [a]) = Map a6989586621679181823 a6989586621679181824 

data ReverseSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReverseSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679825047 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679825047 :: [a]) = Reverse a6989586621679825047

type family ReverseSym1 (a6989586621679825047 :: [a]) :: [a] where ... Source #

Equations

ReverseSym1 (a6989586621679825047 :: [a]) = Reverse a6989586621679825047 

data IntersperseSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679825040 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679825040 :: a) = IntersperseSym1 a6989586621679825040

data IntersperseSym1 (a6989586621679825040 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (IntersperseSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (IntersperseSym1 x) #

SingI d => SingI (IntersperseSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym1 d) #

SuppressUnusedWarnings (IntersperseSym1 a6989586621679825040 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679825040 :: TyFun [a] [a] -> Type) (a6989586621679825041 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679825040 :: TyFun [a] [a] -> Type) (a6989586621679825041 :: [a]) = Intersperse a6989586621679825040 a6989586621679825041

type family IntersperseSym2 (a6989586621679825040 :: a) (a6989586621679825041 :: [a]) :: [a] where ... Source #

Equations

IntersperseSym2 (a6989586621679825040 :: a) (a6989586621679825041 :: [a]) = Intersperse a6989586621679825040 a6989586621679825041 

data IntercalateSym0 (a1 :: TyFun [a] ([[a]] ~> [a])) Source #

Instances

Instances details
SingI (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679825033 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679825033 :: [a]) = IntercalateSym1 a6989586621679825033

data IntercalateSym1 (a6989586621679825033 :: [a]) (b :: TyFun [[a]] [a]) Source #

Instances

Instances details
SingI1 (IntercalateSym1 :: [a] -> TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntercalateSym1 x) #

SingI d => SingI (IntercalateSym1 d :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym1 d) #

SuppressUnusedWarnings (IntercalateSym1 a6989586621679825033 :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679825033 :: TyFun [[a]] [a] -> Type) (a6989586621679825034 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679825033 :: TyFun [[a]] [a] -> Type) (a6989586621679825034 :: [[a]]) = Intercalate a6989586621679825033 a6989586621679825034

type family IntercalateSym2 (a6989586621679825033 :: [a]) (a6989586621679825034 :: [[a]]) :: [a] where ... Source #

Equations

IntercalateSym2 (a6989586621679825033 :: [a]) (a6989586621679825034 :: [[a]]) = Intercalate a6989586621679825033 a6989586621679825034 

data TransposeSym0 (a1 :: TyFun [[a]] [[a]]) Source #

Instances

Instances details
SingI (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) #

SuppressUnusedWarnings (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679823934 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679823934 :: [[a]]) = Transpose a6989586621679823934

type family TransposeSym1 (a6989586621679823934 :: [[a]]) :: [[a]] where ... Source #

Equations

TransposeSym1 (a6989586621679823934 :: [[a]]) = Transpose a6989586621679823934 

data SubsequencesSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679825028 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679825028 :: [a]) = Subsequences a6989586621679825028

type family SubsequencesSym1 (a6989586621679825028 :: [a]) :: [[a]] where ... Source #

Equations

SubsequencesSym1 (a6989586621679825028 :: [a]) = Subsequences a6989586621679825028 

data PermutationsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PermutationsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824954 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824954 :: [a]) = Permutations a6989586621679824954

type family PermutationsSym1 (a6989586621679824954 :: [a]) :: [[a]] where ... Source #

Equations

PermutationsSym1 (a6989586621679824954 :: [a]) = Permutations a6989586621679824954 

data FoldlSym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404296 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404296 :: b ~> (a ~> b)) = FoldlSym1 a6989586621680404296 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 (a6989586621680404296 :: b ~> (a ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (FoldlSym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (FoldlSym1 a6989586621680404296 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680404296 :: TyFun b (t a ~> b) -> Type) (a6989586621680404297 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680404296 :: TyFun b (t a ~> b) -> Type) (a6989586621680404297 :: b) = FoldlSym2 a6989586621680404296 a6989586621680404297 :: TyFun (t a) b -> Type

data FoldlSym2 (a6989586621680404296 :: b ~> (a ~> b)) (a6989586621680404297 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (FoldlSym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (FoldlSym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (FoldlSym2 a6989586621680404296 a6989586621680404297 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680404296 a6989586621680404297 :: TyFun (t a) b -> Type) (a6989586621680404298 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680404296 a6989586621680404297 :: TyFun (t a) b -> Type) (a6989586621680404298 :: t a) = Foldl a6989586621680404296 a6989586621680404297 a6989586621680404298

type family FoldlSym3 (a6989586621680404296 :: b ~> (a ~> b)) (a6989586621680404297 :: b) (a6989586621680404298 :: t a) :: b where ... Source #

Equations

FoldlSym3 (a6989586621680404296 :: b ~> (a ~> b)) (a6989586621680404297 :: b) (a6989586621680404298 :: t a) = Foldl a6989586621680404296 a6989586621680404297 a6989586621680404298 

data Foldl'Sym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404303 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404303 :: b ~> (a ~> b)) = Foldl'Sym1 a6989586621680404303 :: TyFun b (t a ~> b) -> Type

data Foldl'Sym1 (a6989586621680404303 :: b ~> (a ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl'Sym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (Foldl'Sym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (Foldl'Sym1 a6989586621680404303 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680404303 :: TyFun b (t a ~> b) -> Type) (a6989586621680404304 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680404303 :: TyFun b (t a ~> b) -> Type) (a6989586621680404304 :: b) = Foldl'Sym2 a6989586621680404303 a6989586621680404304 :: TyFun (t a) b -> Type

data Foldl'Sym2 (a6989586621680404303 :: b ~> (a ~> b)) (a6989586621680404304 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (Foldl'Sym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (Foldl'Sym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (Foldl'Sym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (Foldl'Sym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (Foldl'Sym2 a6989586621680404303 a6989586621680404304 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680404303 a6989586621680404304 :: TyFun (t a) b -> Type) (a6989586621680404305 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680404303 a6989586621680404304 :: TyFun (t a) b -> Type) (a6989586621680404305 :: t a) = Foldl' a6989586621680404303 a6989586621680404304 a6989586621680404305

type family Foldl'Sym3 (a6989586621680404303 :: b ~> (a ~> b)) (a6989586621680404304 :: b) (a6989586621680404305 :: t a) :: b where ... Source #

Equations

Foldl'Sym3 (a6989586621680404303 :: b ~> (a ~> b)) (a6989586621680404304 :: b) (a6989586621680404305 :: t a) = Foldl' a6989586621680404303 a6989586621680404304 a6989586621680404305 

data Foldl1Sym0 (a1 :: TyFun (a ~> (a ~> a)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680404314 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680404314 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680404314 :: TyFun (t a) a -> Type

data Foldl1Sym1 (a6989586621680404314 :: a ~> (a ~> a)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldl1Sym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (Foldl1Sym1 a6989586621680404314 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680404314 :: TyFun (t a) a -> Type) (a6989586621680404315 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680404314 :: TyFun (t a) a -> Type) (a6989586621680404315 :: t a) = Foldl1 a6989586621680404314 a6989586621680404315

type family Foldl1Sym2 (a6989586621680404314 :: a ~> (a ~> a)) (a6989586621680404315 :: t a) :: a where ... Source #

Equations

Foldl1Sym2 (a6989586621680404314 :: a ~> (a ~> a)) (a6989586621680404315 :: t a) = Foldl1 a6989586621680404314 a6989586621680404315 

data Foldl1'Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> a)) Source #

Instances

Instances details
SingI (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) #

SuppressUnusedWarnings (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679824919 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679824919 :: a ~> (a ~> a)) = Foldl1'Sym1 a6989586621679824919

data Foldl1'Sym1 (a6989586621679824919 :: a ~> (a ~> a)) (b :: TyFun [a] a) Source #

Instances

Instances details
SingI d => SingI (Foldl1'Sym1 d :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym1 d) #

SuppressUnusedWarnings (Foldl1'Sym1 a6989586621679824919 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Foldl1'Sym1 :: (a ~> (a ~> a)) -> TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldl1'Sym1 x) #

type Apply (Foldl1'Sym1 a6989586621679824919 :: TyFun [a] a -> Type) (a6989586621679824920 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym1 a6989586621679824919 :: TyFun [a] a -> Type) (a6989586621679824920 :: [a]) = Foldl1' a6989586621679824919 a6989586621679824920

type family Foldl1'Sym2 (a6989586621679824919 :: a ~> (a ~> a)) (a6989586621679824920 :: [a]) :: a where ... Source #

Equations

Foldl1'Sym2 (a6989586621679824919 :: a ~> (a ~> a)) (a6989586621679824920 :: [a]) = Foldl1' a6989586621679824919 a6989586621679824920 

data FoldrSym0 (a1 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404282 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680404282 :: a ~> (b ~> b)) = FoldrSym1 a6989586621680404282 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 (a6989586621680404282 :: a ~> (b ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> b)). Sing x -> Sing (FoldrSym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (FoldrSym1 a6989586621680404282 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680404282 :: TyFun b (t a ~> b) -> Type) (a6989586621680404283 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680404282 :: TyFun b (t a ~> b) -> Type) (a6989586621680404283 :: b) = FoldrSym2 a6989586621680404282 a6989586621680404283 :: TyFun (t a) b -> Type

data FoldrSym2 (a6989586621680404282 :: a ~> (b ~> b)) (a6989586621680404283 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (FoldrSym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> b)) (y :: b). Sing x -> Sing y -> Sing (FoldrSym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (FoldrSym2 a6989586621680404282 a6989586621680404283 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680404282 a6989586621680404283 :: TyFun (t a) b -> Type) (a6989586621680404284 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680404282 a6989586621680404283 :: TyFun (t a) b -> Type) (a6989586621680404284 :: t a) = Foldr a6989586621680404282 a6989586621680404283 a6989586621680404284

type family FoldrSym3 (a6989586621680404282 :: a ~> (b ~> b)) (a6989586621680404283 :: b) (a6989586621680404284 :: t a) :: b where ... Source #

Equations

FoldrSym3 (a6989586621680404282 :: a ~> (b ~> b)) (a6989586621680404283 :: b) (a6989586621680404284 :: t a) = Foldr a6989586621680404282 a6989586621680404283 a6989586621680404284 

data Foldr1Sym0 (a1 :: TyFun (a ~> (a ~> a)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680404309 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680404309 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680404309 :: TyFun (t a) a -> Type

data Foldr1Sym1 (a6989586621680404309 :: a ~> (a ~> a)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldr1Sym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (Foldr1Sym1 a6989586621680404309 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680404309 :: TyFun (t a) a -> Type) (a6989586621680404310 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680404309 :: TyFun (t a) a -> Type) (a6989586621680404310 :: t a) = Foldr1 a6989586621680404309 a6989586621680404310

type family Foldr1Sym2 (a6989586621680404309 :: a ~> (a ~> a)) (a6989586621680404310 :: t a) :: a where ... Source #

Equations

Foldr1Sym2 (a6989586621680404309 :: a ~> (a ~> a)) (a6989586621680404310 :: t a) = Foldr1 a6989586621680404309 a6989586621680404310 

data ConcatSym0 (a1 :: TyFun (t [a]) [a]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatSym0 :: TyFun (t [a]) [a] -> Type) #

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680404163 :: t [a]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680404163 :: t [a]) = Concat a6989586621680404163

type family ConcatSym1 (a6989586621680404163 :: t [a]) :: [a] where ... Source #

Equations

ConcatSym1 (a6989586621680404163 :: t [a]) = Concat a6989586621680404163 

data ConcatMapSym0 (a1 :: TyFun (a ~> [b]) (t a ~> [b])) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) #

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680404152 :: a ~> [b]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680404152 :: a ~> [b]) = ConcatMapSym1 a6989586621680404152 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 (a6989586621680404152 :: a ~> [b]) (b1 :: TyFun (t a) [b]) Source #

Instances

Instances details
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> [b]). Sing x -> Sing (ConcatMapSym1 x :: TyFun (t a) [b] -> Type) #

