singletons-base
Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Data.List.Singletons

Description

Defines functions and datatypes relating to the singleton for '[]', including singled versions of a few of the definitions in Data.List.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.List. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The singleton for lists

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing # 
Instance details

Defined in Data.Singletons

type Sing # 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SList (a1 :: [a]) where Source #

Constructors

SNil :: forall a. SList ('[] :: [a]) 
SCons :: forall a (n1 :: a) (n2 :: [a]). Sing n1 -> Sing n2 -> SList (n1 ': n2) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: [a]) (b :: [a]). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: [a]) (b :: [a]). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

Eq (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

(==) :: SList z -> SList z -> Bool #

(/=) :: SList z -> SList z -> Bool #

Basic functions

type family (a1 :: [a]) ++ (a2 :: [a]) :: [a] where ... infixr 5 Source #

Equations

('[] :: [a]) ++ (ys :: [a]) = ys 
(x ': xs :: [a]) ++ (ys :: [a]) = Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) x) (Apply (Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) xs) ys) 

(%++) :: forall a (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (t1 ++ t2) infixr 5 Source #

type family Head (a1 :: [a]) :: a where ... Source #

Equations

Head (a2 ': _1 :: [a1]) = a2 
Head ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.head: empty list" 

sHead :: forall a (t :: [a]). Sing t -> Sing (Head t) Source #

type family Last (a1 :: [a]) :: a where ... Source #

Equations

Last ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.last: empty list" 
Last ('[x] :: [a]) = x 
Last (_1 ': (x ': xs) :: [k2]) = Apply (LastSym0 :: TyFun [k2] k2 -> Type) (Apply (Apply ((:@#@$) :: TyFun k2 ([k2] ~> [k2]) -> Type) x) xs) 

sLast :: forall a (t :: [a]). Sing t -> Sing (Last t) Source #

type family Tail (a1 :: [a]) :: [a] where ... Source #

Equations

Tail (_1 ': t :: [a]) = t 
Tail ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol [a] -> Type) "Data.Singletons.List.tail: empty list" 

sTail :: forall a (t :: [a]). Sing t -> Sing (Tail t) Source #

type family Init (a1 :: [a]) :: [a] where ... Source #

Equations

Init ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol [a] -> Type) "Data.Singletons.List.init: empty list" 
Init (x ': xs :: [k1]) = Apply (Apply (Let6989586621679545447Init'Sym0 x xs :: TyFun k1 ([k1] ~> [k1]) -> Type) x) xs 

sInit :: forall a (t :: [a]). Sing t -> Sing (Init t) Source #

type family Null (arg :: t a) :: Bool Source #

Instances

Instances details
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Last a)
type Null (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Max a)
type Null (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Min a)
type Null (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: NonEmpty a)
type Null (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Null (a2 :: Identity a1)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Last a)
type Null (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Dual a1)
type Null (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Product a1)
type Null (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Sum a1)
type Null (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Maybe a)
type Null (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: [a1])
type Null (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Arg a1 a2)
type Null (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a3 :: Either a1 a2)
type Null (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Proxy a1)
type Null (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: (a1, a2))
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Null (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Null (arg :: Product f g a)
type Null (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Null (arg :: Sum f g a)
type Null (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Null (arg :: Compose f g a)

sNull :: forall a (t1 :: t a). SFoldable t => Sing t1 -> Sing (Null t1) Source #

type family Length (arg :: t a) :: Natural Source #

Instances

Instances details
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Last a)
type Length (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Max a)
type Length (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Min a)
type Length (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: NonEmpty a)
type Length (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Length (a2 :: Identity a1)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Last a)
type Length (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Dual a1)
type Length (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Product a1)
type Length (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Sum a1)
type Length (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Maybe a)
type Length (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: [a1])
type Length (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Arg a1 a2)
type Length (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a3 :: Either a1 a2)
type Length (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Proxy a1)
type Length (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: (a1, a2))
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Length (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Length (arg :: Product f g a)
type Length (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Length (arg :: Sum f g a)
type Length (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Length (arg :: Compose f g a)

sLength :: forall a (t1 :: t a). SFoldable t => Sing t1 -> Sing (Length t1) Source #

