singletons-base-3.4: A promoted and singled version of the base library
Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Data.Ord.Singletons

Description

Defines the promoted version of Ord, POrd, and the singleton version, SOrd.

Synopsis

Documentation

class POrd a Source #

Associated Types

type Compare (arg :: a) (arg1 :: a) :: Ordering Source #

type Compare (arg :: a) (arg1 :: a) = Apply (Apply (Compare_6989586621679239102Sym0 :: TyFun a (a ~> Ordering) -> Type) arg) arg1

type (arg :: a) < (arg1 :: a) :: Bool infix 4 Source #

type (arg :: a) < (arg1 :: a) = Apply (Apply (TFHelper_6989586621679239123Sym0 :: TyFun a (a ~> Bool) -> Type) arg) arg1

type (arg :: a) <= (arg1 :: a) :: Bool infix 4 Source #

type (arg :: a) <= (arg1 :: a) = Apply (Apply (TFHelper_6989586621679239139Sym0 :: TyFun a (a ~> Bool) -> Type) arg) arg1

type (arg :: a) > (arg1 :: a) :: Bool infix 4 Source #

type (arg :: a) > (arg1 :: a) = Apply (Apply (TFHelper_6989586621679239155Sym0 :: TyFun a (a ~> Bool) -> Type) arg) arg1

type (arg :: a) >= (arg1 :: a) :: Bool infix 4 Source #

type (arg :: a) >= (arg1 :: a) = Apply (Apply (TFHelper_6989586621679239171Sym0 :: TyFun a (a ~> Bool) -> Type) arg) arg1

type Max (arg :: a) (arg1 :: a) :: a Source #

type Max (arg :: a) (arg1 :: a) = Apply (Apply (Max_6989586621679239187Sym0 :: TyFun a (a ~> a) -> Type) arg) arg1

type Min (arg :: a) (arg1 :: a) :: a Source #

type Min (arg :: a) (arg1 :: a) = Apply (Apply (Min_6989586621679239203Sym0 :: TyFun a (a ~> a) -> Type) arg) arg1

Instances

Instances details
POrd Void Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare (a1 :: Void) (a2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type Compare (a1 :: Void) (a2 :: Void)
type (arg1 :: Void) < (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Void) < (arg2 :: Void)
type (arg1 :: Void) <= (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Void) <= (arg2 :: Void)
type (arg1 :: Void) > (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Void) > (arg2 :: Void)
type (arg1 :: Void) >= (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Void) >= (arg2 :: Void)
type Max (arg1 :: Void) (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type Max (arg1 :: Void) (arg2 :: Void)
type Min (arg1 :: Void) (arg2 :: Void) 
Instance details

Defined in Data.Ord.Singletons

type Min (arg1 :: Void) (arg2 :: Void)
POrd All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Compare (a1 :: All) (a2 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Compare (a1 :: All) (a2 :: All)
type (arg :: All) < (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: All) < (arg1 :: All)
type (arg :: All) <= (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: All) <= (arg1 :: All)
type (arg :: All) > (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: All) > (arg1 :: All)
type (arg :: All) >= (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: All) >= (arg1 :: All)
type Max (arg :: All) (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Max (arg :: All) (arg1 :: All)
type Min (arg :: All) (arg1 :: All) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Min (arg :: All) (arg1 :: All)
POrd Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Associated Types

type Compare (a1 :: Any) (a2 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Compare (a1 :: Any) (a2 :: Any)
type (arg :: Any) < (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Any) < (arg1 :: Any)
type (arg :: Any) <= (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Any) <= (arg1 :: Any)
type (arg :: Any) > (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Any) > (arg1 :: Any)
type (arg :: Any) >= (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type (arg :: Any) >= (arg1 :: Any)
type Max (arg :: Any) (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Max (arg :: Any) (arg1 :: Any)
type Min (arg :: Any) (arg1 :: Any) 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Min (arg :: Any) (arg1 :: Any)
POrd Ordering Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare (a1 :: Ordering) (a2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type Compare (a1 :: Ordering) (a2 :: Ordering)
type (arg1 :: Ordering) < (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Ordering) < (arg2 :: Ordering)
type (arg1 :: Ordering) <= (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Ordering) <= (arg2 :: Ordering)
type (arg1 :: Ordering) > (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Ordering) > (arg2 :: Ordering)
type (arg1 :: Ordering) >= (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Ordering) >= (arg2 :: Ordering)
type Max (arg1 :: Ordering) (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type Max (arg1 :: Ordering) (arg2 :: Ordering)
type Min (arg1 :: Ordering) (arg2 :: Ordering) 
Instance details

