| Safe Haskell | None |
|---|
Data.Type.Ordinal
Contents
Description
Set-theoretic ordinal arithmetic
- data Ordinal n where
- sNatToOrd' :: (S m :<<= n) ~ True => SNat n -> SNat m -> Ordinal n
- sNatToOrd :: (SingI n, (S m :<<= n) ~ True) => SNat m -> Ordinal n
- ordToInt :: Ordinal n -> Int
- ordToSNat :: Ordinal n -> Monomorphic (Sing :: Nat -> *)
- ordToSNat' :: Ordinal n -> CastedOrdinal n
- data CastedOrdinal n where
- CastedOrdinal :: (S m :<<= n) ~ True => SNat m -> CastedOrdinal n
- unsafeFromInt :: forall n. SingI n => Int -> Ordinal n
- inclusion :: (n :<<= m) ~ True => Ordinal n -> Ordinal m
- inclusion' :: (n :<<= m) ~ True => SNat m -> Ordinal n -> Ordinal m
- (@+) :: forall n m. (SingI n, SingI m) => Ordinal n -> Ordinal m -> Ordinal (n :+ m)
- enumOrdinal :: SNat n -> [Ordinal n]
- absurdOrd :: Ordinal Z -> a
- vacuousOrd :: Functor f => f (Ordinal Z) -> f a
- vacuousOrdM :: Monad m => m (Ordinal Z) -> m a
- od :: QuasiQuoter
Data-types
Set-theoretic (finite) ordinals:
n = {0, 1, ..., n-1}
So, Ordinal n has exactly n inhabitants. So especially Ordinal Z is isomorphic to Void.
Conversion from cardinals to ordinals.
sNatToOrd' :: (S m :<<= n) ~ True => SNat n -> SNat m -> Ordinal nSource
sNatToOrd' n m injects m as Ordinal n.
ordToSNat :: Ordinal n -> Monomorphic (Sing :: Nat -> *)Source
Convert Ordinal n into monomorphic SNat
ordToSNat' :: Ordinal n -> CastedOrdinal nSource
Convert Ordinal n into SNat m with the proof of S m :<<= n.
data CastedOrdinal n whereSource
Constructors
| CastedOrdinal :: (S m :<<= n) ~ True => SNat m -> CastedOrdinal n |
unsafeFromInt :: forall n. SingI n => Int -> Ordinal nSource
inclusion :: (n :<<= m) ~ True => Ordinal n -> Ordinal mSource
Inclusion function for ordinals with codomain inferred.
inclusion' :: (n :<<= m) ~ True => SNat m -> Ordinal n -> Ordinal mSource
Inclusion function for ordinals.
Ordinal arithmetics
(@+) :: forall n m. (SingI n, SingI m) => Ordinal n -> Ordinal m -> Ordinal (n :+ m)Source
Ordinal addition.
enumOrdinal :: SNat n -> [Ordinal n]Source
Elimination rules for Ordinal Z.
Ordinal ZabsurdOrd :: Ordinal Z -> aSource
Since Ordinal Z is logically not inhabited, we can coerce it to any value.
Since 0.2.3.0
vacuousOrd :: Functor f => f (Ordinal Z) -> f aSource
vacuousOrdM :: Monad m => m (Ordinal Z) -> m aSource
Quasi Quoter
Quasiquoter for ordinals