List transformations

type family Map (a1 :: a ~> b) (a2 :: [a]) :: [b] where ... Source #

Equations

Map (_1 :: a ~> b) ('[] :: [a]) = NilSym0 :: [b] 
Map (f :: a ~> b) (x ': xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun b ([b] ~> [b]) -> Type) (Apply f x)) (Apply (Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) f) xs) 

sMap :: forall a b (t1 :: a ~> b) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Map t1 t2) Source #

type family Reverse (a1 :: [a]) :: [a] where ... Source #

Equations

Reverse (l :: [a6989586621679540816]) = Apply (Apply (Let6989586621679545431RevSym0 l :: TyFun [a6989586621679540816] ([a6989586621679540816] ~> [a6989586621679540816]) -> Type) l) (NilSym0 :: [a6989586621679540816]) 

sReverse :: forall a (t :: [a]). Sing t -> Sing (Reverse t) Source #

type family Intersperse (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Intersperse (_1 :: a) ('[] :: [a]) = NilSym0 :: [a] 
Intersperse (sep :: k1) (x ': xs :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (Apply (Apply (PrependToAllSym0 :: TyFun k1 ([k1] ~> [k1]) -> Type) sep) xs) 

sIntersperse :: forall a (t1 :: a) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Intersperse t1 t2) Source #

type family Intercalate (a1 :: [a]) (a2 :: [[a]]) :: [a] where ... Source #

Equations

Intercalate (xs :: [a]) (xss :: [[a]]) = Apply (ConcatSym0 :: TyFun [[a]] [a] -> Type) (Apply (Apply (IntersperseSym0 :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) xss) 

sIntercalate :: forall a (t1 :: [a]) (t2 :: [[a]]). Sing t1 -> Sing t2 -> Sing (Intercalate t1 t2) Source #

type family Transpose (a1 :: [[a]]) :: [[a]] where ... Source #

Equations

Transpose ('[] :: [[a]]) = NilSym0 :: [[a]] 
Transpose (('[] :: [a]) ': xss :: [[a]]) = Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) xss 
Transpose ((x ': xs) ': xss :: [[a]]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (Apply (Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) x) (Apply (Apply (MapSym0 :: TyFun ([a] ~> a) ([[a]] ~> [a]) -> Type) (HeadSym0 :: TyFun [a] a -> Type)) xss))) (Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) (Apply (Apply (MapSym0 :: TyFun ([a] ~> [a]) ([[a]] ~> [[a]]) -> Type) (TailSym0 :: TyFun [a] [a] -> Type)) xss))) 

sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Transpose t) Source #

type family Subsequences (a1 :: [a]) :: [[a]] where ... Source #

Equations

Subsequences (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (NilSym0 :: [a])) (Apply (NonEmptySubsequencesSym0 :: TyFun [a] [[a]] -> Type) xs) 

sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Subsequences t) Source #

type family Permutations (a1 :: [a]) :: [[a]] where ... Source #

Equations

Permutations (xs0 :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs0) (Apply (Apply (Let6989586621679545332PermsSym0 a xs0 :: TyFun [a] (TyFun [a] [[a]] -> Type) -> Type) xs0) (NilSym0 :: [a])) 

sPermutations :: forall a (t :: [a]). Sing t -> Sing (Permutations t) Source #

Reducing lists (folds)

type family Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: NonEmpty a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Identity a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Dual a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Product a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Sum a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Maybe a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: [a1])
type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Proxy a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl t1 t2 t3) Source #

type family Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a)
type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Identity a1)
type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Dual a1)
type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Product a1)
type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: Sum a1)
type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: b ~> (a1 ~> b)) (a3 :: b) (a4 :: [a1])
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a)
type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldl' t1 t2 t3) Source #

type family Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: t a) :: a Source #