Defined in Data.Ord.Singletons

type Min (arg1 :: Ordering) (arg2 :: Ordering)
POrd Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare (a :: Natural) (b :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Compare (a :: Natural) (b :: Natural) = CmpNat a b
type (arg :: Natural) < (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Natural) < (arg1 :: Natural)
type (arg :: Natural) <= (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Natural) <= (arg1 :: Natural)
type (arg :: Natural) > (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Natural) > (arg1 :: Natural)
type (arg :: Natural) >= (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Natural) >= (arg1 :: Natural)
type Max (arg :: Natural) (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Max (arg :: Natural) (arg1 :: Natural)
type Min (arg :: Natural) (arg1 :: Natural) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Min (arg :: Natural) (arg1 :: Natural)
POrd () Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare (a1 :: ()) (a2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type Compare (a1 :: ()) (a2 :: ())
type (arg1 :: ()) < (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: ()) < (arg2 :: ())
type (arg1 :: ()) <= (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: ()) <= (arg2 :: ())
type (arg1 :: ()) > (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: ()) > (arg2 :: ())
type (arg1 :: ()) >= (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: ()) >= (arg2 :: ())
type Max (arg1 :: ()) (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type Max (arg1 :: ()) (arg2 :: ())
type Min (arg1 :: ()) (arg2 :: ()) 
Instance details

Defined in Data.Ord.Singletons

type Min (arg1 :: ()) (arg2 :: ())
POrd Bool Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare (a1 :: Bool) (a2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type Compare (a1 :: Bool) (a2 :: Bool)
type (arg1 :: Bool) < (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Bool) < (arg2 :: Bool)
type (arg1 :: Bool) <= (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Bool) <= (arg2 :: Bool)
type (arg1 :: Bool) > (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Bool) > (arg2 :: Bool)
type (arg1 :: Bool) >= (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type (arg1 :: Bool) >= (arg2 :: Bool)
type Max (arg1 :: Bool) (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type Max (arg1 :: Bool) (arg2 :: Bool)
type Min (arg1 :: Bool) (arg2 :: Bool) 
Instance details

Defined in Data.Ord.Singletons

type Min (arg1 :: Bool) (arg2 :: Bool)
POrd Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare (a :: Char) (b :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Compare (a :: Char) (b :: Char) = CmpChar a b
type (arg :: Char) < (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Char) < (arg1 :: Char)
type (arg :: Char) <= (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Char) <= (arg1 :: Char)
type (arg :: Char) > (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Char) > (arg1 :: Char)
type (arg :: Char) >= (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Char) >= (arg1 :: Char)
type Max (arg :: Char) (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Max (arg :: Char) (arg1 :: Char)
type Min (arg :: Char) (arg1 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Min (arg :: Char) (arg1 :: Char)
POrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare (a :: Symbol) (b :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Compare (a :: Symbol) (b :: Symbol) = CmpSymbol a b
type (arg :: Symbol) < (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) < (arg1 :: Symbol)
type (arg :: Symbol) <= (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) <= (arg1 :: Symbol)
type (arg :: Symbol) > (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) > (arg1 :: Symbol)
type (arg :: Symbol) >= (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) >= (arg1 :: Symbol)
type Max (arg :: Symbol) (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Max (arg :: Symbol) (arg1 :: Symbol)
type Min (arg :: Symbol) (arg1 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Min (arg :: Symbol) (arg1 :: Symbol)
POrd (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (NonEmpty a) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Identity a) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

POrd (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

POrd (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

POrd (Maybe a) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd [a] Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

POrd (Either a b) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

POrd (a, b) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

POrd (a, b, c) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

POrd (Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

POrd (a, b, c, d) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

POrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Ord.Singletons

POrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Ord.Singletons

class SEq a => SOrd a where Source #

Minimal complete definition

Nothing

Methods

sCompare :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) t1) t2) Source #

default sCompare :: forall (t1 :: a) (t2 :: a). Apply (Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) t1) t2 ~ Apply (Apply (Compare_6989586621679239102Sym0 :: TyFun a (a ~> Ordering) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) infix 4 Source #

default (%<) :: forall (t1 :: a) (t2 :: a). Apply (Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2 ~ Apply (Apply (TFHelper_6989586621679239123Sym0 :: TyFun a (a ~> Bool) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) infix 4 Source #

default (%<=) :: forall (t1 :: a) (t2 :: a). Apply (Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2 ~ Apply (Apply (TFHelper_6989586621679239139Sym0 :: TyFun a (a ~> Bool) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) infix 4 Source #