(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) #

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680404152 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680404152 :: TyFun (t a) [b] -> Type) (a6989586621680404153 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680404152 :: TyFun (t a) [b] -> Type) (a6989586621680404153 :: t a) = ConcatMap a6989586621680404152 a6989586621680404153

type family ConcatMapSym2 (a6989586621680404152 :: a ~> [b]) (a6989586621680404153 :: t a) :: [b] where ... Source #

Equations

ConcatMapSym2 (a6989586621680404152 :: a ~> [b]) (a6989586621680404153 :: t a) = ConcatMap a6989586621680404152 a6989586621680404153 

data AndSym0 (a :: TyFun (t Bool) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AndSym0 :: TyFun (t Bool) Bool -> Type) #

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680404147 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680404147 :: t Bool) = And a6989586621680404147

type family AndSym1 (a6989586621680404147 :: t Bool) :: Bool where ... Source #

Equations

AndSym1 (a6989586621680404147 :: t Bool) = And a6989586621680404147 

data OrSym0 (a :: TyFun (t Bool) Bool) Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (OrSym0 :: TyFun (t Bool) Bool -> Type) #

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680404141 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680404141 :: t Bool) = Or a6989586621680404141

type family OrSym1 (a6989586621680404141 :: t Bool) :: Bool where ... Source #

Equations

OrSym1 (a6989586621680404141 :: t Bool) = Or a6989586621680404141 

data AnySym0 (a1 :: TyFun (a ~> Bool) (t a ~> Bool)) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680404133 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680404133 :: a ~> Bool) = AnySym1 a6989586621680404133 :: TyFun (t a) Bool -> Type

data AnySym1 (a6989586621680404133 :: a ~> Bool) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (AnySym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (AnySym1 a6989586621680404133 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680404133 :: TyFun (t a) Bool -> Type) (a6989586621680404134 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680404133 :: TyFun (t a) Bool -> Type) (a6989586621680404134 :: t a) = Any a6989586621680404133 a6989586621680404134

type family AnySym2 (a6989586621680404133 :: a ~> Bool) (a6989586621680404134 :: t a) :: Bool where ... Source #

Equations

AnySym2 (a6989586621680404133 :: a ~> Bool) (a6989586621680404134 :: t a) = Any a6989586621680404133 a6989586621680404134 

data AllSym0 (a1 :: TyFun (a ~> Bool) (t a ~> Bool)) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680404124 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680404124 :: a ~> Bool) = AllSym1 a6989586621680404124 :: TyFun (t a) Bool -> Type

data AllSym1 (a6989586621680404124 :: a ~> Bool) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (AllSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (AllSym1 a6989586621680404124 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680404124 :: TyFun (t a) Bool -> Type) (a6989586621680404125 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680404124 :: TyFun (t a) Bool -> Type) (a6989586621680404125 :: t a) = All a6989586621680404124 a6989586621680404125

type family AllSym2 (a6989586621680404124 :: a ~> Bool) (a6989586621680404125 :: t a) :: Bool where ... Source #

Equations

AllSym2 (a6989586621680404124 :: a ~> Bool) (a6989586621680404125 :: t a) = All a6989586621680404124 a6989586621680404125 

data SumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (SumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680404338 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680404338 :: t a) = Sum a6989586621680404338

type family SumSym1 (a6989586621680404338 :: t a) :: a where ... Source #

Equations

SumSym1 (a6989586621680404338 :: t a) = Sum a6989586621680404338 

data ProductSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ProductSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680404341 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680404341 :: t a) = Product a6989586621680404341

type family ProductSym1 (a6989586621680404341 :: t a) :: a where ... Source #

Equations

ProductSym1 (a6989586621680404341 :: t a) = Product a6989586621680404341 

data MaximumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680404332 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680404332 :: t a) = Maximum a6989586621680404332

type family MaximumSym1 (a6989586621680404332 :: t a) :: a where ... Source #

Equations

MaximumSym1 (a6989586621680404332 :: t a) = Maximum a6989586621680404332 

data MinimumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680404335 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680404335 :: t a) = Minimum a6989586621680404335

type family MinimumSym1 (a6989586621680404335 :: t a) :: a where ... Source #

Equations

MinimumSym1 (a6989586621680404335 :: t a) = Minimum a6989586621680404335 

data ScanlSym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b]))) Source #

Instances

Instances details
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) #

SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679824852 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679824852 :: b ~> (a ~> b)) = ScanlSym1 a6989586621679824852

data ScanlSym1 (a6989586621679824852 :: b ~> (a ~> b)) (b1 :: TyFun b ([a] ~> [b])) Source #

Instances

Instances details
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (ScanlSym1 x) #

SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym1 d) #

SuppressUnusedWarnings (ScanlSym1 a6989586621679824852 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679824852 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679824853 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679824852 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679824853 :: b) = ScanlSym2 a6989586621679824852 a6989586621679824853

data ScanlSym2 (a6989586621679824852 :: b ~> (a ~> b)) (a6989586621679824853 :: b) (c :: TyFun [a] [b]) Source #

Instances

Instances details
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b). Sing x -> Sing (ScanlSym2 d x) #

SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (ScanlSym2 x y) #

(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym2 d1 d2) #

SuppressUnusedWarnings (ScanlSym2 a6989586621679824852 a6989586621679824853 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679824852 a6989586621679824853 :: TyFun [a] [b] -> Type) (a6989586621679824854 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679824852 a6989586621679824853 :: TyFun [a] [b] -> Type) (a6989586621679824854 :: [a]) = Scanl a6989586621679824852 a6989586621679824853 a6989586621679824854

type family ScanlSym3 (a6989586621679824852 :: b ~> (a ~> b)) (a6989586621679824853 :: b) (a6989586621679824854 :: [a]) :: [b] where ... Source #

Equations

ScanlSym3 (a6989586621679824852 :: b ~> (a ~> b)) (a6989586621679824853 :: b) (a6989586621679824854 :: [a]) = Scanl a6989586621679824852 a6989586621679824853 a6989586621679824854 

data Scanl1Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679824843 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679824843 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679824843

data Scanl1Sym1 (a6989586621679824843 :: a ~> (a ~> a)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym1 d) #

SuppressUnusedWarnings (Scanl1Sym1 a6989586621679824843 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Scanl1Sym1 x) #

type Apply (Scanl1Sym1 a6989586621679824843 :: TyFun [a] [a] -> Type) (a6989586621679824844 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym1 a6989586621679824843 :: TyFun [a] [a] -> Type) (a6989586621679824844 :: [a]) = Scanl1 a6989586621679824843 a6989586621679824844

type family Scanl1Sym2 (a6989586621679824843 :: a ~> (a ~> a)) (a6989586621679824844 :: [a]) :: [a] where ... Source #

Equations

Scanl1Sym2 (a6989586621679824843 :: a ~> (a ~> a)) (a6989586621679824844 :: [a]) = Scanl1 a6989586621679824843 a6989586621679824844 

data ScanrSym0 (a1 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b]))) Source #

Instances

Instances details
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) #

SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679824825 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679824825 :: a ~> (b ~> b)) = ScanrSym1 a6989586621679824825

data ScanrSym1 (a6989586621679824825 :: a ~> (b ~> b)) (b1 :: TyFun b ([a] ~> [b])) Source #

Instances

Instances details
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> b)). Sing x -> Sing (ScanrSym1 x) #

SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym1 d) #

SuppressUnusedWarnings (ScanrSym1 a6989586621679824825 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679824825 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679824826 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679824825 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679824826 :: b) = ScanrSym2 a6989586621679824825 a6989586621679824826

data ScanrSym2 (a6989586621679824825 :: a ~> (b ~> b)) (a6989586621679824826 :: b) (c :: TyFun [a] [b]) Source #

Instances

Instances details
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b). Sing x -> Sing (ScanrSym2 d x) #

SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> b)) (y :: b). Sing x -> Sing y -> Sing (ScanrSym2 x y) #

(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym2 d1 d2) #

SuppressUnusedWarnings (ScanrSym2 a6989586621679824825 a6989586621679824826 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679824825 a6989586621679824826 :: TyFun [a] [b] -> Type) (a6989586621679824827 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679824825 a6989586621679824826 :: TyFun [a] [b] -> Type) (a6989586621679824827 :: [a]) = Scanr a6989586621679824825 a6989586621679824826 a6989586621679824827

type family ScanrSym3 (a6989586621679824825 :: a ~> (b ~> b)) (a6989586621679824826 :: b) (a6989586621679824827 :: [a]) :: [b] where ... Source #

Equations

ScanrSym3 (a6989586621679824825 :: a ~> (b ~> b)) (a6989586621679824826 :: b) (a6989586621679824827 :: [a]) = Scanr a6989586621679824825 a6989586621679824826 a6989586621679824827 

data Scanr1Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679824805 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679824805 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679824805

data Scanr1Sym1 (a6989586621679824805 :: a ~> (a ~> a)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym1 d) #

SuppressUnusedWarnings (Scanr1Sym1 a6989586621679824805 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Scanr1Sym1 x) #

type Apply (Scanr1Sym1 a6989586621679824805 :: TyFun [a] [a] -> Type) (a6989586621679824806 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym1 a6989586621679824805 :: TyFun [a] [a] -> Type) (a6989586621679824806 :: [a]) = Scanr1 a6989586621679824805 a6989586621679824806

type family Scanr1Sym2 (a6989586621679824805 :: a ~> (a ~> a)) (a6989586621679824806 :: [a]) :: [a] where ... Source #

Equations

Scanr1Sym2 (a6989586621679824805 :: a ~> (a ~> a)) (a6989586621679824806 :: [a]) = Scanr1 a6989586621679824805 a6989586621679824806 

data MapAccumLSym0 (a1 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c)))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) #

SuppressUnusedWarnings (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680756735 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680756735 :: a ~> (b ~> (a, c))) = MapAccumLSym1 a6989586621680756735 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumLSym1 (a6989586621680756735 :: a ~> (b ~> (a, c))) (b1 :: TyFun a (t b ~> (a, t c))) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumLSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> (a, c))). Sing x -> Sing (MapAccumLSym1 x :: TyFun a (t b ~> (a, t c)) -> Type) #

(STraversable t, SingI d) => SingI (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) #

SuppressUnusedWarnings (MapAccumLSym1 a6989586621680756735 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680756735 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680756736 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680756735 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680756736 :: a) = MapAccumLSym2 a6989586621680756735 a6989586621680756736 :: TyFun (t b) (a, t c) -> Type

data MapAccumLSym2 (a6989586621680756735 :: a ~> (b ~> (a, c))) (a6989586621680756736 :: a) (c1 :: TyFun (t b) (a, t c)) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumLSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MapAccumLSym2 d x :: TyFun (t b) (a, t c) -> Type) #

STraversable t => SingI2 (MapAccumLSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> (a, c))) (y :: a). Sing x -> Sing y -> Sing (MapAccumLSym2 x y :: TyFun (t b) (a, t c) -> Type) #

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) #

SuppressUnusedWarnings (MapAccumLSym2 a6989586621680756735 a6989586621680756736 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680756735 a6989586621680756736 :: TyFun (t b) (a, t c) -> Type) (a6989586621680756737 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680756735 a6989586621680756736 :: TyFun (t b) (a, t c) -> Type) (a6989586621680756737 :: t b) = MapAccumL a6989586621680756735 a6989586621680756736 a6989586621680756737

type family MapAccumLSym3 (a6989586621680756735 :: a ~> (b ~> (a, c))) (a6989586621680756736 :: a) (a6989586621680756737 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumLSym3 (a6989586621680756735 :: a ~> (b ~> (a, c))) (a6989586621680756736 :: a) (a6989586621680756737 :: t b) = MapAccumL a6989586621680756735 a6989586621680756736 a6989586621680756737 

data MapAccumRSym0 (a1 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c)))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) #

SuppressUnusedWarnings (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680756725 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680756725 :: a ~> (b ~> (a, c))) = MapAccumRSym1 a6989586621680756725 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumRSym1 (a6989586621680756725 :: a ~> (b ~> (a, c))) (b1 :: TyFun a (t b ~> (a, t c))) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumRSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> (a, c))). Sing x -> Sing (MapAccumRSym1 x :: TyFun a (t b ~> (a, t c)) -> Type) #

(STraversable t, SingI d) => SingI (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) #