Instances

Instances details
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: NonEmpty a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Identity a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Dual a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Product a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Sum a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: [a1])
type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Proxy a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing (Foldl1 t1 t2) Source #

type family Foldl1' (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: a where ... Source #

Equations

Foldl1' (f :: k2 ~> (k2 ~> k2)) (x ': xs :: [k2]) = Apply (Apply (Apply (Foldl'Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (k2 ~> ([k2] ~> k2)) -> Type) f) x) xs 
Foldl1' (_1 :: a ~> (a ~> a)) ('[] :: [a]) = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.foldl1': empty list" 

sFoldl1' :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Foldl1' t1 t2) Source #

type family Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: t a) :: b Source #

Instances

Instances details
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: First a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Max a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Max a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Min a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Min a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: NonEmpty a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Identity a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: First a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Dual a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Product a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Sum a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Maybe a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: [a1])
type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: Arg a2 a1)
type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: Either a2 a1)
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Proxy a1)
type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (b ~> b)) (a4 :: b) (a5 :: (a2, a1))
type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (b ~> b)) (a3 :: b) (a4 :: Const m a1)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing t3 -> Sing (Foldr t1 t2 t3) Source #

type family Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: t a) :: a Source #

Instances

Instances details
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: NonEmpty a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Identity a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Dual a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Product a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Sum a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: [a1])
type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a2 :: a1 ~> (a1 ~> a1)) (a3 :: Proxy a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: t a). SFoldable t => Sing t1 -> Sing t2 -> Sing (Foldr1 t1 t2) Source #

Special folds

type family Concat (a1 :: t [a]) :: [a] where ... Source #

Equations

Concat (xs :: t [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ([a] ~> ([a] ~> [a])) ([a] ~> (t [a] ~> [a])) -> Type) (LamCases_6989586621679922400Sym0 xs :: TyFun [a] (TyFun [a] [a] -> Type) -> Type)) (NilSym0 :: [a])) xs 

sConcat :: forall (t1 :: Type -> Type) a (t2 :: t1 [a]). SFoldable t1 => Sing t2 -> Sing (Concat t2) Source #

type family ConcatMap (a1 :: a ~> [b]) (a2 :: t a) :: [b] where ... Source #

Equations

ConcatMap (f :: a ~> [b6989586621679921893]) (xs :: t a) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ([b6989586621679921893] ~> [b6989586621679921893])) ([b6989586621679921893] ~> (t a ~> [b6989586621679921893])) -> Type) (LamCases_6989586621679922387Sym0 f xs)) (NilSym0 :: [b6989586621679921893])) xs 

sConcatMap :: forall a b (t1 :: Type -> Type) (t2 :: a ~> [b]) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (ConcatMap t2 t3) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And (a_6989586621679922374 :: t Bool) = Apply (Apply (Apply ((.@#@$) :: TyFun (All ~> Bool) ((t Bool ~> All) ~> (t Bool ~> Bool)) -> Type) GetAllSym0) (Apply (FoldMapSym0 :: TyFun (Bool ~> All) (t Bool ~> All) -> Type) All_Sym0)) a_6989586621679922374 

sAnd :: forall (t1 :: Type -> Type) (t2 :: t1 Bool). SFoldable t1 => Sing t2 -> Sing (And t2) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or (a_6989586621679922368 :: t Bool) = Apply (Apply (Apply ((.@#@$) :: TyFun (Any ~> Bool) ((t Bool ~> Any) ~> (t Bool ~> Bool)) -> Type) GetAnySym0) (Apply (FoldMapSym0 :: TyFun (Bool ~> Any) (t Bool ~> Any) -> Type) Any_Sym0)) a_6989586621679922368 

sOr :: forall (t1 :: Type -> Type) (t2 :: t1 Bool). SFoldable t1 => Sing t2 -> Sing (Or t2) Source #