default (%>) :: forall (t1 :: a) (t2 :: a). Apply (Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2 ~ Apply (Apply (TFHelper_6989586621679239155Sym0 :: TyFun a (a ~> Bool) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) infix 4 Source #

default (%>=) :: forall (t1 :: a) (t2 :: a). Apply (Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2 ~ Apply (Apply (TFHelper_6989586621679239171Sym0 :: TyFun a (a ~> Bool) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) t1) t2) Source #

default sMax :: forall (t1 :: a) (t2 :: a). Apply (Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) t1) t2 ~ Apply (Apply (Max_6989586621679239187Sym0 :: TyFun a (a ~> a) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: a) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun a (a ~> a) -> Type) t1) t2) Source #

default sMin :: forall (t1 :: a) (t2 :: a). Apply (Apply (MinSym0 :: TyFun a (a ~> a) -> Type) t1) t2 ~ Apply (Apply (Min_6989586621679239203Sym0 :: TyFun a (a ~> a) -> Type) t1) t2 => Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun a (a ~> a) -> Type) t1) t2) Source #

Instances

Instances details
SOrd Void Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Void (Void ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Void (Void ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Void (Void ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Void (Void ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Void (Void ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Void (Void ~> Void) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Void (Void ~> Void) -> Type) t1) t2) Source #

SOrd Bool => SOrd All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun All (All ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun All (All ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun All (All ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun All (All ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun All (All ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun All (All ~> All) -> Type) t1) t2) Source #

sMin :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun All (All ~> All) -> Type) t1) t2) Source #

SOrd Bool => SOrd Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Any (Any ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Any (Any ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Any (Any ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Any (Any ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Any (Any ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Any (Any ~> Any) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Any (Any ~> Any) -> Type) t1) t2) Source #

SOrd Ordering Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Ordering (Ordering ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Ordering (Ordering ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Ordering (Ordering ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Ordering (Ordering ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Ordering (Ordering ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Ordering (Ordering ~> Ordering) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Ordering (Ordering ~> Ordering) -> Type) t1) t2) Source #

SOrd Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Natural (Natural ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Natural (Natural ~> Natural) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Natural (Natural ~> Natural) -> Type) t1) t2) Source #

SOrd () Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun () (() ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun () (() ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun () (() ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun () (() ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun () (() ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun () (() ~> ()) -> Type) t1) t2) Source #

sMin :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun () (() ~> ()) -> Type) t1) t2) Source #

SOrd Bool Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Bool (Bool ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Bool (Bool ~> Bool) -> Type) t1) t2) Source #

SOrd Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Char (Char ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Char (Char ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Char (Char ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Char (Char ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Char (Char ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Char (Char ~> Char) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Char (Char ~> Char) -> Type) t1) t2) Source #

SOrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun Symbol (Symbol ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun Symbol (Symbol ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun Symbol (Symbol ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun Symbol (Symbol ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun Symbol (Symbol ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun Symbol (Symbol ~> Symbol) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun Symbol (Symbol ~> Symbol) -> Type) t1) t2) Source #

SOrd a => SOrd (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (First a) (First a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (First a) (First a ~> First a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (First a) (First a ~> First a) -> Type) t1) t2) Source #

SOrd a => SOrd (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Last a) (Last a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Last a) (Last a ~> Last a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Last a) (Last a ~> Last a) -> Type) t1) t2) Source #

SOrd a => SOrd (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Max a) (Max a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Max a) (Max a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Max a) (Max a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Max a) (Max a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Max a) (Max a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Max a) (Max a ~> Max a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Max a) (Max a ~> Max a) -> Type) t1) t2) Source #

SOrd a => SOrd (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Min a) (Min a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Min a) (Min a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Min a) (Min a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Min a) (Min a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Min a) (Min a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Min a) (Min a ~> Min a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Min a) (Min a ~> Min a) -> Type) t1) t2) Source #

SOrd m => SOrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> WrappedMonoid m) -> Type) t1) t2) Source #

sMin :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (WrappedMonoid m) (WrappedMonoid m ~> WrappedMonoid m) -> Type) t1) t2) Source #

(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (NonEmpty a) (NonEmpty a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (NonEmpty a) (NonEmpty a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (NonEmpty a) (NonEmpty a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (NonEmpty a) (NonEmpty a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (NonEmpty a) (NonEmpty a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (NonEmpty a) (NonEmpty a ~> NonEmpty a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (NonEmpty a) (NonEmpty a ~> NonEmpty a) -> Type) t1) t2) Source #