SuppressUnusedWarnings (MapAccumRSym1 a6989586621680756725 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680756725 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680756726 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680756725 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680756726 :: a) = MapAccumRSym2 a6989586621680756725 a6989586621680756726 :: TyFun (t b) (a, t c) -> Type

data MapAccumRSym2 (a6989586621680756725 :: a ~> (b ~> (a, c))) (a6989586621680756726 :: a) (c1 :: TyFun (t b) (a, t c)) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumRSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MapAccumRSym2 d x :: TyFun (t b) (a, t c) -> Type) #

STraversable t => SingI2 (MapAccumRSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> (a, c))) (y :: a). Sing x -> Sing y -> Sing (MapAccumRSym2 x y :: TyFun (t b) (a, t c) -> Type) #

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) #

SuppressUnusedWarnings (MapAccumRSym2 a6989586621680756725 a6989586621680756726 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680756725 a6989586621680756726 :: TyFun (t b) (a, t c) -> Type) (a6989586621680756727 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680756725 a6989586621680756726 :: TyFun (t b) (a, t c) -> Type) (a6989586621680756727 :: t b) = MapAccumR a6989586621680756725 a6989586621680756726 a6989586621680756727

type family MapAccumRSym3 (a6989586621680756725 :: a ~> (b ~> (a, c))) (a6989586621680756726 :: a) (a6989586621680756727 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumRSym3 (a6989586621680756725 :: a ~> (b ~> (a, c))) (a6989586621680756726 :: a) (a6989586621680756727 :: t b) = MapAccumR a6989586621680756725 a6989586621680756726 a6989586621680756727 

data ReplicateSym0 (a1 :: TyFun Natural (a ~> [a])) Source #

Instances

Instances details
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) #

SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679823942 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679823942 :: Natural) = ReplicateSym1 a6989586621679823942 :: TyFun a [a] -> Type

data ReplicateSym1 (a6989586621679823942 :: Natural) (b :: TyFun a [a]) Source #

Instances

Instances details
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (ReplicateSym1 x :: TyFun a [a] -> Type) #

SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym1 d :: TyFun a [a] -> Type) #

SuppressUnusedWarnings (ReplicateSym1 a6989586621679823942 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679823942 :: TyFun a [a] -> Type) (a6989586621679823943 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679823942 :: TyFun a [a] -> Type) (a6989586621679823943 :: a) = Replicate a6989586621679823942 a6989586621679823943

type family ReplicateSym2 (a6989586621679823942 :: Natural) (a6989586621679823943 :: a) :: [a] where ... Source #

Equations

ReplicateSym2 a6989586621679823942 (a6989586621679823943 :: a) = Replicate a6989586621679823942 a6989586621679823943 

data UnfoldrSym0 (a1 :: TyFun (b ~> Maybe (a, b)) (b ~> [a])) Source #

Instances

Instances details
SingI (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) #

SuppressUnusedWarnings (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679824697 :: b ~> Maybe (a, b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679824697 :: b ~> Maybe (a, b)) = UnfoldrSym1 a6989586621679824697

data UnfoldrSym1 (a6989586621679824697 :: b ~> Maybe (a, b)) (b1 :: TyFun b [a]) Source #

Instances

Instances details
SingI1 (UnfoldrSym1 :: (b ~> Maybe (a, b)) -> TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b ~> Maybe (a, b)). Sing x -> Sing (UnfoldrSym1 x) #

SingI d => SingI (UnfoldrSym1 d :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym1 d) #

SuppressUnusedWarnings (UnfoldrSym1 a6989586621679824697 :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679824697 :: TyFun b [a] -> Type) (a6989586621679824698 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679824697 :: TyFun b [a] -> Type) (a6989586621679824698 :: b) = Unfoldr a6989586621679824697 a6989586621679824698

type family UnfoldrSym2 (a6989586621679824697 :: b ~> Maybe (a, b)) (a6989586621679824698 :: b) :: [a] where ... Source #

Equations

UnfoldrSym2 (a6989586621679824697 :: b ~> Maybe (a, b)) (a6989586621679824698 :: b) = Unfoldr a6989586621679824697 a6989586621679824698 

data TakeSym0 (a1 :: TyFun Natural ([a] ~> [a])) Source #

Instances

Instances details
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679824097 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679824097 :: Natural) = TakeSym1 a6989586621679824097 :: TyFun [a] [a] -> Type

data TakeSym1 (a6989586621679824097 :: Natural) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (TakeSym1 x :: TyFun [a] [a] -> Type) #

SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym1 d :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (TakeSym1 a6989586621679824097 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679824097 :: TyFun [a] [a] -> Type) (a6989586621679824098 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679824097 :: TyFun [a] [a] -> Type) (a6989586621679824098 :: [a]) = Take a6989586621679824097 a6989586621679824098

type family TakeSym2 (a6989586621679824097 :: Natural) (a6989586621679824098 :: [a]) :: [a] where ... Source #

Equations

TakeSym2 a6989586621679824097 (a6989586621679824098 :: [a]) = Take a6989586621679824097 a6989586621679824098 

data DropSym0 (a1 :: TyFun Natural ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679824084 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679824084 :: Natural) = DropSym1 a6989586621679824084 :: TyFun [a] [a] -> Type

data DropSym1 (a6989586621679824084 :: Natural) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (DropSym1 x :: TyFun [a] [a] -> Type) #

SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym1 d :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (DropSym1 a6989586621679824084 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679824084 :: TyFun [a] [a] -> Type) (a6989586621679824085 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679824084 :: TyFun [a] [a] -> Type) (a6989586621679824085 :: [a]) = Drop a6989586621679824084 a6989586621679824085

type family DropSym2 (a6989586621679824084 :: Natural) (a6989586621679824085 :: [a]) :: [a] where ... Source #

Equations

DropSym2 a6989586621679824084 (a6989586621679824085 :: [a]) = Drop a6989586621679824084 a6989586621679824085 

data SplitAtSym0 (a1 :: TyFun Natural ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679824077 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679824077 :: Natural) = SplitAtSym1 a6989586621679824077 :: TyFun [a] ([a], [a]) -> Type

data SplitAtSym1 (a6989586621679824077 :: Natural) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (SplitAtSym1 x :: TyFun [a] ([a], [a]) -> Type) #

SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) #

SuppressUnusedWarnings (SplitAtSym1 a6989586621679824077 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679824077 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824078 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679824077 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824078 :: [a]) = SplitAt a6989586621679824077 a6989586621679824078

type family SplitAtSym2 (a6989586621679824077 :: Natural) (a6989586621679824078 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAtSym2 a6989586621679824077 (a6989586621679824078 :: [a]) = SplitAt a6989586621679824077 a6989586621679824078 

data TakeWhileSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824214 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824214 :: a ~> Bool) = TakeWhileSym1 a6989586621679824214

data TakeWhileSym1 (a6989586621679824214 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym1 d) #

SuppressUnusedWarnings (TakeWhileSym1 a6989586621679824214 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (TakeWhileSym1 x) #

type Apply (TakeWhileSym1 a6989586621679824214 :: TyFun [a] [a] -> Type) (a6989586621679824215 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym1 a6989586621679824214 :: TyFun [a] [a] -> Type) (a6989586621679824215 :: [a]) = TakeWhile a6989586621679824214 a6989586621679824215

type family TakeWhileSym2 (a6989586621679824214 :: a ~> Bool) (a6989586621679824215 :: [a]) :: [a] where ... Source #

Equations

TakeWhileSym2 (a6989586621679824214 :: a ~> Bool) (a6989586621679824215 :: [a]) = TakeWhile a6989586621679824214 a6989586621679824215 

data DropWhileSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824199 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824199 :: a ~> Bool) = DropWhileSym1 a6989586621679824199

data DropWhileSym1 (a6989586621679824199 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym1 d) #

SuppressUnusedWarnings (DropWhileSym1 a6989586621679824199 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (DropWhileSym1 x) #

type Apply (DropWhileSym1 a6989586621679824199 :: TyFun [a] [a] -> Type) (a6989586621679824200 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym1 a6989586621679824199 :: TyFun [a] [a] -> Type) (a6989586621679824200 :: [a]) = DropWhile a6989586621679824199 a6989586621679824200

type family DropWhileSym2 (a6989586621679824199 :: a ~> Bool) (a6989586621679824200 :: [a]) :: [a] where ... Source #

Equations

DropWhileSym2 (a6989586621679824199 :: a ~> Bool) (a6989586621679824200 :: [a]) = DropWhile a6989586621679824199 a6989586621679824200 

data DropWhileEndSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824182 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824182 :: a ~> Bool) = DropWhileEndSym1 a6989586621679824182

data DropWhileEndSym1 (a6989586621679824182 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym1 d) #

SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679824182 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (DropWhileEndSym1 x) #

type Apply (DropWhileEndSym1 a6989586621679824182 :: TyFun [a] [a] -> Type) (a6989586621679824183 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym1 a6989586621679824182 :: TyFun [a] [a] -> Type) (a6989586621679824183 :: [a]) = DropWhileEnd a6989586621679824182 a6989586621679824183

type family DropWhileEndSym2 (a6989586621679824182 :: a ~> Bool) (a6989586621679824183 :: [a]) :: [a] where ... Source #

Equations

DropWhileEndSym2 (a6989586621679824182 :: a ~> Bool) (a6989586621679824183 :: [a]) = DropWhileEnd a6989586621679824182 a6989586621679824183 

data SpanSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679824145 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679824145 :: a ~> Bool) = SpanSym1 a6989586621679824145

data SpanSym1 (a6989586621679824145 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym1 d) #

SuppressUnusedWarnings (SpanSym1 a6989586621679824145 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (SpanSym1 x) #

type Apply (SpanSym1 a6989586621679824145 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824146 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym1 a6989586621679824145 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824146 :: [a]) = Span a6989586621679824145 a6989586621679824146

type family SpanSym2 (a6989586621679824145 :: a ~> Bool) (a6989586621679824146 :: [a]) :: ([a], [a]) where ... Source #

Equations

SpanSym2 (a6989586621679824145 :: a ~> Bool) (a6989586621679824146 :: [a]) = Span a6989586621679824145 a6989586621679824146 

data BreakSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679824110 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679824110 :: a ~> Bool) = BreakSym1 a6989586621679824110

data BreakSym1 (a6989586621679824110 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym1 d) #

SuppressUnusedWarnings (BreakSym1 a6989586621679824110 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (BreakSym1 x) #

type Apply (BreakSym1 a6989586621679824110 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824111 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym1 a6989586621679824110 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679824111 :: [a]) = Break a6989586621679824110 a6989586621679824111

type family BreakSym2 (a6989586621679824110 :: a ~> Bool) (a6989586621679824111 :: [a]) :: ([a], [a]) where ... Source #

Equations

BreakSym2 (a6989586621679824110 :: a ~> Bool) (a6989586621679824111 :: [a]) = Break a6989586621679824110 a6989586621679824111 

data StripPrefixSym0 (a1 :: TyFun [a] ([a] ~> Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679975077 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679975077 :: [a]) = StripPrefixSym1 a6989586621679975077

data StripPrefixSym1 (a6989586621679975077 :: [a]) (b :: TyFun [a] (Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym1 a6989586621679975077 :: TyFun [a] (Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679975077 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679975078 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679975077 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679975078 :: [a]) = StripPrefix a6989586621679975077 a6989586621679975078

type family StripPrefixSym2 (a6989586621679975077 :: [a]) (a6989586621679975078 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefixSym2 (a6989586621679975077 :: [a]) (a6989586621679975078 :: [a]) = StripPrefix a6989586621679975077 a6989586621679975078 

data GroupSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SEq a => SingI (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824072 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824072 :: [a]) = Group a6989586621679824072

type family GroupSym1 (a6989586621679824072 :: [a]) :: [[a]] where ... Source #

Equations

GroupSym1 (a6989586621679824072 :: [a]) = Group a6989586621679824072 

data InitsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InitsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824687 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824687 :: [a]) = Inits a6989586621679824687

type family InitsSym1 (a6989586621679824687 :: [a]) :: [[a]] where ... Source #

Equations

InitsSym1 (a6989586621679824687 :: [a]) = Inits a6989586621679824687 

data TailsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TailsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824679 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679824679 :: [a]) = Tails a6989586621679824679

type family TailsSym1 (a6989586621679824679 :: [a]) :: [[a]] where ... Source #

Equations

TailsSym1 (a6989586621679824679 :: [a]) = Tails a6989586621679824679 

data IsPrefixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824671 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824671 :: [a]) = IsPrefixOfSym1 a6989586621679824671

data IsPrefixOfSym1 (a6989586621679824671 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsPrefixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsPrefixOfSym1 x) #