type family Any (a1 :: a ~> Bool) (a2 :: t a) :: Bool where ... Source #

Equations

Any (p :: a ~> Bool) (a_6989586621679922359 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (Any ~> Bool) ((t a ~> Any) ~> (t a ~> Bool)) -> Type) GetAnySym0) (Apply (FoldMapSym0 :: TyFun (a ~> Any) (t a ~> Any) -> Type) (Apply (Apply ((.@#@$) :: TyFun (Bool ~> Any) ((a ~> Bool) ~> (a ~> Any)) -> Type) Any_Sym0) p))) a_6989586621679922359 

sAny :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Any t2 t3) Source #

type family All (a1 :: a ~> Bool) (a2 :: t a) :: Bool where ... Source #

Equations

All (p :: a ~> Bool) (a_6989586621679922350 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (All ~> Bool) ((t a ~> All) ~> (t a ~> Bool)) -> Type) GetAllSym0) (Apply (FoldMapSym0 :: TyFun (a ~> All) (t a ~> All) -> Type) (Apply (Apply ((.@#@$) :: TyFun (Bool ~> All) ((a ~> Bool) ~> (a ~> All)) -> Type) All_Sym0) p))) a_6989586621679922350 

sAll :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (All t2 t3) Source #

type family Sum (arg :: t a) :: a Source #

Instances

Instances details
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Last a)
type Sum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Max a)
type Sum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Min a)
type Sum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: NonEmpty a)
type Sum (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Sum (a2 :: Identity a1)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Last a)
type Sum (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a2 :: Dual a1)
type Sum (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a2 :: Product a1)
type Sum (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a2 :: Sum a1)
type Sum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Maybe a)
type Sum (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a2 :: [a1])
type Sum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Arg a1 a2)
type Sum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Either a1 a2)
type Sum (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a2 :: Proxy a1)
type Sum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: (a1, a2))
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type Sum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sum (arg :: Product f g a)
type Sum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sum (arg :: Sum f g a)
type Sum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sum (arg :: Compose f g a)

sSum :: forall a (t1 :: t a). (SFoldable t, SNum a) => Sing t1 -> Sing (Sum t1) Source #

type family Product (arg :: t a) :: a Source #

Instances

Instances details
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Last a)
type Product (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Max a)
type Product (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Min a)
type Product (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: NonEmpty a)
type Product (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Product (a2 :: Identity a1)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Last a)
type Product (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a2 :: Dual a1)
type Product (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a2 :: Product a1)
type Product (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a2 :: Sum a1)
type Product (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Maybe a)
type Product (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a2 :: [a1])
type Product (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Arg a1 a2)
type Product (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Either a1 a2)
type Product (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a2 :: Proxy a1)
type Product (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: (a1, a2))
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Product (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Product (arg :: Product f g a)
type Product (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Product (arg :: Sum f g a)
type Product (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Product (arg :: Compose f g a)

sProduct :: forall a (t1 :: t a). (SFoldable t, SNum a) => Sing t1 -> Sing (Product t1) Source #

type family Maximum (arg :: t a) :: a Source #

Instances

Instances details
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Max a)
type Maximum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Min a)
type Maximum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: NonEmpty a)
type Maximum (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Maximum (a2 :: Identity a1)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Last a)
type Maximum (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a2 :: Dual a1)
type Maximum (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a2 :: Product a1)
type Maximum (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a2 :: Sum a1)
type Maximum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Maybe a)
type Maximum (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a2 :: [a1])
type Maximum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Arg a1 a2)
type Maximum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Either a1 a2)
type Maximum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Proxy a)
type Maximum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: (a1, a2))
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Maximum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Maximum (arg :: Product f g a)
type Maximum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Maximum (arg :: Sum f g a)
type Maximum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Maximum (arg :: Compose f g a)

sMaximum :: forall a (t1 :: t a). (SFoldable t, SOrd a) => Sing t1 -> Sing (Maximum t1) Source #