SOrd a => SOrd (Identity a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Identity a) (Identity a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Identity a) (Identity a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Identity a) (Identity a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Identity a) (Identity a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Identity a) (Identity a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Identity a) (Identity a ~> Identity a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Identity a) (Identity a ~> Identity a) -> Type) t1) t2) Source #

SOrd (Maybe a) => SOrd (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (First a) (First a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (First a) (First a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (First a) (First a ~> First a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (First a) (First a ~> First a) -> Type) t1) t2) Source #

SOrd (Maybe a) => SOrd (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Last a) (Last a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Last a) (Last a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Last a) (Last a ~> Last a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Last a) (Last a ~> Last a) -> Type) t1) t2) Source #

SOrd a => SOrd (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Down a) (Down a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Down a) (Down a ~> Down a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Down a) (Down a ~> Down a) -> Type) t1) t2) Source #

SOrd a => SOrd (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Dual a) (Dual a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Dual a) (Dual a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Dual a) (Dual a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Dual a) (Dual a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Dual a) (Dual a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Dual a) (Dual a ~> Dual a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Dual a) (Dual a ~> Dual a) -> Type) t1) t2) Source #

SOrd a => SOrd (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Product a) (Product a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Product a) (Product a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Product a) (Product a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Product a) (Product a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Product a) (Product a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Product a) (Product a ~> Product a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Product a) (Product a ~> Product a) -> Type) t1) t2) Source #

SOrd a => SOrd (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

Methods

sCompare :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Sum a) (Sum a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Sum a) (Sum a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Sum a) (Sum a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Sum a) (Sum a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Sum a) (Sum a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Sum a) (Sum a ~> Sum a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Sum a) (Sum a ~> Sum a) -> Type) t1) t2) Source #

SOrd a => SOrd (Maybe a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Maybe a) (Maybe a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Maybe a) (Maybe a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Maybe a) (Maybe a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Maybe a) (Maybe a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Maybe a) (Maybe a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Maybe a) (Maybe a ~> Maybe a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Maybe a) (Maybe a ~> Maybe a) -> Type) t1) t2) Source #

(SOrd a, SOrd [a]) => SOrd [a] Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun [a] ([a] ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun [a] ([a] ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) Source #

sMin :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun [a] ([a] ~> [a]) -> Type) t1) t2) Source #

SOrd a => SOrd (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sCompare :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Arg a b) (Arg a b ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Arg a b) (Arg a b ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Arg a b) (Arg a b ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Arg a b) (Arg a b ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Arg a b) (Arg a b ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Arg a b) (Arg a b ~> Arg a b) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Arg a b) (Arg a b ~> Arg a b) -> Type) t1) t2) Source #

(SOrd a, SOrd b) => SOrd (Either a b) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Either a b) (Either a b ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Either a b) (Either a b ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Either a b) (Either a b ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Either a b) (Either a b ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Either a b) (Either a b ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Either a b) (Either a b ~> Either a b) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Either a b) (Either a b ~> Either a b) -> Type) t1) t2) Source #

SOrd (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sCompare :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Proxy s) (Proxy s ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Proxy s) (Proxy s ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Proxy s) (Proxy s ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Proxy s) (Proxy s ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Proxy s) (Proxy s ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Proxy s) (Proxy s ~> Proxy s) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Proxy s) (Proxy s ~> Proxy s) -> Type) t1) t2) Source #

(SOrd a, SOrd b) => SOrd (a, b) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b) ((a, b) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b) ((a, b) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b) ((a, b) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b) ((a, b) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b) ((a, b) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b) ((a, b) ~> (a, b)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b) ((a, b) ~> (a, b)) -> Type) t1) t2) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Const a b) (Const a b ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Const a b) (Const a b ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Const a b) (Const a b ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Const a b) (Const a b ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Const a b) (Const a b ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Const a b) (Const a b ~> Const a b) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Const a b) (Const a b ~> Const a b) -> Type) t1) t2) Source #

(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b, c) ((a, b, c) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b, c) ((a, b, c) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b, c) ((a, b, c) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b, c) ((a, b, c) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b, c) ((a, b, c) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b, c) ((a, b, c) ~> (a, b, c)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b, c) ((a, b, c) ~> (a, b, c)) -> Type) t1) t2) Source #

(SOrd (f a), SOrd (g a)) => SOrd (Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sCompare :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Product f g a) (Product f g a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Product f g a) (Product f g a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Product f g a) (Product f g a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Product f g a) (Product f g a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Product f g a) (Product f g a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Product f g a) (Product f g a ~> Product f g a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Product f g a) (Product f g a ~> Product f g a) -> Type) t1) t2) Source #