(SEq a, SingI d) => SingI (IsPrefixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym1 d) #

SuppressUnusedWarnings (IsPrefixOfSym1 a6989586621679824671 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679824671 :: TyFun [a] Bool -> Type) (a6989586621679824672 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679824671 :: TyFun [a] Bool -> Type) (a6989586621679824672 :: [a]) = IsPrefixOf a6989586621679824671 a6989586621679824672

type family IsPrefixOfSym2 (a6989586621679824671 :: [a]) (a6989586621679824672 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOfSym2 (a6989586621679824671 :: [a]) (a6989586621679824672 :: [a]) = IsPrefixOf a6989586621679824671 a6989586621679824672 

data IsSuffixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824664 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824664 :: [a]) = IsSuffixOfSym1 a6989586621679824664

data IsSuffixOfSym1 (a6989586621679824664 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsSuffixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsSuffixOfSym1 x) #

(SEq a, SingI d) => SingI (IsSuffixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym1 d) #

SuppressUnusedWarnings (IsSuffixOfSym1 a6989586621679824664 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679824664 :: TyFun [a] Bool -> Type) (a6989586621679824665 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679824664 :: TyFun [a] Bool -> Type) (a6989586621679824665 :: [a]) = IsSuffixOf a6989586621679824664 a6989586621679824665

type family IsSuffixOfSym2 (a6989586621679824664 :: [a]) (a6989586621679824665 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOfSym2 (a6989586621679824664 :: [a]) (a6989586621679824665 :: [a]) = IsSuffixOf a6989586621679824664 a6989586621679824665 

data IsInfixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824657 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679824657 :: [a]) = IsInfixOfSym1 a6989586621679824657

data IsInfixOfSym1 (a6989586621679824657 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsInfixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsInfixOfSym1 x) #

(SEq a, SingI d) => SingI (IsInfixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym1 d) #

SuppressUnusedWarnings (IsInfixOfSym1 a6989586621679824657 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679824657 :: TyFun [a] Bool -> Type) (a6989586621679824658 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679824657 :: TyFun [a] Bool -> Type) (a6989586621679824658 :: [a]) = IsInfixOf a6989586621679824657 a6989586621679824658

type family IsInfixOfSym2 (a6989586621679824657 :: [a]) (a6989586621679824658 :: [a]) :: Bool where ... Source #

Equations

IsInfixOfSym2 (a6989586621679824657 :: [a]) (a6989586621679824658 :: [a]) = IsInfixOf a6989586621679824657 a6989586621679824658 

data ElemSym0 (a1 :: TyFun a (t a ~> Bool)) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680404328 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680404328 :: a) = ElemSym1 a6989586621680404328 :: TyFun (t a) Bool -> Type

data ElemSym1 (a6989586621680404328 :: a) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (ElemSym1 a6989586621680404328 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680404328 :: TyFun (t a) Bool -> Type) (a6989586621680404329 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680404328 :: TyFun (t a) Bool -> Type) (a6989586621680404329 :: t a) = Elem a6989586621680404328 a6989586621680404329

type family ElemSym2 (a6989586621680404328 :: a) (a6989586621680404329 :: t a) :: Bool where ... Source #

Equations

ElemSym2 (a6989586621680404328 :: a) (a6989586621680404329 :: t a) = Elem a6989586621680404328 a6989586621680404329 

data NotElemSym0 (a1 :: TyFun a (t a ~> Bool)) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680404075 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680404075 :: a) = NotElemSym1 a6989586621680404075 :: TyFun (t a) Bool -> Type

data NotElemSym1 (a6989586621680404075 :: a) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (NotElemSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (NotElemSym1 a6989586621680404075 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680404075 :: TyFun (t a) Bool -> Type) (a6989586621680404076 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680404075 :: TyFun (t a) Bool -> Type) (a6989586621680404076 :: t a) = NotElem a6989586621680404075 a6989586621680404076

type family NotElemSym2 (a6989586621680404075 :: a) (a6989586621680404076 :: t a) :: Bool where ... Source #

Equations

NotElemSym2 (a6989586621680404075 :: a) (a6989586621680404076 :: t a) = NotElem a6989586621680404075 a6989586621680404076 

data LookupSym0 (a1 :: TyFun a ([(a, b)] ~> Maybe b)) Source #

Instances

Instances details
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) #

SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679824005 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679824005 :: a) = LookupSym1 a6989586621679824005 :: TyFun [(a, b)] (Maybe b) -> Type

data LookupSym1 (a6989586621679824005 :: a) (b1 :: TyFun [(a, b)] (Maybe b)) Source #

Instances

Instances details
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (LookupSym1 x :: TyFun [(a, b)] (Maybe b) -> Type) #

(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) #

SuppressUnusedWarnings (LookupSym1 a6989586621679824005 :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679824005 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679824006 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679824005 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679824006 :: [(a, b)]) = Lookup a6989586621679824005 a6989586621679824006

type family LookupSym2 (a6989586621679824005 :: a) (a6989586621679824006 :: [(a, b)]) :: Maybe b where ... Source #

Equations

LookupSym2 (a6989586621679824005 :: a) (a6989586621679824006 :: [(a, b)]) = Lookup a6989586621679824005 a6989586621679824006 

data FindSym0 (a1 :: TyFun (a ~> Bool) (t a ~> Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) #

SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680404057 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680404057 :: a ~> Bool) = FindSym1 a6989586621680404057 :: TyFun (t a) (Maybe a) -> Type

data FindSym1 (a6989586621680404057 :: a ~> Bool) (b :: TyFun (t a) (Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI1 (FindSym1 :: (a ~> Bool) -> TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindSym1 x :: TyFun (t a) (Maybe a) -> Type) #

(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) #

SuppressUnusedWarnings (FindSym1 a6989586621680404057 :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680404057 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680404058 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680404057 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680404058 :: t a) = Find a6989586621680404057 a6989586621680404058

type family FindSym2 (a6989586621680404057 :: a ~> Bool) (a6989586621680404058 :: t a) :: Maybe a where ... Source #

Equations

FindSym2 (a6989586621680404057 :: a ~> Bool) (a6989586621680404058 :: t a) = Find a6989586621680404057 a6989586621680404058 

data FilterSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824314 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679824314 :: a ~> Bool) = FilterSym1 a6989586621679824314

data FilterSym1 (a6989586621679824314 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym1 d) #

SuppressUnusedWarnings (FilterSym1 a6989586621679824314 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FilterSym1 x) #

type Apply (FilterSym1 a6989586621679824314 :: TyFun [a] [a] -> Type) (a6989586621679824315 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym1 a6989586621679824314 :: TyFun [a] [a] -> Type) (a6989586621679824315 :: [a]) = Filter a6989586621679824314 a6989586621679824315

type family FilterSym2 (a6989586621679824314 :: a ~> Bool) (a6989586621679824315 :: [a]) :: [a] where ... Source #

Equations

FilterSym2 (a6989586621679824314 :: a ~> Bool) (a6989586621679824315 :: [a]) = Filter a6989586621679824314 a6989586621679824315 

data PartitionSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679823998 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679823998 :: a ~> Bool) = PartitionSym1 a6989586621679823998

data PartitionSym1 (a6989586621679823998 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (PartitionSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym1 d) #

SuppressUnusedWarnings (PartitionSym1 a6989586621679823998 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (PartitionSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (PartitionSym1 x) #

type Apply (PartitionSym1 a6989586621679823998 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679823999 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym1 a6989586621679823998 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679823999 :: [a]) = Partition a6989586621679823998 a6989586621679823999

type family PartitionSym2 (a6989586621679823998 :: a ~> Bool) (a6989586621679823999 :: [a]) :: ([a], [a]) where ... Source #

Equations

PartitionSym2 (a6989586621679823998 :: a ~> Bool) (a6989586621679823999 :: [a]) = Partition a6989586621679823998 a6989586621679823999 

data (!!@#@$) (a1 :: TyFun [a] (Natural ~> a)) infixl 9 Source #

Instances

Instances details
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) #

SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679823922 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679823922 :: [a]) = (!!@#@$$) a6989586621679823922

data (a6989586621679823922 :: [a]) !!@#@$$ (b :: TyFun Natural a) infixl 9 Source #

Instances

Instances details
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((!!@#@$$) x) #

SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$$) d) #

SuppressUnusedWarnings ((!!@#@$$) a6989586621679823922 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679823922 :: TyFun Natural a -> Type) (a6989586621679823923 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679823922 :: TyFun Natural a -> Type) (a6989586621679823923 :: Natural) = a6989586621679823922 !! a6989586621679823923

type family (a6989586621679823922 :: [a]) !!@#@$$$ (a6989586621679823923 :: Natural) :: a where ... infixl 9 Source #

Equations

(a6989586621679823922 :: [a]) !!@#@$$$ a6989586621679823923 = a6989586621679823922 !! a6989586621679823923 

data ElemIndexSym0 (a1 :: TyFun a ([a] ~> Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) #

SuppressUnusedWarnings (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679824298 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679824298 :: a) = ElemIndexSym1 a6989586621679824298

data ElemIndexSym1 (a6989586621679824298 :: a) (b :: TyFun [a] (Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndexSym1 :: a -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemIndexSym1 x) #

(SEq a, SingI d) => SingI (ElemIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym1 d) #

SuppressUnusedWarnings (ElemIndexSym1 a6989586621679824298 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679824298 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679824299 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679824298 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679824299 :: [a]) = ElemIndex a6989586621679824298 a6989586621679824299

type family ElemIndexSym2 (a6989586621679824298 :: a) (a6989586621679824299 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndexSym2 (a6989586621679824298 :: a) (a6989586621679824299 :: [a]) = ElemIndex a6989586621679824298 a6989586621679824299 

data ElemIndicesSym0 (a1 :: TyFun a ([a] ~> [Natural])) Source #

Instances

Instances details
SEq a => SingI (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) #

SuppressUnusedWarnings (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679824289 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679824289 :: a) = ElemIndicesSym1 a6989586621679824289

data ElemIndicesSym1 (a6989586621679824289 :: a) (b :: TyFun [a] [Natural]) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndicesSym1 :: a -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemIndicesSym1 x) #

(SEq a, SingI d) => SingI (ElemIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym1 d) #

SuppressUnusedWarnings (ElemIndicesSym1 a6989586621679824289 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679824289 :: TyFun [a] [Natural] -> Type) (a6989586621679824290 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679824289 :: TyFun [a] [Natural] -> Type) (a6989586621679824290 :: [a]) = ElemIndices a6989586621679824289 a6989586621679824290

type family ElemIndicesSym2 (a6989586621679824289 :: a) (a6989586621679824290 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndicesSym2 (a6989586621679824289 :: a) (a6989586621679824290 :: [a]) = ElemIndices a6989586621679824289 a6989586621679824290 

data FindIndexSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural)) Source #

Instances

Instances details
SingI (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) #

SuppressUnusedWarnings (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679824280 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679824280 :: a ~> Bool) = FindIndexSym1 a6989586621679824280

data FindIndexSym1 (a6989586621679824280 :: a ~> Bool) (b :: TyFun [a] (Maybe Natural)) Source #

Instances

Instances details
SingI d => SingI (FindIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym1 d) #

SuppressUnusedWarnings (FindIndexSym1 a6989586621679824280 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndexSym1 :: (a ~> Bool) -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindIndexSym1 x) #

type Apply (FindIndexSym1 a6989586621679824280 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679824281 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym1 a6989586621679824280 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679824281 :: [a]) = FindIndex a6989586621679824280 a6989586621679824281

type family FindIndexSym2 (a6989586621679824280 :: a ~> Bool) (a6989586621679824281 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndexSym2 (a6989586621679824280 :: a ~> Bool) (a6989586621679824281 :: [a]) = FindIndex a6989586621679824280 a6989586621679824281 

data FindIndicesSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [Natural])) Source #

Instances

Instances details
SingI (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) #