type family Minimum (arg :: t a) :: a Source #

Instances

Instances details
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Max a)
type Minimum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Min a)
type Minimum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: NonEmpty a)
type Minimum (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Minimum (a2 :: Identity a1)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Last a)
type Minimum (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a2 :: Dual a1)
type Minimum (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a2 :: Product a1)
type Minimum (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a2 :: Sum a1)
type Minimum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Maybe a)
type Minimum (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a2 :: [a1])
type Minimum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Arg a1 a2)
type Minimum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Either a1 a2)
type Minimum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Proxy a)
type Minimum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: (a1, a2))
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Minimum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Minimum (arg :: Product f g a)
type Minimum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Minimum (arg :: Sum f g a)
type Minimum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Minimum (arg :: Compose f g a)

sMinimum :: forall a (t1 :: t a). (SFoldable t, SOrd a) => Sing t1 -> Sing (Minimum t1) Source #

Building lists

Scans

type family Scanl (a1 :: b ~> (a ~> b)) (a2 :: b) (a3 :: [a]) :: [b] where ... Source #

Equations

Scanl (f :: b6989586621679540686 ~> (a6989586621679540687 ~> b6989586621679540686)) (q :: b6989586621679540686) (ls :: [a6989586621679540687]) = Apply (Apply ((:@#@$) :: TyFun b6989586621679540686 ([b6989586621679540686] ~> [b6989586621679540686]) -> Type) q) (Apply (LamCases_6989586621679545232Sym0 f q ls) ls) 

sScanl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Scanl t1 t2 t3) Source #

type family Scanl1 (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: [a] where ... Source #

Equations

Scanl1 (f :: k1 ~> (k1 ~> k1)) (x ': xs :: [k1]) = Apply (Apply (Apply (ScanlSym0 :: TyFun (k1 ~> (k1 ~> k1)) (k1 ~> ([k1] ~> [k1])) -> Type) f) x) xs 
Scanl1 (_1 :: a ~> (a ~> a)) ('[] :: [a]) = NilSym0 :: [a] 

sScanl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Scanl1 t1 t2) Source #

type family Scanr (a1 :: a ~> (b ~> b)) (a2 :: b) (a3 :: [a]) :: [b] where ... Source #

Equations

Scanr (_1 :: a ~> (k1 ~> k1)) (q0 :: k1) ('[] :: [a]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) q0) (NilSym0 :: [k1]) 
Scanr (f :: a ~> (k1 ~> k1)) (q0 :: k1) (x ': xs :: [a]) = Apply (LamCases_6989586621679545207Sym0 f q0 x xs) (Apply (Apply (Apply (ScanrSym0 :: TyFun (a ~> (k1 ~> k1)) (k1 ~> ([a] ~> [k1])) -> Type) f) q0) xs) 

sScanr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Scanr t1 t2 t3) Source #

type family Scanr1 (a1 :: a ~> (a ~> a)) (a2 :: [a]) :: [a] where ... Source #

Equations

Scanr1 (_1 :: a ~> (a ~> a)) ('[] :: [a]) = NilSym0 :: [a] 
Scanr1 (_1 :: k1 ~> (k1 ~> k1)) ('[x] :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (NilSym0 :: [k1]) 
Scanr1 (f :: k1 ~> (k1 ~> k1)) (x ': (wild_6989586621679541173 ': wild_6989586621679541175) :: [k1]) = Apply (LamCases_6989586621679545188Sym0 f x wild_6989586621679541173 wild_6989586621679541175) (Apply (Apply (Scanr1Sym0 :: TyFun (k1 ~> (k1 ~> k1)) ([k1] ~> [k1]) -> Type) f) (Let6989586621679545186XsSym0 f x wild_6989586621679541173 wild_6989586621679541175)) 

sScanr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Scanr1 t1 t2) Source #