(SOrd (f a), SOrd (g a)) => SOrd (Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sCompare :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Sum f g a) (Sum f g a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Sum f g a) (Sum f g a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Sum f g a) (Sum f g a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Sum f g a) (Sum f g a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Sum f g a) (Sum f g a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Sum f g a) (Sum f g a ~> Sum f g a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Sum f g a) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Sum f g a) (Sum f g a ~> Sum f g a) -> Type) t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b, c, d) ((a, b, c, d) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b, c, d) ((a, b, c, d) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b, c, d) ((a, b, c, d) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b, c, d) ((a, b, c, d) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b, c, d) ((a, b, c, d) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b, c, d) ((a, b, c, d) ~> (a, b, c, d)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b, c, d) ((a, b, c, d) ~> (a, b, c, d)) -> Type) t1) t2) Source #

SOrd (f (g a)) => SOrd (Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sCompare :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (Compose f g a) (Compose f g a ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (Compose f g a) (Compose f g a ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (Compose f g a) (Compose f g a ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (Compose f g a) (Compose f g a ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (Compose f g a) (Compose f g a ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (Compose f g a) (Compose f g a ~> Compose f g a) -> Type) t1) t2) Source #

sMin :: forall (t1 :: Compose f g a) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (Compose f g a) (Compose f g a ~> Compose f g a) -> Type) t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> (a, b, c, d, e)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b, c, d, e) ((a, b, c, d, e) ~> (a, b, c, d, e)) -> Type) t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> (a, b, c, d, e, f)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b, c, d, e, f) ((a, b, c, d, e, f) ~> (a, b, c, d, e, f)) -> Type) t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (CompareSym0 :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> Ordering) -> Type) t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<@#@$) :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> Bool) -> Type) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<=@#@$) :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> Bool) -> Type) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>@#@$) :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> Bool) -> Type) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((>=@#@$) :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> Bool) -> Type) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MaxSym0 :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> (a, b, c, d, e, f, g)) -> Type) t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (MinSym0 :: TyFun (a, b, c, d, e, f, g) ((a, b, c, d, e, f, g) ~> (a, b, c, d, e, f, g)) -> Type) t1) t2) Source #

type family Comparing (a1 :: b ~> a) (a2 :: b) (a3 :: b) :: Ordering where ... Source #

Equations

Comparing (p :: k1 ~> k2) (x :: k1) (y :: k1) = Apply (Apply (CompareSym0 :: TyFun k2 (k2 ~> Ordering) -> Type) (Apply p x)) (Apply p y) 

sComparing :: forall b a (t1 :: b ~> a) (t2 :: b) (t3 :: b). SOrd a => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) t1) t2) t3) Source #

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SOrdering (a :: Ordering) where Source #

Constructors

SLT :: SOrdering 'LT 
SEQ :: SOrdering 'EQ 
SGT :: SOrdering 'GT 

Instances

Instances details
TestCoercion SOrdering Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a :: Ordering) (b :: Ordering). SOrdering a -> SOrdering b -> Maybe (Coercion a b) #

TestEquality SOrdering Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a :: Ordering) (b :: Ordering). SOrdering a -> SOrdering b -> Maybe (a :~: b) #

Show (SOrdering z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Eq (SOrdering z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

(==) :: SOrdering z -> SOrdering z -> Bool #

(/=) :: SOrdering z -> SOrdering z -> Bool #

data SDown (a1 :: Down a) where Source #

Constructors

SDown :: forall a (n :: a). Sing n -> SDown ('Down n) 

Instances

Instances details
SDecide a => TestCoercion (SDown :: Down a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

testCoercion :: forall (a0 :: Down a) (b :: Down a). SDown a0 -> SDown b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SDown :: Down a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

testEquality :: forall (a0 :: Down a) (b :: Down a). SDown a0 -> SDown b -> Maybe (a0 :~: b) #

Eq (SDown z) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

(==) :: SDown z -> SDown z -> Bool #

(/=) :: SDown z -> SDown z -> Bool #

type family GetDown (a1 :: Down a) :: a where ... Source #

Equations

GetDown ('Down field :: Down a) = field 

sGetDown :: forall a (t :: Down a). Sing t -> Sing (Apply (GetDownSym0 :: TyFun (Down a) a -> Type) t) Source #

Defunctionalization symbols

type family LTSym0 :: Ordering where ... Source #

Equations

LTSym0 = 'LT 

type family EQSym0 :: Ordering where ... Source #

Equations

EQSym0 = 'EQ 

type family GTSym0 :: Ordering where ... Source #

Equations

GTSym0 = 'GT 

data CompareSym0 (a1 :: TyFun a (a ~> Ordering)) Source #

Instances

Instances details
SOrd a => SingI (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) #