SuppressUnusedWarnings (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679824257 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679824257 :: a ~> Bool) = FindIndicesSym1 a6989586621679824257

data FindIndicesSym1 (a6989586621679824257 :: a ~> Bool) (b :: TyFun [a] [Natural]) Source #

Instances

Instances details
SingI d => SingI (FindIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym1 d) #

SuppressUnusedWarnings (FindIndicesSym1 a6989586621679824257 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndicesSym1 :: (a ~> Bool) -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindIndicesSym1 x) #

type Apply (FindIndicesSym1 a6989586621679824257 :: TyFun [a] [Natural] -> Type) (a6989586621679824258 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym1 a6989586621679824257 :: TyFun [a] [Natural] -> Type) (a6989586621679824258 :: [a]) = FindIndices a6989586621679824257 a6989586621679824258

type family FindIndicesSym2 (a6989586621679824257 :: a ~> Bool) (a6989586621679824258 :: [a]) :: [Natural] where ... Source #

Equations

FindIndicesSym2 (a6989586621679824257 :: a ~> Bool) (a6989586621679824258 :: [a]) = FindIndices a6989586621679824257 a6989586621679824258 

data ZipSym0 (a1 :: TyFun [a] ([b] ~> [(a, b)])) Source #

Instances

Instances details
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) #

SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679824632 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679824632 :: [a]) = ZipSym1 a6989586621679824632 :: TyFun [b] [(a, b)] -> Type

data ZipSym1 (a6989586621679824632 :: [a]) (b1 :: TyFun [b] [(a, b)]) Source #

Instances

Instances details
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipSym1 x :: TyFun [b] [(a, b)] -> Type) #

SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) #

SuppressUnusedWarnings (ZipSym1 a6989586621679824632 :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679824632 :: TyFun [b] [(a, b)] -> Type) (a6989586621679824633 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679824632 :: TyFun [b] [(a, b)] -> Type) (a6989586621679824633 :: [b]) = Zip a6989586621679824632 a6989586621679824633

type family ZipSym2 (a6989586621679824632 :: [a]) (a6989586621679824633 :: [b]) :: [(a, b)] where ... Source #

Equations

ZipSym2 (a6989586621679824632 :: [a]) (a6989586621679824633 :: [b]) = Zip a6989586621679824632 a6989586621679824633 

data Zip3Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)]))) Source #

Instances

Instances details
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) #

SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679824620 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679824620 :: [a]) = Zip3Sym1 a6989586621679824620 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type

data Zip3Sym1 (a6989586621679824620 :: [a]) (b1 :: TyFun [b] ([c] ~> [(a, b, c)])) Source #

Instances

Instances details
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (Zip3Sym1 x :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) #

SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) #

SuppressUnusedWarnings (Zip3Sym1 a6989586621679824620 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679824620 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679824621 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679824620 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679824621 :: [b]) = Zip3Sym2 a6989586621679824620 a6989586621679824621 :: TyFun [c] [(a, b, c)] -> Type

data Zip3Sym2 (a6989586621679824620 :: [a]) (a6989586621679824621 :: [b]) (c1 :: TyFun [c] [(a, b, c)]) Source #

Instances

Instances details
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: [a]) (y :: [b]). Sing x -> Sing y -> Sing (Zip3Sym2 x y :: TyFun [c] [(a, b, c)] -> Type) #

SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [b]). Sing x -> Sing (Zip3Sym2 d x :: TyFun [c] [(a, b, c)] -> Type) #

(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) #

SuppressUnusedWarnings (Zip3Sym2 a6989586621679824620 a6989586621679824621 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679824620 a6989586621679824621 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679824622 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679824620 a6989586621679824621 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679824622 :: [c]) = Zip3 a6989586621679824620 a6989586621679824621 a6989586621679824622

type family Zip3Sym3 (a6989586621679824620 :: [a]) (a6989586621679824621 :: [b]) (a6989586621679824622 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3Sym3 (a6989586621679824620 :: [a]) (a6989586621679824621 :: [b]) (a6989586621679824622 :: [c]) = Zip3 a6989586621679824620 a6989586621679824621 a6989586621679824622 

data Zip4Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679975066 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679975066 :: [a]) = Zip4Sym1 a6989586621679975066 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type

data Zip4Sym1 (a6989586621679975066 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym1 a6989586621679975066 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679975066 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679975067 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679975066 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679975067 :: [b]) = Zip4Sym2 a6989586621679975066 a6989586621679975067 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type

data Zip4Sym2 (a6989586621679975066 :: [a]) (a6989586621679975067 :: [b]) (c1 :: TyFun [c] ([d] ~> [(a, b, c, d)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym2 a6989586621679975066 a6989586621679975067 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679975066 a6989586621679975067 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679975068 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679975066 a6989586621679975067 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679975068 :: [c]) = Zip4Sym3 a6989586621679975066 a6989586621679975067 a6989586621679975068 :: TyFun [d] [(a, b, c, d)] -> Type

data Zip4Sym3 (a6989586621679975066 :: [a]) (a6989586621679975067 :: [b]) (a6989586621679975068 :: [c]) (d1 :: TyFun [d] [(a, b, c, d)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym3 a6989586621679975066 a6989586621679975067 a6989586621679975068 :: TyFun [d] [(a, b, c, d)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679975066 a6989586621679975067 a6989586621679975068 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679975069 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679975066 a6989586621679975067 a6989586621679975068 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679975069 :: [d]) = Zip4 a6989586621679975066 a6989586621679975067 a6989586621679975068 a6989586621679975069

type family Zip4Sym4 (a6989586621679975066 :: [a]) (a6989586621679975067 :: [b]) (a6989586621679975068 :: [c]) (a6989586621679975069 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4Sym4 (a6989586621679975066 :: [a]) (a6989586621679975067 :: [b]) (a6989586621679975068 :: [c]) (a6989586621679975069 :: [d]) = Zip4 a6989586621679975066 a6989586621679975067 a6989586621679975068 a6989586621679975069 

data Zip5Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679975043 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679975043 :: [a]) = Zip5Sym1 a6989586621679975043 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type

data Zip5Sym1 (a6989586621679975043 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym1 a6989586621679975043 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679975043 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679975044 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679975043 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679975044 :: [b]) = Zip5Sym2 a6989586621679975043 a6989586621679975044 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type

data Zip5Sym2 (a6989586621679975043 :: [a]) (a6989586621679975044 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym2 a6989586621679975043 a6989586621679975044 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679975043 a6989586621679975044 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679975045 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679975043 a6989586621679975044 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679975045 :: [c]) = Zip5Sym3 a6989586621679975043 a6989586621679975044 a6989586621679975045 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type

data Zip5Sym3 (a6989586621679975043 :: [a]) (a6989586621679975044 :: [b]) (a6989586621679975045 :: [c]) (d1 :: TyFun [d] ([e] ~> [(a, b, c, d, e)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym3 a6989586621679975043 a6989586621679975044 a6989586621679975045 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679975043 a6989586621679975044 a6989586621679975045 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679975046 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679975043 a6989586621679975044 a6989586621679975045 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679975046 :: [d]) = Zip5Sym4 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 :: TyFun [e] [(a, b, c, d, e)] -> Type

data Zip5Sym4 (a6989586621679975043 :: [a]) (a6989586621679975044 :: [b]) (a6989586621679975045 :: [c]) (a6989586621679975046 :: [d]) (e1 :: TyFun [e] [(a, b, c, d, e)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym4 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 :: TyFun [e] [(a, b, c, d, e)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679975047 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679975047 :: [e]) = Zip5 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 a6989586621679975047

type family Zip5Sym5 (a6989586621679975043 :: [a]) (a6989586621679975044 :: [b]) (a6989586621679975045 :: [c]) (a6989586621679975046 :: [d]) (a6989586621679975047 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5Sym5 (a6989586621679975043 :: [a]) (a6989586621679975044 :: [b]) (a6989586621679975045 :: [c]) (a6989586621679975046 :: [d]) (a6989586621679975047 :: [e]) = Zip5 a6989586621679975043 a6989586621679975044 a6989586621679975045 a6989586621679975046 a6989586621679975047 

data Zip6Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679975015 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679975015 :: [a]) = Zip6Sym1 a6989586621679975015 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type

data Zip6Sym1 (a6989586621679975015 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym1 a6989586621679975015 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679975015 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679975016 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679975015 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679975016 :: [b]) = Zip6Sym2 a6989586621679975015 a6989586621679975016 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type

data Zip6Sym2 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym2 a6989586621679975015 a6989586621679975016 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679975015 a6989586621679975016 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679975017 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679975015 a6989586621679975016 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679975017 :: [c]) = Zip6Sym3 a6989586621679975015 a6989586621679975016 a6989586621679975017 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type

data Zip6Sym3 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (a6989586621679975017 :: [c]) (d1 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym3 a6989586621679975015 a6989586621679975016 a6989586621679975017 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679975015 a6989586621679975016 a6989586621679975017 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679975018 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679975015 a6989586621679975016 a6989586621679975017 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679975018 :: [d]) = Zip6Sym4 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type

data Zip6Sym4 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (a6989586621679975017 :: [c]) (a6989586621679975018 :: [d]) (e1 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym4 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679975019 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679975019 :: [e]) = Zip6Sym5 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 :: TyFun [f] [(a, b, c, d, e, f)] -> Type

data Zip6Sym5 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (a6989586621679975017 :: [c]) (a6989586621679975018 :: [d]) (a6989586621679975019 :: [e]) (f1 :: TyFun [f] [(a, b, c, d, e, f)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym5 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679975020 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679975020 :: [f]) = Zip6 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 a6989586621679975020

type family Zip6Sym6 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (a6989586621679975017 :: [c]) (a6989586621679975018 :: [d]) (a6989586621679975019 :: [e]) (a6989586621679975020 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6Sym6 (a6989586621679975015 :: [a]) (a6989586621679975016 :: [b]) (a6989586621679975017 :: [c]) (a6989586621679975018 :: [d]) (a6989586621679975019 :: [e]) (a6989586621679975020 :: [f]) = Zip6 a6989586621679975015 a6989586621679975016 a6989586621679975017 a6989586621679975018 a6989586621679975019 a6989586621679975020 

data Zip7Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679974982 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679974982 :: [a]) = Zip7Sym1 a6989586621679974982 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type

data Zip7Sym1 (a6989586621679974982 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym1 a6989586621679974982 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679974982 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679974983 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679974982 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679974983 :: [b]) = Zip7Sym2 a6989586621679974982 a6989586621679974983 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type

data Zip7Sym2 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym2 a6989586621679974982 a6989586621679974983 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679974982 a6989586621679974983 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679974984 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679974982 a6989586621679974983 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679974984 :: [c]) = Zip7Sym3 a6989586621679974982 a6989586621679974983 a6989586621679974984 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type

data Zip7Sym3 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (d1 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym3 a6989586621679974982 a6989586621679974983 a6989586621679974984 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679974982 a6989586621679974983 a6989586621679974984 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679974985 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679974982 a6989586621679974983 a6989586621679974984 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679974985 :: [d]) = Zip7Sym4 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type

data Zip7Sym4 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (a6989586621679974985 :: [d]) (e1 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym4 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679974986 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679974986 :: [e]) = Zip7Sym5 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type

data Zip7Sym5 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (a6989586621679974985 :: [d]) (a6989586621679974986 :: [e]) (f1 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym5 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679974987 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679974987 :: [f]) = Zip7Sym6 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type

data Zip7Sym6 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (a6989586621679974985 :: [d]) (a6989586621679974986 :: [e]) (a6989586621679974987 :: [f]) (g1 :: TyFun [g] [(a, b, c, d, e, f, g)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym6 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679974988 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679974988 :: [g]) = Zip7 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 a6989586621679974988

type family Zip7Sym7 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (a6989586621679974985 :: [d]) (a6989586621679974986 :: [e]) (a6989586621679974987 :: [f]) (a6989586621679974988 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7Sym7 (a6989586621679974982 :: [a]) (a6989586621679974983 :: [b]) (a6989586621679974984 :: [c]) (a6989586621679974985 :: [d]) (a6989586621679974986 :: [e]) (a6989586621679974987 :: [f]) (a6989586621679974988 :: [g]) = Zip7 a6989586621679974982 a6989586621679974983 a6989586621679974984 a6989586621679974985 a6989586621679974986 a6989586621679974987 a6989586621679974988 

data ZipWithSym0 (a1 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c]))) Source #

