blas-0.7.6: Bindings to the BLAS library

Stabilityexperimental
MaintainerPatrick Perry <patperry@stanford.edu>

Data.Matrix.Class.MMatrix

Contents

Description

An overloaded interface for mutable matrices. The type class associates a matrix with a monad type in which operations can be perfomred. The matrices provide access to rows and columns, and can operate via multiplication on dense vectors and matrices.

Synopsis

The MMatrix type class

class (MatrixShaped a, BLAS3 e, Monad m) => MMatrix a e m whereSource

A type class for mutable matrices associated with a monad. The member functions of the type class do not perform any checks on the validity of shapes or indices, so in general their safe counterparts should be preferred.

Methods

getRows :: WriteVector x e m => a (k, l) e -> m [x l e]Source

Get a lazy list the row vectors in the matrix.

getCols :: WriteVector x e m => a (k, l) e -> m [x k e]Source

Get a lazy list of the column vectors in the matrix.

Instances

BLAS3 e => MMatrix IOMatrix e IO 
BLAS3 e => MMatrix Matrix e IO 
BLAS3 e => MMatrix IOBanded e IO 
BLAS3 e => MMatrix Banded e IO 
BLAS3 e => MMatrix Matrix e (ST s) 
BLAS3 e => MMatrix Banded e (ST s) 
BLAS3 e => MMatrix (Herm IOMatrix) e IO 
BLAS3 e => MMatrix (Herm Matrix) e IO 
BLAS3 e => MMatrix (Herm IOBanded) e IO 
BLAS3 e => MMatrix (Herm Banded) e IO 
BLAS3 e => MMatrix (Tri IOMatrix) e IO 
BLAS3 e => MMatrix (Tri Matrix) e IO 
BLAS3 e => MMatrix (Tri IOBanded) e IO 
BLAS3 e => MMatrix (Tri Banded) e IO 
BLAS3 e => MMatrix (Herm Matrix) e (ST s) 
BLAS3 e => MMatrix (Herm (STMatrix s)) e (ST s) 
BLAS3 e => MMatrix (Herm Banded) e (ST s) 
BLAS3 e => MMatrix (Herm (STBanded s)) e (ST s) 
BLAS3 e => MMatrix (Tri Matrix) e (ST s) 
BLAS3 e => MMatrix (Tri (STMatrix s)) e (ST s) 
BLAS3 e => MMatrix (Tri Banded) e (ST s) 
BLAS3 e => MMatrix (Tri (STBanded s)) e (ST s) 
BLAS3 e => MMatrix (STMatrix s) e (ST s) 
BLAS3 e => MMatrix (STBanded s) e (ST s) 

Getting rows and columns

getRow :: (MMatrix a e m, WriteVector x e m) => a (k, l) e -> Int -> m (x l e)Source

Get the given row in a matrix.

getCol :: (MMatrix a e m, WriteVector x e m) => a (k, l) e -> Int -> m (x k e)Source

Get the given column in a matrix.

getRows' :: (MMatrix a e m, WriteVector x e m) => a (k, l) e -> m [x l e]Source

Get a strict list the row vectors in the matrix.

getCols' :: (MMatrix a e m, WriteVector x e m) => a (k, l) e -> m [x k e]Source

Get a strict list of the column vectors in the matrix.

Matrix and vector multiplication

getApply :: (MMatrix a e m, ReadVector x e m, WriteVector y e m) => a (k, l) e -> x l e -> m (y k e)Source

Apply to a vector

getSApply :: (MMatrix a e m, ReadVector x e m, WriteVector y e m) => e -> a (k, l) e -> x l e -> m (y k e)Source

Scale and apply to a vector

getApplyMat :: (MMatrix a e m, ReadMatrix b e m, WriteMatrix c e m) => a (r, s) e -> b (s, t) e -> m (c (r, t) e)Source

Apply to a matrix

getSApplyMat :: (MMatrix a e m, ReadMatrix b e m, WriteMatrix c e m) => e -> a (r, s) e -> b (s, t) e -> m (c (r, t) e)Source

Scale and apply to a matrix

In-place multiplication

doApply :: (MMatrix a e m, ReadVector x e m, WriteVector y e m) => a (k, l) e -> x l e -> y k e -> m ()Source

Apply to a vector and store the result in another vector

doSApplyAdd :: (MMatrix a e m, ReadVector x e m, WriteVector y e m) => e -> a (k, l) e -> x l e -> e -> y k e -> m ()Source

y := alpha a x + beta y

doApply_ :: (MMatrix a e m, WriteVector y e m) => a (n, n) e -> y n e -> m ()Source

x := a x

doSApply_ :: (MMatrix a e m, WriteVector y e m) => e -> a (n, n) e -> y n e -> m ()Source

 x := alpha a x

doApplyMat :: (MMatrix a e m, ReadMatrix b e m, WriteMatrix c e m) => a (r, s) e -> b (s, t) e -> c (r, t) e -> m ()Source

Apply to a matrix and store the result in another matrix

doSApplyAddMat :: (MMatrix a e m, ReadMatrix b e m, WriteMatrix c e m) => e -> a (r, s) e -> b (s, t) e -> e -> c (r, t) e -> m ()Source

c := alpha a b + beta c

doApplyMat_ :: (MMatrix a e m, WriteMatrix b e m) => a (s, s) e -> b (s, t) e -> m ()Source

 b := a b

doSApplyMat_ :: (MMatrix a e m, WriteMatrix b e m) => e -> a (s, s) e -> b (s, t) e -> m ()Source

 b := alpha a b