SuppressUnusedWarnings (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679239068 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679239068 :: a) = CompareSym1 a6989586621679239068

data CompareSym1 (a6989586621679239068 :: a) (b :: TyFun a Ordering) Source #

Instances

Instances details
SOrd a => SingI1 (CompareSym1 :: a -> TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (CompareSym1 x) #

(SOrd a, SingI d) => SingI (CompareSym1 d :: TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (CompareSym1 d) #

SuppressUnusedWarnings (CompareSym1 a6989586621679239068 :: TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym1 a6989586621679239068 :: TyFun a Ordering -> Type) (a6989586621679239069 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym1 a6989586621679239068 :: TyFun a Ordering -> Type) (a6989586621679239069 :: a) = Compare a6989586621679239068 a6989586621679239069

type family CompareSym2 (a6989586621679239068 :: a) (a6989586621679239069 :: a) :: Ordering where ... Source #

Equations

CompareSym2 (a6989586621679239068 :: a) (a6989586621679239069 :: a) = Compare a6989586621679239068 a6989586621679239069 

data (<@#@$) (a1 :: TyFun a (a ~> Bool)) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<@#@$) :: TyFun a (a ~> Bool) -> Type) #

SuppressUnusedWarnings ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239073 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239073 :: a) = (<@#@$$) a6989586621679239073

data (a6989586621679239073 :: a) <@#@$$ (b :: TyFun a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((<@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((<@#@$$) x) #

(SOrd a, SingI d) => SingI ((<@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<@#@$$) d) #

SuppressUnusedWarnings ((<@#@$$) a6989586621679239073 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$$) a6989586621679239073 :: TyFun a Bool -> Type) (a6989586621679239074 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$$) a6989586621679239073 :: TyFun a Bool -> Type) (a6989586621679239074 :: a) = a6989586621679239073 < a6989586621679239074

type family (a6989586621679239073 :: a) <@#@$$$ (a6989586621679239074 :: a) :: Bool where ... infix 4 Source #

Equations

(a6989586621679239073 :: a) <@#@$$$ (a6989586621679239074 :: a) = a6989586621679239073 < a6989586621679239074 

data (<=@#@$) (a1 :: TyFun a (a ~> Bool)) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) #

SuppressUnusedWarnings ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239078 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239078 :: a) = (<=@#@$$) a6989586621679239078

data (a6989586621679239078 :: a) <=@#@$$ (b :: TyFun a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((<=@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((<=@#@$$) x) #

(SOrd a, SingI d) => SingI ((<=@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<=@#@$$) d) #

SuppressUnusedWarnings ((<=@#@$$) a6989586621679239078 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$$) a6989586621679239078 :: TyFun a Bool -> Type) (a6989586621679239079 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$$) a6989586621679239078 :: TyFun a Bool -> Type) (a6989586621679239079 :: a) = a6989586621679239078 <= a6989586621679239079

type family (a6989586621679239078 :: a) <=@#@$$$ (a6989586621679239079 :: a) :: Bool where ... infix 4 Source #

Equations

(a6989586621679239078 :: a) <=@#@$$$ (a6989586621679239079 :: a) = a6989586621679239078 <= a6989586621679239079 

data (>@#@$) (a1 :: TyFun a (a ~> Bool)) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>@#@$) :: TyFun a (a ~> Bool) -> Type) #

SuppressUnusedWarnings ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239083 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239083 :: a) = (>@#@$$) a6989586621679239083

data (a6989586621679239083 :: a) >@#@$$ (b :: TyFun a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((>@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((>@#@$$) x) #

(SOrd a, SingI d) => SingI ((>@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>@#@$$) d) #

SuppressUnusedWarnings ((>@#@$$) a6989586621679239083 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$$) a6989586621679239083 :: TyFun a Bool -> Type) (a6989586621679239084 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$$) a6989586621679239083 :: TyFun a Bool -> Type) (a6989586621679239084 :: a) = a6989586621679239083 > a6989586621679239084

type family (a6989586621679239083 :: a) >@#@$$$ (a6989586621679239084 :: a) :: Bool where ... infix 4 Source #

Equations

(a6989586621679239083 :: a) >@#@$$$ (a6989586621679239084 :: a) = a6989586621679239083 > a6989586621679239084 

data (>=@#@$) (a1 :: TyFun a (a ~> Bool)) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) #