Instances

Instances details
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) #

SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679824608 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679824608 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679824608

data ZipWithSym1 (a6989586621679824608 :: a ~> (b ~> c)) (b1 :: TyFun [a] ([b] ~> [c])) Source #

Instances

Instances details
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> c)). Sing x -> Sing (ZipWithSym1 x) #

SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym1 d) #

SuppressUnusedWarnings (ZipWithSym1 a6989586621679824608 :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679824608 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679824609 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679824608 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679824609 :: [a]) = ZipWithSym2 a6989586621679824608 a6989586621679824609

data ZipWithSym2 (a6989586621679824608 :: a ~> (b ~> c)) (a6989586621679824609 :: [a]) (c1 :: TyFun [b] [c]) Source #

Instances

Instances details
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWithSym2 d x) #

SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> c)) (y :: [a]). Sing x -> Sing y -> Sing (ZipWithSym2 x y) #

(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym2 d1 d2) #

SuppressUnusedWarnings (ZipWithSym2 a6989586621679824608 a6989586621679824609 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679824608 a6989586621679824609 :: TyFun [b] [c] -> Type) (a6989586621679824610 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679824608 a6989586621679824609 :: TyFun [b] [c] -> Type) (a6989586621679824610 :: [b]) = ZipWith a6989586621679824608 a6989586621679824609 a6989586621679824610

type family ZipWithSym3 (a6989586621679824608 :: a ~> (b ~> c)) (a6989586621679824609 :: [a]) (a6989586621679824610 :: [b]) :: [c] where ... Source #

Equations

ZipWithSym3 (a6989586621679824608 :: a ~> (b ~> c)) (a6989586621679824609 :: [a]) (a6989586621679824610 :: [b]) = ZipWith a6989586621679824608 a6989586621679824609 a6989586621679824610 

data ZipWith3Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d])))) Source #

Instances

Instances details
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) #

SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679824593 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679824593 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679824593

data ZipWith3Sym1 (a6989586621679824593 :: a ~> (b ~> (c ~> d))) (b1 :: TyFun [a] ([b] ~> ([c] ~> [d]))) Source #

Instances

Instances details
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> (c ~> d))). Sing x -> Sing (ZipWith3Sym1 x) #

SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym1 d2) #

SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679824593 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679824593 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679824594 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679824593 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679824594 :: [a]) = ZipWith3Sym2 a6989586621679824593 a6989586621679824594

data ZipWith3Sym2 (a6989586621679824593 :: a ~> (b ~> (c ~> d))) (a6989586621679824594 :: [a]) (c1 :: TyFun [b] ([c] ~> [d])) Source #

Instances

Instances details
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWith3Sym2 d2 x) #

SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> (c ~> d))) (y :: [a]). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y) #

(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym2 d2 d3) #

SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679824593 a6989586621679824594 :: TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679824593 a6989586621679824594 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679824595 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679824593 a6989586621679824594 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679824595 :: [b]) = ZipWith3Sym3 a6989586621679824593 a6989586621679824594 a6989586621679824595

data ZipWith3Sym3 (a6989586621679824593 :: a ~> (b ~> (c ~> d))) (a6989586621679824594 :: [a]) (a6989586621679824595 :: [b]) (d1 :: TyFun [c] [d]) Source #

Instances

Instances details
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: [a]) (y :: [b]). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y) #

(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [b]). Sing x -> Sing (ZipWith3Sym3 d2 d3 x) #

(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym3 d2 d3 d4) #

SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679824593 a6989586621679824594 a6989586621679824595 :: TyFun [c] [d] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679824593 a6989586621679824594 a6989586621679824595 :: TyFun [c] [d] -> Type) (a6989586621679824596 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679824593 a6989586621679824594 a6989586621679824595 :: TyFun [c] [d] -> Type) (a6989586621679824596 :: [c]) = ZipWith3 a6989586621679824593 a6989586621679824594 a6989586621679824595 a6989586621679824596

type family ZipWith3Sym4 (a6989586621679824593 :: a ~> (b ~> (c ~> d))) (a6989586621679824594 :: [a]) (a6989586621679824595 :: [b]) (a6989586621679824596 :: [c]) :: [d] where ... Source #

Equations

ZipWith3Sym4 (a6989586621679824593 :: a ~> (b ~> (c ~> d))) (a6989586621679824594 :: [a]) (a6989586621679824595 :: [b]) (a6989586621679824596 :: [c]) = ZipWith3 a6989586621679824593 a6989586621679824594 a6989586621679824595 a6989586621679824596 

data ZipWith4Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) = ZipWith4Sym1 a6989586621679974946

data ZipWith4Sym1 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym1 a6989586621679974946 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679974946 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679974947 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679974946 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679974947 :: [a]) = ZipWith4Sym2 a6989586621679974946 a6989586621679974947

data ZipWith4Sym2 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679974947 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> [e]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym2 a6989586621679974946 a6989586621679974947 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679974946 a6989586621679974947 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679974948 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679974946 a6989586621679974947 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679974948 :: [b]) = ZipWith4Sym3 a6989586621679974946 a6989586621679974947 a6989586621679974948

data ZipWith4Sym3 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679974947 :: [a]) (a6989586621679974948 :: [b]) (d1 :: TyFun [c] ([d] ~> [e])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym3 a6989586621679974946 a6989586621679974947 a6989586621679974948 :: TyFun [c] ([d] ~> [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679974946 a6989586621679974947 a6989586621679974948 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679974949 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679974946 a6989586621679974947 a6989586621679974948 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679974949 :: [c]) = ZipWith4Sym4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949

data ZipWith4Sym4 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679974947 :: [a]) (a6989586621679974948 :: [b]) (a6989586621679974949 :: [c]) (e1 :: TyFun [d] [e]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949 :: TyFun [d] [e] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949 :: TyFun [d] [e] -> Type) (a6989586621679974950 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949 :: TyFun [d] [e] -> Type) (a6989586621679974950 :: [d]) = ZipWith4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949 a6989586621679974950

type family ZipWith4Sym5 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679974947 :: [a]) (a6989586621679974948 :: [b]) (a6989586621679974949 :: [c]) (a6989586621679974950 :: [d]) :: [e] where ... Source #

Equations

ZipWith4Sym5 (a6989586621679974946 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679974947 :: [a]) (a6989586621679974948 :: [b]) (a6989586621679974949 :: [c]) (a6989586621679974950 :: [d]) = ZipWith4 a6989586621679974946 a6989586621679974947 a6989586621679974948 a6989586621679974949 a6989586621679974950 

data ZipWith5Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) = ZipWith5Sym1 a6989586621679974923

data ZipWith5Sym1 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym1 a6989586621679974923 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679974923 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679974924 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679974923 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679974924 :: [a]) = ZipWith5Sym2 a6989586621679974923 a6989586621679974924

data ZipWith5Sym2 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym2 a6989586621679974923 a6989586621679974924 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679974923 a6989586621679974924 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679974925 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679974923 a6989586621679974924 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679974925 :: [b]) = ZipWith5Sym3 a6989586621679974923 a6989586621679974924 a6989586621679974925

data ZipWith5Sym3 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (a6989586621679974925 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> [f]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym3 a6989586621679974923 a6989586621679974924 a6989586621679974925 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679974923 a6989586621679974924 a6989586621679974925 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679974926 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679974923 a6989586621679974924 a6989586621679974925 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679974926 :: [c]) = ZipWith5Sym4 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926

data ZipWith5Sym4 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (a6989586621679974925 :: [b]) (a6989586621679974926 :: [c]) (e1 :: TyFun [d] ([e] ~> [f])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym4 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 :: TyFun [d] ([e] ~> [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679974927 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679974927 :: [d]) = ZipWith5Sym5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927

data ZipWith5Sym5 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (a6989586621679974925 :: [b]) (a6989586621679974926 :: [c]) (a6989586621679974927 :: [d]) (f1 :: TyFun [e] [f]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927 :: TyFun [e] [f] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927 :: TyFun [e] [f] -> Type) (a6989586621679974928 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927 :: TyFun [e] [f] -> Type) (a6989586621679974928 :: [e]) = ZipWith5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927 a6989586621679974928

type family ZipWith5Sym6 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (a6989586621679974925 :: [b]) (a6989586621679974926 :: [c]) (a6989586621679974927 :: [d]) (a6989586621679974928 :: [e]) :: [f] where ... Source #

Equations

ZipWith5Sym6 (a6989586621679974923 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679974924 :: [a]) (a6989586621679974925 :: [b]) (a6989586621679974926 :: [c]) (a6989586621679974927 :: [d]) (a6989586621679974928 :: [e]) = ZipWith5 a6989586621679974923 a6989586621679974924 a6989586621679974925 a6989586621679974926 a6989586621679974927 a6989586621679974928 

data ZipWith6Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) = ZipWith6Sym1 a6989586621679974896

data ZipWith6Sym1 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym1 a6989586621679974896 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679974896 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679974897 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679974896 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679974897 :: [a]) = ZipWith6Sym2 a6989586621679974896 a6989586621679974897

data ZipWith6Sym2 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym2 a6989586621679974896 a6989586621679974897 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679974896 a6989586621679974897 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679974898 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679974896 a6989586621679974897 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679974898 :: [b]) = ZipWith6Sym3 a6989586621679974896 a6989586621679974897 a6989586621679974898

data ZipWith6Sym3 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym3 a6989586621679974896 a6989586621679974897 a6989586621679974898 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679974896 a6989586621679974897 a6989586621679974898 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679974899 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679974896 a6989586621679974897 a6989586621679974898 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679974899 :: [c]) = ZipWith6Sym4 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899

data ZipWith6Sym4 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (a6989586621679974899 :: [c]) (e1 :: TyFun [d] ([e] ~> ([f] ~> [g]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym4 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679974900 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679974900 :: [d]) = ZipWith6Sym5 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900

data ZipWith6Sym5 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (a6989586621679974899 :: [c]) (a6989586621679974900 :: [d]) (f1 :: TyFun [e] ([f] ~> [g])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym5 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 :: TyFun [e] ([f] ~> [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679974901 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679974901 :: [e]) = ZipWith6Sym6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901

data ZipWith6Sym6 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (a6989586621679974899 :: [c]) (a6989586621679974900 :: [d]) (a6989586621679974901 :: [e]) (g1 :: TyFun [f] [g]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901 :: TyFun [f] [g] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901 :: TyFun [f] [g] -> Type) (a6989586621679974902 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901 :: TyFun [f] [g] -> Type) (a6989586621679974902 :: [f]) = ZipWith6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901 a6989586621679974902

type family ZipWith6Sym7 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (a6989586621679974899 :: [c]) (a6989586621679974900 :: [d]) (a6989586621679974901 :: [e]) (a6989586621679974902 :: [f]) :: [g] where ... Source #

Equations

ZipWith6Sym7 (a6989586621679974896 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679974897 :: [a]) (a6989586621679974898 :: [b]) (a6989586621679974899 :: [c]) (a6989586621679974900 :: [d]) (a6989586621679974901 :: [e]) (a6989586621679974902 :: [f]) = ZipWith6 a6989586621679974896 a6989586621679974897 a6989586621679974898 a6989586621679974899 a6989586621679974900 a6989586621679974901 a6989586621679974902 

data ZipWith7Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) = ZipWith7Sym1 a6989586621679974865

data ZipWith7Sym1 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym1 a6989586621679974865 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679974865 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679974866 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679974865 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679974866 :: [a]) = ZipWith7Sym2 a6989586621679974865 a6989586621679974866

data ZipWith7Sym2 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym2 a6989586621679974865 a6989586621679974866 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679974865 a6989586621679974866 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679974867 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679974865 a6989586621679974866 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679974867 :: [b]) = ZipWith7Sym3 a6989586621679974865 a6989586621679974866 a6989586621679974867

data ZipWith7Sym3 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym3 a6989586621679974865 a6989586621679974866 a6989586621679974867 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679974865 a6989586621679974866 a6989586621679974867 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679974868 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679974865 a6989586621679974866 a6989586621679974867 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679974868 :: [c]) = ZipWith7Sym4 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868

data ZipWith7Sym4 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (e1 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym4 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679974869 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679974869 :: [d]) = ZipWith7Sym5 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869

data ZipWith7Sym5 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (a6989586621679974869 :: [d]) (f1 :: TyFun [e] ([f] ~> ([g] ~> [h]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym5 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679974870 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679974870 :: [e]) = ZipWith7Sym6 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870

data ZipWith7Sym6 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (a6989586621679974869 :: [d]) (a6989586621679974870 :: [e]) (g1 :: TyFun [f] ([g] ~> [h])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym6 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 :: TyFun [f] ([g] ~> [h]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679974871 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679974871 :: [f]) = ZipWith7Sym7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871

data ZipWith7Sym7 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (a6989586621679974869 :: [d]) (a6989586621679974870 :: [e]) (a6989586621679974871 :: [f]) (h1 :: TyFun [g] [h]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871 :: TyFun [g] [h] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871 :: TyFun [g] [h] -> Type) (a6989586621679974872 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871 :: TyFun [g] [h] -> Type) (a6989586621679974872 :: [g]) = ZipWith7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871 a6989586621679974872

type family ZipWith7Sym8 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (a6989586621679974869 :: [d]) (a6989586621679974870 :: [e]) (a6989586621679974871 :: [f]) (a6989586621679974872 :: [g]) :: [h] where ... Source #

