singletons-base
Copyright(C) 2021 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRichard Eisenberg (rae@cs.brynmawr.edu)
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Data.Functor.Product.Singletons

Description

Exports the promoted and singled versions of the Product data type.

Synopsis

The Product singleton

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing # 
Instance details

Defined in Data.Singletons

type Sing # 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SProduct (a1 :: Product f g a) where Source #

Constructors

SPair :: forall {k} (f :: k -> Type) (g :: k -> Type) (a :: k) (n1 :: f a) (n2 :: g a). Sing n1 -> Sing n2 -> SProduct ('Pair n1 n2) 

Instances

Instances details
(SDecide (f a), SDecide (g a)) => TestCoercion (SProduct :: Product f g a -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

testCoercion :: forall (a0 :: Product f g a) (b :: Product f g a). SProduct a0 -> SProduct b -> Maybe (Coercion a0 b) #

(SDecide (f a), SDecide (g a)) => TestEquality (SProduct :: Product f g a -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

testEquality :: forall (a0 :: Product f g a) (b :: Product f g a). SProduct a0 -> SProduct b -> Maybe (a0 :~: b) #

Eq (SProduct z) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

(==) :: SProduct z -> SProduct z -> Bool #

(/=) :: SProduct z -> SProduct z -> Bool #

Ord (SProduct z) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

compare :: SProduct z -> SProduct z -> Ordering #

(<) :: SProduct z -> SProduct z -> Bool #

(<=) :: SProduct z -> SProduct z -> Bool #

(>) :: SProduct z -> SProduct z -> Bool #

(>=) :: SProduct z -> SProduct z -> Bool #

max :: SProduct z -> SProduct z -> SProduct z #

min :: SProduct z -> SProduct z -> SProduct z #

Defunctionalization symbols

data PairSym0 (a1 :: TyFun (f a) (g a ~> Product f g a)) Source #

Instances

Instances details
SingI (PairSym0 :: TyFun (f a) (g a ~> Product f g a) -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sing :: Sing (PairSym0 :: TyFun (f a) (g a ~> Product f g a) -> Type) #

SuppressUnusedWarnings (PairSym0 :: TyFun (f a) (g a ~> Product f g a) -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Apply (PairSym0 :: TyFun (f a) (g a ~> Product f g a) -> Type) (a6989586621680392419 :: f a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Apply (PairSym0 :: TyFun (f a) (g a ~> Product f g a) -> Type) (a6989586621680392419 :: f a) = PairSym1 a6989586621680392419 :: TyFun (g a) (Product f g a) -> Type

data PairSym1 (a6989586621680392419 :: f a) (b :: TyFun (g a) (Product f g a)) Source #

Instances

Instances details
SingI1 (PairSym1 :: f a -> TyFun (g a) (Product f g a) -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

liftSing :: forall (x :: f a). Sing x -> Sing (PairSym1 x :: TyFun (g a) (Product f g a) -> Type) #

SingI d => SingI (PairSym1 d :: TyFun (g a) (Product f g a) -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sing :: Sing (PairSym1 d :: TyFun (g a) (Product f g a) -> Type) #

SuppressUnusedWarnings (PairSym1 a6989586621680392419 :: TyFun (g a) (Product f g a) -> Type) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Apply (PairSym1 a6989586621680392419 :: TyFun (g a) (Product f g a) -> Type) (a6989586621680392420 :: g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Apply (PairSym1 a6989586621680392419 :: TyFun (g a) (Product f g a) -> Type) (a6989586621680392420 :: g a) = 'Pair a6989586621680392419 a6989586621680392420

type family PairSym2 (a6989586621680392419 :: f a) (a6989586621680392420 :: g a) :: Product f g a where ... Source #

Equations

PairSym2 (a6989586621680392419 :: f a) (a6989586621680392420 :: g a) = 'Pair a6989586621680392419 a6989586621680392420 

Orphan instances

SingI2 ('Pair :: f a -> g a -> Product f g a) Source # 
Instance details

Methods

liftSing2 :: forall (x :: f a) (y :: g a). Sing x -> Sing y -> Sing ('Pair x y) #