SuppressUnusedWarnings ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239088 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679239088 :: a) = (>=@#@$$) a6989586621679239088

data (a6989586621679239088 :: a) >=@#@$$ (b :: TyFun a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((>=@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((>=@#@$$) x) #

(SOrd a, SingI d) => SingI ((>=@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>=@#@$$) d) #

SuppressUnusedWarnings ((>=@#@$$) a6989586621679239088 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$$) a6989586621679239088 :: TyFun a Bool -> Type) (a6989586621679239089 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$$) a6989586621679239088 :: TyFun a Bool -> Type) (a6989586621679239089 :: a) = a6989586621679239088 >= a6989586621679239089

type family (a6989586621679239088 :: a) >=@#@$$$ (a6989586621679239089 :: a) :: Bool where ... infix 4 Source #

Equations

(a6989586621679239088 :: a) >=@#@$$$ (a6989586621679239089 :: a) = a6989586621679239088 >= a6989586621679239089 

data MaxSym0 (a1 :: TyFun a (a ~> a)) Source #

Instances

Instances details
SOrd a => SingI (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MaxSym0 :: TyFun a (a ~> a) -> Type) #

SuppressUnusedWarnings (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679239093 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679239093 :: a) = MaxSym1 a6989586621679239093

data MaxSym1 (a6989586621679239093 :: a) (b :: TyFun a a) Source #

Instances

Instances details
SOrd a => SingI1 (MaxSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MaxSym1 x) #

(SOrd a, SingI d) => SingI (MaxSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MaxSym1 d) #

SuppressUnusedWarnings (MaxSym1 a6989586621679239093 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym1 a6989586621679239093 :: TyFun a a -> Type) (a6989586621679239094 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym1 a6989586621679239093 :: TyFun a a -> Type) (a6989586621679239094 :: a) = Max a6989586621679239093 a6989586621679239094

type family MaxSym2 (a6989586621679239093 :: a) (a6989586621679239094 :: a) :: a where ... Source #

Equations

MaxSym2 (a6989586621679239093 :: a) (a6989586621679239094 :: a) = Max a6989586621679239093 a6989586621679239094 

data MinSym0 (a1 :: TyFun a (a ~> a)) Source #

Instances

Instances details
SOrd a => SingI (MinSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MinSym0 :: TyFun a (a ~> a) -> Type) #

SuppressUnusedWarnings (MinSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679239098 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679239098 :: a) = MinSym1 a6989586621679239098

data MinSym1 (a6989586621679239098 :: a) (b :: TyFun a a) Source #

Instances

Instances details
SOrd a => SingI1 (MinSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MinSym1 x) #

(SOrd a, SingI d) => SingI (MinSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MinSym1 d) #

SuppressUnusedWarnings (MinSym1 a6989586621679239098 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym1 a6989586621679239098 :: TyFun a a -> Type) (a6989586621679239099 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym1 a6989586621679239098 :: TyFun a a -> Type) (a6989586621679239099 :: a) = Min a6989586621679239098 a6989586621679239099

type family MinSym2 (a6989586621679239098 :: a) (a6989586621679239099 :: a) :: a where ... Source #

Equations

MinSym2 (a6989586621679239098 :: a) (a6989586621679239099 :: a) = Min a6989586621679239098 a6989586621679239099 

data ComparingSym0 (a1 :: TyFun (b ~> a) (b ~> (b ~> Ordering))) Source #

Instances

Instances details
SOrd a => SingI (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) #

SuppressUnusedWarnings (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) (a6989586621679239059 :: b ~> a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym0 :: TyFun (b ~> a) (b ~> (b ~> Ordering)) -> Type) (a6989586621679239059 :: b ~> a) = ComparingSym1 a6989586621679239059

data ComparingSym1 (a6989586621679239059 :: b ~> a) (b1 :: TyFun b (b ~> Ordering)) Source #

Instances

Instances details
SOrd a => SingI1 (ComparingSym1 :: (b ~> a) -> TyFun b (b ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: b ~> a). Sing x -> Sing (ComparingSym1 x) #

(SOrd a, SingI d) => SingI (ComparingSym1 d :: TyFun b (b ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (ComparingSym1 d) #

SuppressUnusedWarnings (ComparingSym1 a6989586621679239059 :: TyFun b (b ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym1 a6989586621679239059 :: TyFun b (b ~> Ordering) -> Type) (a6989586621679239060 :: b) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym1 a6989586621679239059 :: TyFun b (b ~> Ordering) -> Type) (a6989586621679239060 :: b) = ComparingSym2 a6989586621679239059 a6989586621679239060

data ComparingSym2 (a6989586621679239059 :: b ~> a) (a6989586621679239060 :: b) (c :: TyFun b Ordering) Source #