Equations

ZipWith7Sym8 (a6989586621679974865 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679974866 :: [a]) (a6989586621679974867 :: [b]) (a6989586621679974868 :: [c]) (a6989586621679974869 :: [d]) (a6989586621679974870 :: [e]) (a6989586621679974871 :: [f]) (a6989586621679974872 :: [g]) = ZipWith7 a6989586621679974865 a6989586621679974866 a6989586621679974867 a6989586621679974868 a6989586621679974869 a6989586621679974870 a6989586621679974871 a6989586621679974872 

data UnzipSym0 (a1 :: TyFun [(a, b)] ([a], [b])) Source #

Instances

Instances details
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) #

SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679824574 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679824574 :: [(a, b)]) = Unzip a6989586621679824574

type family UnzipSym1 (a6989586621679824574 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

UnzipSym1 (a6989586621679824574 :: [(a, b)]) = Unzip a6989586621679824574 

data Unzip3Sym0 (a1 :: TyFun [(a, b, c)] ([a], [b], [c])) Source #

Instances

Instances details
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) #

SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679824556 :: [(a, b, c)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679824556 :: [(a, b, c)]) = Unzip3 a6989586621679824556

type family Unzip3Sym1 (a6989586621679824556 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3Sym1 (a6989586621679824556 :: [(a, b, c)]) = Unzip3 a6989586621679824556 

data Unzip4Sym0 (a1 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d])) Source #

Instances

Instances details
SingI (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) #

SuppressUnusedWarnings (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679824536 :: [(a, b, c, d)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679824536 :: [(a, b, c, d)]) = Unzip4 a6989586621679824536

type family Unzip4Sym1 (a6989586621679824536 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4Sym1 (a6989586621679824536 :: [(a, b, c, d)]) = Unzip4 a6989586621679824536 

data Unzip5Sym0 (a1 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e])) Source #

Instances

Instances details
SingI (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) #

SuppressUnusedWarnings (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679824514 :: [(a, b, c, d, e)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679824514 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679824514

type family Unzip5Sym1 (a6989586621679824514 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5Sym1 (a6989586621679824514 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679824514 

data Unzip6Sym0 (a1 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f])) Source #

Instances

Instances details
SingI (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) #

SuppressUnusedWarnings (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679824490 :: [(a, b, c, d, e, f)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679824490 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679824490

type family Unzip6Sym1 (a6989586621679824490 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6Sym1 (a6989586621679824490 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679824490 

data Unzip7Sym0 (a1 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g])) Source #

Instances

Instances details
SingI (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) #

SuppressUnusedWarnings (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679824464 :: [(a, b, c, d, e, f, g)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679824464 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679824464

type family Unzip7Sym1 (a6989586621679824464 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7Sym1 (a6989586621679824464 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679824464 

data UnlinesSym0 (a :: TyFun [Symbol] Symbol) Source #

Instances

Instances details
SingI UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679824459 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679824459 :: [Symbol]) = Unlines a6989586621679824459

type family UnlinesSym1 (a6989586621679824459 :: [Symbol]) :: Symbol where ... Source #

Equations

UnlinesSym1 a6989586621679824459 = Unlines a6989586621679824459 

data UnwordsSym0 (a :: TyFun [Symbol] Symbol) Source #

Instances

Instances details
SingI UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679824449 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679824449 :: [Symbol]) = Unwords a6989586621679824449

type family UnwordsSym1 (a6989586621679824449 :: [Symbol]) :: Symbol where ... Source #

Equations

UnwordsSym1 a6989586621679824449 = Unwords a6989586621679824449 

data NubSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679823905 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679823905 :: [a]) = Nub a6989586621679823905

type family NubSym1 (a6989586621679823905 :: [a]) :: [a] where ... Source #

Equations

NubSym1 (a6989586621679823905 :: [a]) = Nub a6989586621679823905 

data DeleteSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824443 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824443 :: a) = DeleteSym1 a6989586621679824443

data DeleteSym1 (a6989586621679824443 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (DeleteSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (DeleteSym1 x) #

(SEq a, SingI d) => SingI (DeleteSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym1 d) #

SuppressUnusedWarnings (DeleteSym1 a6989586621679824443 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679824443 :: TyFun [a] [a] -> Type) (a6989586621679824444 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679824443 :: TyFun [a] [a] -> Type) (a6989586621679824444 :: [a]) = Delete a6989586621679824443 a6989586621679824444

type family DeleteSym2 (a6989586621679824443 :: a) (a6989586621679824444 :: [a]) :: [a] where ... Source #

Equations

DeleteSym2 (a6989586621679824443 :: a) (a6989586621679824444 :: [a]) = Delete a6989586621679824443 a6989586621679824444 

data (\\@#@$) (a1 :: TyFun [a] ([a] ~> [a])) infix 5 Source #

Instances

Instances details
SEq a => SingI ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824432 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824432 :: [a]) = (\\@#@$$) a6989586621679824432

data (a6989586621679824432 :: [a]) \\@#@$$ (b :: TyFun [a] [a]) infix 5 Source #

Instances

Instances details
SEq a => SingI1 ((\\@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((\\@#@$$) x) #

(SEq a, SingI d) => SingI ((\\@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$$) d) #

SuppressUnusedWarnings ((\\@#@$$) a6989586621679824432 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679824432 :: TyFun [a] [a] -> Type) (a6989586621679824433 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679824432 :: TyFun [a] [a] -> Type) (a6989586621679824433 :: [a]) = a6989586621679824432 \\ a6989586621679824433

type family (a6989586621679824432 :: [a]) \\@#@$$$ (a6989586621679824433 :: [a]) :: [a] where ... infix 5 Source #

Equations

(a6989586621679824432 :: [a]) \\@#@$$$ (a6989586621679824433 :: [a]) = a6989586621679824432 \\ a6989586621679824433 

data UnionSym0 (a1 :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679823859 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679823859 :: [a]) = UnionSym1 a6989586621679823859

data UnionSym1 (a6989586621679823859 :: [a]) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (UnionSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (UnionSym1 x) #

(SEq a, SingI d) => SingI (UnionSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym1 d) #

SuppressUnusedWarnings (UnionSym1 a6989586621679823859 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679823859 :: TyFun [a] [a] -> Type) (a6989586621679823860 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679823859 :: TyFun [a] [a] -> Type) (a6989586621679823860 :: [a]) = Union a6989586621679823859 a6989586621679823860

type family UnionSym2 (a6989586621679823859 :: [a]) (a6989586621679823860 :: [a]) :: [a] where ... Source #

Equations

UnionSym2 (a6989586621679823859 :: [a]) (a6989586621679823860 :: [a]) = Union a6989586621679823859 a6989586621679823860 

data IntersectSym0 (a1 :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824250 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824250 :: [a]) = IntersectSym1 a6989586621679824250

data IntersectSym1 (a6989586621679824250 :: [a]) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (IntersectSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntersectSym1 x) #

(SEq a, SingI d) => SingI (IntersectSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym1 d) #

SuppressUnusedWarnings (IntersectSym1 a6989586621679824250 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679824250 :: TyFun [a] [a] -> Type) (a6989586621679824251 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679824250 :: TyFun [a] [a] -> Type) (a6989586621679824251 :: [a]) = Intersect a6989586621679824250 a6989586621679824251

type family IntersectSym2 (a6989586621679824250 :: [a]) (a6989586621679824251 :: [a]) :: [a] where ... Source #

Equations

IntersectSym2 (a6989586621679824250 :: [a]) (a6989586621679824251 :: [a]) = Intersect a6989586621679824250 a6989586621679824251 

data InsertSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SOrd a => SingI (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824052 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824052 :: a) = InsertSym1 a6989586621679824052

data InsertSym1 (a6989586621679824052 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SOrd a => SingI1 (InsertSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (InsertSym1 x) #

(SOrd a, SingI d) => SingI (InsertSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym1 d) #

SuppressUnusedWarnings (InsertSym1 a6989586621679824052 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679824052 :: TyFun [a] [a] -> Type) (a6989586621679824053 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679824052 :: TyFun [a] [a] -> Type) (a6989586621679824053 :: [a]) = Insert a6989586621679824052 a6989586621679824053

type family InsertSym2 (a6989586621679824052 :: a) (a6989586621679824053 :: [a]) :: [a] where ... Source #

Equations

InsertSym2 (a6989586621679824052 :: a) (a6989586621679824053 :: [a]) = Insert a6989586621679824052 a6989586621679824053 

data SortSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SOrd a => SingI (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679824047 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679824047 :: [a]) = Sort a6989586621679824047

type family SortSym1 (a6989586621679824047 :: [a]) :: [a] where ... Source #

Equations

SortSym1 (a6989586621679824047 :: [a]) = Sort a6989586621679824047 

data NubBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679823887 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679823887 :: a ~> (a ~> Bool)) = NubBySym1 a6989586621679823887

data NubBySym1 (a6989586621679823887 :: a ~> (a ~> Bool)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (NubBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym1 d) #

SuppressUnusedWarnings (NubBySym1 a6989586621679823887 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (NubBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (NubBySym1 x) #

type Apply (NubBySym1 a6989586621679823887 :: TyFun [a] [a] -> Type) (a6989586621679823888 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym1 a6989586621679823887 :: TyFun [a] [a] -> Type) (a6989586621679823888 :: [a]) = NubBy a6989586621679823887 a6989586621679823888

type family NubBySym2 (a6989586621679823887 :: a ~> (a ~> Bool)) (a6989586621679823888 :: [a]) :: [a] where ... Source #

Equations

NubBySym2 (a6989586621679823887 :: a ~> (a ~> Bool)) (a6989586621679823888 :: [a]) = NubBy a6989586621679823887 a6989586621679823888 

data DeleteBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679824413 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679824413 :: a ~> (a ~> Bool)) = DeleteBySym1 a6989586621679824413

data DeleteBySym1 (a6989586621679824413 :: a ~> (a ~> Bool)) (b :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (DeleteBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym1 d) #

SuppressUnusedWarnings (DeleteBySym1 a6989586621679824413 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteBySym1 :: (a ~> (a ~> Bool)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (DeleteBySym1 x) #

type Apply (DeleteBySym1 a6989586621679824413 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824414 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym1 a6989586621679824413 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824414 :: a) = DeleteBySym2 a6989586621679824413 a6989586621679824414

data DeleteBySym2 (a6989586621679824413 :: a ~> (a ~> Bool)) (a6989586621679824414 :: a) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (DeleteBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (DeleteBySym2 d x) #

SingI2 (DeleteBySym2 :: (a ~> (a ~> Bool)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: a). Sing x -> Sing y -> Sing (DeleteBySym2 x y) #

(SingI d1, SingI d2) => SingI (DeleteBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym2 d1 d2) #