Accumulating maps

type family MapAccumL (a1 :: a ~> (b ~> (a, c))) (a2 :: a) (a3 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumL (f :: a ~> (b ~> (a, c))) (s :: a) (t2 :: t1 b) = Apply (Apply (RunStateLSym0 :: TyFun (StateL a (t1 c)) (a ~> (a, t1 c)) -> Type) (Apply (Apply (TraverseSym0 :: TyFun (b ~> StateL a c) (t1 b ~> StateL a (t1 c)) -> Type) (Apply (Apply ((.@#@$) :: TyFun ((a ~> (a, c)) ~> StateL a c) ((b ~> (a ~> (a, c))) ~> (b ~> StateL a c)) -> Type) (StateLSym0 :: TyFun (a ~> (a, c)) (StateL a c) -> Type)) (Apply (FlipSym0 :: TyFun (a ~> (b ~> (a, c))) (b ~> (a ~> (a, c))) -> Type) f))) t2)) s 

sMapAccumL :: forall (t1 :: Type -> Type) a b c (t2 :: a ~> (b ~> (a, c))) (t3 :: a) (t4 :: t1 b). STraversable t1 => Sing t2 -> Sing t3 -> Sing t4 -> Sing (MapAccumL t2 t3 t4) Source #

type family MapAccumR (a1 :: a ~> (b ~> (a, c))) (a2 :: a) (a3 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumR (f :: k1 ~> (a ~> (k1, b))) (s :: k1) (t2 :: t1 a) = Apply (Apply (RunStateRSym0 :: TyFun (StateR k1 (t1 b)) (k1 ~> (k1, t1 b)) -> Type) (Apply (Apply (TraverseSym0 :: TyFun (a ~> StateR k1 b) (t1 a ~> StateR k1 (t1 b)) -> Type) (Apply (Apply ((.@#@$) :: TyFun ((k1 ~> (k1, b)) ~> StateR k1 b) ((a ~> (k1 ~> (k1, b))) ~> (a ~> StateR k1 b)) -> Type) (StateRSym0 :: TyFun (k1 ~> (k1, b)) (StateR k1 b) -> Type)) (Apply (FlipSym0 :: TyFun (k1 ~> (a ~> (k1, b))) (a ~> (k1 ~> (k1, b))) -> Type) f))) t2)) s 

sMapAccumR :: forall a b c (t1 :: Type -> Type) (t2 :: a ~> (b ~> (a, c))) (t3 :: a) (t4 :: t1 b). STraversable t1 => Sing t2 -> Sing t3 -> Sing t4 -> Sing (MapAccumR t2 t3 t4) Source #

Cyclical lists

type family Replicate (a1 :: Natural) (a2 :: a) :: [a] where ... Source #

Equations

Replicate n (x :: a6989586621679540590) = Apply (LamCases_6989586621679544290Sym0 n x) (Apply (Apply ((==@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) n) (FromInteger 0 :: Natural)) 

sReplicate :: forall a (t1 :: Natural) (t2 :: a). Sing t1 -> Sing t2 -> Sing (Replicate t1 t2) Source #

Unfolding

type family Unfoldr (a1 :: b ~> Maybe (a, b)) (a2 :: b) :: [a] where ... Source #

Equations

Unfoldr (f :: k1 ~> Maybe (a6989586621679540675, k1)) (b :: k1) = Apply (LamCases_6989586621679545059Sym0 f b) (Apply f b) 

sUnfoldr :: forall b a (t1 :: b ~> Maybe (a, b)) (t2 :: b). Sing t1 -> Sing t2 -> Sing (Unfoldr t1 t2) Source #