Instances

Instances details
(SOrd a, SingI d) => SingI1 (ComparingSym2 d :: b -> TyFun b Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (ComparingSym2 d x) #

SOrd a => SingI2 (ComparingSym2 :: (b ~> a) -> b -> TyFun b Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing2 :: forall (x :: b ~> a) (y :: b). Sing x -> Sing y -> Sing (ComparingSym2 x y) #

(SOrd a, SingI d1, SingI d2) => SingI (ComparingSym2 d1 d2 :: TyFun b Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (ComparingSym2 d1 d2) #

SuppressUnusedWarnings (ComparingSym2 a6989586621679239059 a6989586621679239060 :: TyFun b Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym2 a6989586621679239059 a6989586621679239060 :: TyFun b Ordering -> Type) (a6989586621679239061 :: b) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (ComparingSym2 a6989586621679239059 a6989586621679239060 :: TyFun b Ordering -> Type) (a6989586621679239061 :: b) = Comparing a6989586621679239059 a6989586621679239060 a6989586621679239061

type family ComparingSym3 (a6989586621679239059 :: b ~> a) (a6989586621679239060 :: b) (a6989586621679239061 :: b) :: Ordering where ... Source #

Equations

ComparingSym3 (a6989586621679239059 :: b ~> a) (a6989586621679239060 :: b) (a6989586621679239061 :: b) = Comparing a6989586621679239059 a6989586621679239060 a6989586621679239061 

data DownSym0 (a1 :: TyFun a (Down a)) Source #

Instances

Instances details
SingI (DownSym0 :: TyFun a (Down a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (DownSym0 :: TyFun a (Down a) -> Type) #

SuppressUnusedWarnings (DownSym0 :: TyFun a (Down a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (DownSym0 :: TyFun a (Down a) -> Type) (a6989586621679250142 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (DownSym0 :: TyFun a (Down a) -> Type) (a6989586621679250142 :: a) = 'Down a6989586621679250142

type family DownSym1 (a6989586621679250142 :: a) :: Down a where ... Source #

Equations

DownSym1 (a6989586621679250142 :: a) = 'Down a6989586621679250142 

data GetDownSym0 (a1 :: TyFun (Down a) a) Source #

Instances

Instances details
SingI (GetDownSym0 :: TyFun (Down a) a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (GetDownSym0 :: TyFun (Down a) a -> Type) #

SuppressUnusedWarnings (GetDownSym0 :: TyFun (Down a) a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (GetDownSym0 :: TyFun (Down a) a -> Type) (a6989586621679250145 :: Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (GetDownSym0 :: TyFun (Down a) a -> Type) (a6989586621679250145 :: Down a) = GetDown a6989586621679250145

type family GetDownSym1 (a6989586621679250145 :: Down a) :: a where ... Source #

Equations

GetDownSym1 (a6989586621679250145 :: Down a) = GetDown a6989586621679250145 

Orphan instances

SingI1 ('Down :: k1 -> Down k1) Source # 
Instance details

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ('Down x) #

SingKind a => SingKind (Down a) Source # 
Instance details

Associated Types

type Demote (Down a) 
Instance details

Defined in Data.Ord.Singletons

type Demote (Down a) = Down (Demote a)

Methods

fromSing :: forall (a0 :: Down a). Sing a0 -> Demote (Down a) #

toSing :: Demote (Down a) -> SomeSing (Down a) #

SDecide a => SDecide (Down a) Source # 
Instance details

Methods

(%~) :: forall (a0 :: Down a) (b :: Down a). Sing a0 -> Sing b -> Decision (a0 :~: b) #

PEq (Down a) Source # 
Instance details

SEq a => SEq (Down a) Source # 
Instance details

Methods

(%==) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((==@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

(%/=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((/=@#@$) :: TyFun (Down a) (Down a ~> Bool) -> Type) t1) t2) Source #

PSemigroup (Down a) Source # 
Instance details

SSemigroup a => SSemigroup (Down a) Source # 
Instance details

Methods

(%<>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply ((<>@#@$) :: TyFun (Down a) (Down a ~> Down a) -> Type) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Down a)). Sing t -> Sing (Apply (SconcatSym0 :: TyFun (NonEmpty (Down a)) (Down a) -> Type) t) Source #

SingI n => SingI ('Down n :: Down a) Source # 
Instance details

Methods

sing :: Sing ('Down n) #