| Safe Haskell | None |
|---|
Synthesizer.Plain.Analysis
Contents
- volumeMaximum :: C y => T y -> y
- volumeEuclidean :: C y => T y -> y
- volumeEuclideanSqr :: C y => T y -> y
- volumeSum :: (C y, C y) => T y -> y
- volumeVectorMaximum :: (C y yv, Ord y) => T yv -> y
- volumeVectorEuclidean :: (C y, C y yv) => T yv -> y
- volumeVectorEuclideanSqr :: (C y, Sqr y yv) => T yv -> y
- volumeVectorSum :: (C y yv, C y) => T yv -> y
- bounds :: Ord y => T y -> (y, y)
- histogramDiscreteArray :: T Int -> (Int, T Int)
- histogramLinearArray :: C y => T y -> (Int, T y)
- histogramDiscreteIntMap :: T Int -> (Int, T Int)
- histogramLinearIntMap :: C y => T y -> (Int, T y)
- histogramIntMap :: C y => y -> T y -> (Int, T Int)
- quantize :: C y => y -> T y -> T Int
- attachOne :: T i -> T (i, Int)
- meanValues :: C y => T y -> [(Int, y)]
- spread :: C y => (y, y) -> [(Int, y)]
- directCurrentOffset :: C y => T y -> y
- scalarProduct :: C y => T y -> T y -> y
- centroid :: C y => T y -> y
- centroidAlt :: C y => T y -> y
- firstMoment :: C y => T y -> y
- average :: C y => T y -> y
- rectify :: C y => T y -> T y
- zeros :: (Ord y, C y) => T y -> T Bool
- data BinaryLevel
- binaryLevelFromBool :: Bool -> BinaryLevel
- binaryLevelToNumber :: C a => BinaryLevel -> a
- flipFlopHysteresis :: Ord y => (y, y) -> BinaryLevel -> T y -> T BinaryLevel
- chirpTransform :: C y => y -> T y -> T y
- binarySign :: (Ord y, C y) => T y -> T BinaryLevel
- deltaSigmaModulation :: C y => T y -> T BinaryLevel
- deltaSigmaModulationPositive :: C y => y -> T y -> T y
Notions of volume
volumeMaximum :: C y => T y -> ySource
Volume based on Manhattan norm.
volumeEuclidean :: C y => T y -> ySource
Volume based on Energy norm.
volumeEuclideanSqr :: C y => T y -> ySource
volumeVectorMaximum :: (C y yv, Ord y) => T yv -> ySource
Volume based on Manhattan norm.
volumeVectorEuclidean :: (C y, C y yv) => T yv -> ySource
Volume based on Energy norm.
volumeVectorEuclideanSqr :: (C y, Sqr y yv) => T yv -> ySource
volumeVectorSum :: (C y yv, C y) => T yv -> ySource
Volume based on Sum norm.
bounds :: Ord y => T y -> (y, y)Source
Compute minimum and maximum value of the stream the efficient way. Input list must be non-empty and finite.
Miscellaneous
histogramDiscreteArray :: T Int -> (Int, T Int)Source
Input list must be finite. List is scanned twice, but counting may be faster.
histogramLinearArray :: C y => T y -> (Int, T y)Source
Input list must be finite.
If the input signal is empty, the offset is undefined.
List is scanned twice, but counting may be faster.
The sum of all histogram values is one less than the length of the signal.
histogramDiscreteIntMap :: T Int -> (Int, T Int)Source
Input list must be finite.
If the input signal is empty, the offset is undefined.
List is scanned once, counting may be slower.
meanValues :: C y => T y -> [(Int, y)]Source
directCurrentOffset :: C y => T y -> ySource
Requires finite length. This is identical to the arithmetic mean.
scalarProduct :: C y => T y -> T y -> ySource
centroid :: C y => T y -> ySource
directCurrentOffset must be non-zero.
centroidAlt :: C y => T y -> ySource
firstMoment :: C y => T y -> ySource
zeros :: (Ord y, C y) => T y -> T BoolSource
Detects zeros (sign changes) in a signal. This can be used as a simple measure of the portion of high frequencies or noise in the signal. It ca be used as voiced/unvoiced detector in a vocoder.
zeros x !! n is True if and only if
(x !! n >= 0) /= (x !! (n+1) >= 0).
The result will be one value shorter than the input.
data BinaryLevel Source
Instances
binaryLevelToNumber :: C a => BinaryLevel -> aSource
flipFlopHysteresis :: Ord y => (y, y) -> BinaryLevel -> T y -> T BinaryLevelSource
Detect thresholds with a hysteresis.
chirpTransform :: C y => y -> T y -> T ySource
Almost naive implementation of the chirp transform, a generalization of the Fourier transform.
More sophisticated algorithms like Rader, Cooley-Tukey, Winograd, Prime-Factor may follow.
binarySign :: (Ord y, C y) => T y -> T BinaryLevelSource
deltaSigmaModulation :: C y => T y -> T BinaryLevelSource
A kind of discretization for signals with sample values between -1 and 1. If you smooth the resulting signal (after you transformed with 'map binaryLevelToNumber'), you should obtain an approximation to the input signal.
deltaSigmaModulationPositive :: C y => y -> T y -> T ySource
A kind of discretization for signals with sample values between 0 and a threshold. We accumulate input values and emit a threshold value whenever the accumulator exceeds the threshold. This is intended for generating clicks from input noise.
See also deltaSigmaModulation.