SingI n => SingI1 ('Pair n :: g a -> Product f g a) Source # 
Instance details

Methods

liftSing :: forall (x :: g a). Sing x -> Sing ('Pair n x) #

PAlternative (Product f g) Source # 
Instance details

PApplicative (Product f g) Source # 
Instance details

PFunctor (Product f g) Source # 
Instance details

PMonad (Product f g) Source # 
Instance details

PMonadPlus (Product f g) Source # 
Instance details

(SAlternative f, SAlternative g) => SAlternative (Product f g) Source # 
Instance details

Methods

sEmpty :: Sing (Empty :: Product f g a) Source #

(%<|>) :: forall a (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 <|> t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # 
Instance details

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Pure t :: Product f g a) Source #

(%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 <*> t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (LiftA2 t1 t2 t3) Source #

(%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 *> t2) Source #

(%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 <* t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # 
Instance details

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Fmap t1 t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 <$ t2) Source #

(SMonad f, SMonad g) => SMonad (Product f g) Source # 
Instance details

Methods

(%>>=) :: forall a b (t1 :: Product f g a) (t2 :: a ~> Product f g b). Sing t1 -> Sing t2 -> Sing (t1 >>= t2) Source #

(%>>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (t1 >> t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Return t :: Product f g a) Source #

(SMonadPlus f, SMonadPlus g) => SMonadPlus (Product f g) Source # 
Instance details

Methods

sMzero :: Sing (Mzero :: Product f g a) Source #

sMplus :: forall a (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Mplus t1 t2) Source #

PMonadZip (Product f g) Source # 
Instance details

(SMonadZip f, SMonadZip g) => SMonadZip (Product f g) Source # 
Instance details

Methods

sMzip :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Mzip t1 t2) Source #

sMzipWith :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (MzipWith t1 t2 t3) Source #

sMunzip :: forall a b (t :: Product f g (a, b)). Sing t -> Sing (Munzip t) Source #

PFoldable (Product f g) Source # 
Instance details

(SFoldable f, SFoldable g) => SFoldable (Product f g) Source # 
Instance details

Methods

sFold :: forall m (t1 :: Product f g m). SMonoid m => Sing t1 -> Sing (Fold t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (FoldMap t1 t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldr t1 t2 t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldr' t1 t2 t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl t1 t2 t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl' t1 t2 t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Foldr1 t1 t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Foldl1 t1 t2) Source #

sToList :: forall a (t1 :: Product f g a). Sing t1 -> Sing (ToList t1) Source #

sNull :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Null t1) Source #

sLength :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Length t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Product f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Elem t1 t2) Source #

sMaximum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Maximum t1) Source #

sMinimum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Minimum t1) Source #

sSum :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Sum t1) Source #

sProduct :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Product t1) Source #

PTraversable (Product f g) Source # 
Instance details

(STraversable f, STraversable g) => STraversable (Product f g) Source # 
Instance details

Methods

sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Product f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Traverse t1 t2) Source #

sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Product f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (SequenceA t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (MapM t1 t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Product f g (m a)). SMonad m => Sing t1 -> Sing (Sequence t1) Source #

(SDecide (f a), SDecide (g a)) => SDecide (Product f g a) Source # 
Instance details

Methods

(%~) :: forall (a0 :: Product f g a) (b :: Product f g a). Sing a0 -> Sing b -> Decision (a0 :~: b) #

PEq (Product f g a) Source # 
Instance details

(SEq (f a), SEq (g a)) => SEq (Product f g a) Source # 
Instance details

Methods

(%==) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 == t2) Source #

(%/=) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 /= t2) Source #

POrd (Product f g a) Source # 
Instance details

(SOrd (f a), SOrd (g a)) => SOrd (Product f g a) Source # 
Instance details

Methods

sCompare :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Compare t1 t2) Source #

(%<) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 < t2) Source #

(%<=) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 <= t2) Source #

(%>) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 > t2) Source #

(%>=) :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (t1 >= t2) Source #

sMax :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Max t1 t2) Source #

sMin :: forall (t1 :: Product f g a) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Min t1 t2) Source #

(SingI n1, SingI n2) => SingI ('Pair n1 n2 :: Product f g a) Source # 
Instance details

Methods

sing :: Sing ('Pair n1 n2) #