SuppressUnusedWarnings (DeleteBySym2 a6989586621679824413 a6989586621679824414 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679824413 a6989586621679824414 :: TyFun [a] [a] -> Type) (a6989586621679824415 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679824413 a6989586621679824414 :: TyFun [a] [a] -> Type) (a6989586621679824415 :: [a]) = DeleteBy a6989586621679824413 a6989586621679824414 a6989586621679824415

type family DeleteBySym3 (a6989586621679824413 :: a ~> (a ~> Bool)) (a6989586621679824414 :: a) (a6989586621679824415 :: [a]) :: [a] where ... Source #

Equations

DeleteBySym3 (a6989586621679824413 :: a ~> (a ~> Bool)) (a6989586621679824414 :: a) (a6989586621679824415 :: [a]) = DeleteBy a6989586621679824413 a6989586621679824414 a6989586621679824415 

data DeleteFirstsBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679824403 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679824403 :: a ~> (a ~> Bool)) = DeleteFirstsBySym1 a6989586621679824403

data DeleteFirstsBySym1 (a6989586621679824403 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (DeleteFirstsBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym1 a6989586621679824403 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteFirstsBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (DeleteFirstsBySym1 x) #

type Apply (DeleteFirstsBySym1 a6989586621679824403 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824404 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym1 a6989586621679824403 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824404 :: [a]) = DeleteFirstsBySym2 a6989586621679824403 a6989586621679824404

data DeleteFirstsBySym2 (a6989586621679824403 :: a ~> (a ~> Bool)) (a6989586621679824404 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (DeleteFirstsBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (DeleteFirstsBySym2 d x) #

SingI2 (DeleteFirstsBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (DeleteFirstsBySym2 x y) #

(SingI d1, SingI d2) => SingI (DeleteFirstsBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym2 d1 d2) #

SuppressUnusedWarnings (DeleteFirstsBySym2 a6989586621679824403 a6989586621679824404 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679824403 a6989586621679824404 :: TyFun [a] [a] -> Type) (a6989586621679824405 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679824403 a6989586621679824404 :: TyFun [a] [a] -> Type) (a6989586621679824405 :: [a]) = DeleteFirstsBy a6989586621679824403 a6989586621679824404 a6989586621679824405

type family DeleteFirstsBySym3 (a6989586621679824403 :: a ~> (a ~> Bool)) (a6989586621679824404 :: [a]) (a6989586621679824405 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBySym3 (a6989586621679824403 :: a ~> (a ~> Bool)) (a6989586621679824404 :: [a]) (a6989586621679824405 :: [a]) = DeleteFirstsBy a6989586621679824403 a6989586621679824404 a6989586621679824405 

data UnionBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679823867 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679823867 :: a ~> (a ~> Bool)) = UnionBySym1 a6989586621679823867

data UnionBySym1 (a6989586621679823867 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (UnionBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym1 d) #

SuppressUnusedWarnings (UnionBySym1 a6989586621679823867 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (UnionBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (UnionBySym1 x) #

type Apply (UnionBySym1 a6989586621679823867 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679823868 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym1 a6989586621679823867 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679823868 :: [a]) = UnionBySym2 a6989586621679823867 a6989586621679823868

data UnionBySym2 (a6989586621679823867 :: a ~> (a ~> Bool)) (a6989586621679823868 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (UnionBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (UnionBySym2 d x) #

SingI2 (UnionBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (UnionBySym2 x y) #

(SingI d1, SingI d2) => SingI (UnionBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym2 d1 d2) #

SuppressUnusedWarnings (UnionBySym2 a6989586621679823867 a6989586621679823868 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679823867 a6989586621679823868 :: TyFun [a] [a] -> Type) (a6989586621679823869 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679823867 a6989586621679823868 :: TyFun [a] [a] -> Type) (a6989586621679823869 :: [a]) = UnionBy a6989586621679823867 a6989586621679823868 a6989586621679823869

type family UnionBySym3 (a6989586621679823867 :: a ~> (a ~> Bool)) (a6989586621679823868 :: [a]) (a6989586621679823869 :: [a]) :: [a] where ... Source #

Equations

UnionBySym3 (a6989586621679823867 :: a ~> (a ~> Bool)) (a6989586621679823868 :: [a]) (a6989586621679823869 :: [a]) = UnionBy a6989586621679823867 a6989586621679823868 a6989586621679823869 

data IntersectBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679824228 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679824228 :: a ~> (a ~> Bool)) = IntersectBySym1 a6989586621679824228

data IntersectBySym1 (a6989586621679824228 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (IntersectBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym1 d) #

SuppressUnusedWarnings (IntersectBySym1 a6989586621679824228 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (IntersectBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (IntersectBySym1 x) #

type Apply (IntersectBySym1 a6989586621679824228 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824229 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym1 a6989586621679824228 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679824229 :: [a]) = IntersectBySym2 a6989586621679824228 a6989586621679824229

data IntersectBySym2 (a6989586621679824228 :: a ~> (a ~> Bool)) (a6989586621679824229 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (IntersectBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntersectBySym2 d x) #

SingI2 (IntersectBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (IntersectBySym2 x y) #

(SingI d1, SingI d2) => SingI (IntersectBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym2 d1 d2) #

SuppressUnusedWarnings (IntersectBySym2 a6989586621679824228 a6989586621679824229 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679824228 a6989586621679824229 :: TyFun [a] [a] -> Type) (a6989586621679824230 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679824228 a6989586621679824229 :: TyFun [a] [a] -> Type) (a6989586621679824230 :: [a]) = IntersectBy a6989586621679824228 a6989586621679824229 a6989586621679824230

type family IntersectBySym3 (a6989586621679824228 :: a ~> (a ~> Bool)) (a6989586621679824229 :: [a]) (a6989586621679824230 :: [a]) :: [a] where ... Source #

Equations

IntersectBySym3 (a6989586621679824228 :: a ~> (a ~> Bool)) (a6989586621679824229 :: [a]) (a6989586621679824230 :: [a]) = IntersectBy a6989586621679824228 a6989586621679824229 a6989586621679824230 

data GroupBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]])) Source #

Instances

Instances details
SingI (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) #

SuppressUnusedWarnings (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679824020 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679824020 :: a ~> (a ~> Bool)) = GroupBySym1 a6989586621679824020

data GroupBySym1 (a6989586621679824020 :: a ~> (a ~> Bool)) (b :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI d => SingI (GroupBySym1 d :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym1 d) #

SuppressUnusedWarnings (GroupBySym1 a6989586621679824020 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (GroupBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (GroupBySym1 x) #

type Apply (GroupBySym1 a6989586621679824020 :: TyFun [a] [[a]] -> Type) (a6989586621679824021 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym1 a6989586621679824020 :: TyFun [a] [[a]] -> Type) (a6989586621679824021 :: [a]) = GroupBy a6989586621679824020 a6989586621679824021

type family GroupBySym2 (a6989586621679824020 :: a ~> (a ~> Bool)) (a6989586621679824021 :: [a]) :: [[a]] where ... Source #

Equations

GroupBySym2 (a6989586621679824020 :: a ~> (a ~> Bool)) (a6989586621679824021 :: [a]) = GroupBy a6989586621679824020 a6989586621679824021 

data SortBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679824391 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679824391 :: a ~> (a ~> Ordering)) = SortBySym1 a6989586621679824391

data SortBySym1 (a6989586621679824391 :: a ~> (a ~> Ordering)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (SortBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym1 d) #

SuppressUnusedWarnings (SortBySym1 a6989586621679824391 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SortBySym1 :: (a ~> (a ~> Ordering)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (SortBySym1 x) #

type Apply (SortBySym1 a6989586621679824391 :: TyFun [a] [a] -> Type) (a6989586621679824392 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym1 a6989586621679824391 :: TyFun [a] [a] -> Type) (a6989586621679824392 :: [a]) = SortBy a6989586621679824391 a6989586621679824392

type family SortBySym2 (a6989586621679824391 :: a ~> (a ~> Ordering)) (a6989586621679824392 :: [a]) :: [a] where ... Source #

Equations

SortBySym2 (a6989586621679824391 :: a ~> (a ~> Ordering)) (a6989586621679824392 :: [a]) = SortBy a6989586621679824391 a6989586621679824392 

data InsertBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679824371 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679824371 :: a ~> (a ~> Ordering)) = InsertBySym1 a6989586621679824371

data InsertBySym1 (a6989586621679824371 :: a ~> (a ~> Ordering)) (b :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (InsertBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym1 d) #

SuppressUnusedWarnings (InsertBySym1 a6989586621679824371 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (InsertBySym1 :: (a ~> (a ~> Ordering)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (InsertBySym1 x) #

type Apply (InsertBySym1 a6989586621679824371 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824372 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym1 a6989586621679824371 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679824372 :: a) = InsertBySym2 a6989586621679824371 a6989586621679824372

data InsertBySym2 (a6989586621679824371 :: a ~> (a ~> Ordering)) (a6989586621679824372 :: a) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (InsertBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (InsertBySym2 d x) #

SingI2 (InsertBySym2 :: (a ~> (a ~> Ordering)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Ordering)) (y :: a). Sing x -> Sing y -> Sing (InsertBySym2 x y) #

(SingI d1, SingI d2) => SingI (InsertBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym2 d1 d2) #

SuppressUnusedWarnings (InsertBySym2 a6989586621679824371 a6989586621679824372 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679824371 a6989586621679824372 :: TyFun [a] [a] -> Type) (a6989586621679824373 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679824371 a6989586621679824372 :: TyFun [a] [a] -> Type) (a6989586621679824373 :: [a]) = InsertBy a6989586621679824371 a6989586621679824372 a6989586621679824373

type family InsertBySym3 (a6989586621679824371 :: a ~> (a ~> Ordering)) (a6989586621679824372 :: a) (a6989586621679824373 :: [a]) :: [a] where ... Source #

Equations

InsertBySym3 (a6989586621679824371 :: a ~> (a ~> Ordering)) (a6989586621679824372 :: a) (a6989586621679824373 :: [a]) = InsertBy a6989586621679824371 a6989586621679824372 a6989586621679824373 

data MaximumBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680404104 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680404104 :: a ~> (a ~> Ordering)) = MaximumBySym1 a6989586621680404104 :: TyFun (t a) a -> Type

data MaximumBySym1 (a6989586621680404104 :: a ~> (a ~> Ordering)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (MaximumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (MaximumBySym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MaximumBySym1 a6989586621680404104 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680404104 :: TyFun (t a) a -> Type) (a6989586621680404105 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680404104 :: TyFun (t a) a -> Type) (a6989586621680404105 :: t a) = MaximumBy a6989586621680404104 a6989586621680404105

type family MaximumBySym2 (a6989586621680404104 :: a ~> (a ~> Ordering)) (a6989586621680404105 :: t a) :: a where ... Source #

Equations

MaximumBySym2 (a6989586621680404104 :: a ~> (a ~> Ordering)) (a6989586621680404105 :: t a) = MaximumBy a6989586621680404104 a6989586621680404105 

data MinimumBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680404084 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680404084 :: a ~> (a ~> Ordering)) = MinimumBySym1 a6989586621680404084 :: TyFun (t a) a -> Type

data MinimumBySym1 (a6989586621680404084 :: a ~> (a ~> Ordering)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (MinimumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (MinimumBySym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MinimumBySym1 a6989586621680404084 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680404084 :: TyFun (t a) a -> Type) (a6989586621680404085 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680404084 :: TyFun (t a) a -> Type) (a6989586621680404085 :: t a) = MinimumBy a6989586621680404084 a6989586621680404085

type family MinimumBySym2 (a6989586621680404084 :: a ~> (a ~> Ordering)) (a6989586621680404085 :: t a) :: a where ... Source #

Equations

MinimumBySym2 (a6989586621680404084 :: a ~> (a ~> Ordering)) (a6989586621680404085 :: t a) = MinimumBy a6989586621680404084 a6989586621680404085 

data GenericLengthSym0 (a1 :: TyFun [a] i) Source #

Instances

Instances details
SNum i => SingI (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GenericLengthSym0 :: TyFun [a] i -> Type) #

SuppressUnusedWarnings (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679823850 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679823850 :: [a]) = GenericLength a6989586621679823850 :: k2

type family GenericLengthSym1 (a6989586621679823850 :: [a]) :: i where ... Source #

Equations

GenericLengthSym1 (a6989586621679823850 :: [a]) = GenericLength a6989586621679823850 :: i