Sublists

Extracting sublists

type family Take (a1 :: Natural) (a2 :: [a]) :: [a] where ... Source #

Equations

Take _1 ('[] :: [a]) = NilSym0 :: [a] 
Take n (x ': xs :: [a]) = Apply (LamCases_6989586621679544450Sym0 n x xs) (Apply (Apply ((==@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) n) (FromInteger 0 :: Natural)) 

sTake :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Take t1 t2) Source #

type family Drop (a1 :: Natural) (a2 :: [a]) :: [a] where ... Source #

Equations

Drop _1 ('[] :: [a]) = NilSym0 :: [a] 
Drop n (x ': xs :: [a]) = Apply (LamCases_6989586621679544437Sym0 n x xs) (Apply (Apply ((==@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) n) (FromInteger 0 :: Natural)) 

sDrop :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Drop t1 t2) Source #

type family SplitAt (a1 :: Natural) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAt n (xs :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Apply (Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) n) xs)) (Apply (Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) n) xs) 

sSplitAt :: forall a (t1 :: Natural) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (SplitAt t1 t2) Source #

type family TakeWhile (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

TakeWhile (_1 :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
TakeWhile (p :: k1 ~> Bool) (x ': xs :: [k1]) = Apply (LamCases_6989586621679544579Sym0 p x xs) (Apply p x) 

sTakeWhile :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (TakeWhile t1 t2) Source #

type family DropWhile (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

DropWhile (_1 :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
DropWhile (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Apply (LamCases_6989586621679544566Sym0 p x xs') (Apply p x) 

sDropWhile :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (DropWhile t1 t2) Source #

type family DropWhileEnd (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

DropWhileEnd (p :: a ~> Bool) (a_6989586621679544533 :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (LamCases_6989586621679544542Sym0 p a_6989586621679544533)) (NilSym0 :: [a])) a_6989586621679544533 

sDropWhileEnd :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (DropWhileEnd t1 t2) Source #

type family Span (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Span (_1 :: a ~> Bool) ('[] :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Let6989586621679544499XsSym0 :: [a])) (Let6989586621679544499XsSym0 :: [a]) 
Span (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Apply (LamCases_6989586621679544506Sym0 p x xs') (Apply p x) 

sSpan :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Span t1 t2) Source #

type family Break (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Break (_1 :: a ~> Bool) ('[] :: [a]) = Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (Let6989586621679544460XsSym0 :: [a])) (Let6989586621679544460XsSym0 :: [a]) 
Break (p :: k1 ~> Bool) (x ': xs' :: [k1]) = Apply (LamCases_6989586621679544467Sym0 p x xs') (Apply p x) 

sBreak :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Break t1 t2) Source #

type family StripPrefix (a1 :: [a]) (a2 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefix ('[] :: [a]) (ys :: [a]) = Apply (JustSym0 :: TyFun [a] (Maybe [a]) -> Type) ys 
StripPrefix (arg_6989586621679654988 :: [k]) (arg_6989586621679654990 :: [k]) = Apply (Apply (LamCases_6989586621679656302Sym0 arg_6989586621679654988 arg_6989586621679654990 :: TyFun [k] (TyFun [k] (Maybe [k]) -> Type) -> Type) arg_6989586621679654988) arg_6989586621679654990 

type family Group (a1 :: [a]) :: [[a]] where ... Source #

Equations

Group (xs :: [a]) = Apply (Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) xs 

sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Group t) Source #

type family Inits (a1 :: [a]) :: [[a]] where ... Source #

Equations

Inits (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) (NilSym0 :: [a])) (Apply (LamCases_6989586621679545045Sym0 xs :: TyFun [a] [[a]] -> Type) xs) 

sInits :: forall a (t :: [a]). Sing t -> Sing (Inits t) Source #

type family Tails (a1 :: [a]) :: [[a]] where ... Source #

Equations

Tails (xs :: [a]) = Apply (Apply ((:@#@$) :: TyFun [a] ([[a]] ~> [[a]]) -> Type) xs) (Apply (LamCases_6989586621679545035Sym0 xs :: TyFun [a] [[a]] -> Type) xs) 

sTails :: forall a (t :: [a]). Sing t -> Sing (Tails t) Source #

Predicates

type family IsPrefixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOf ('[] :: [a]) ('[] :: [a]) = TrueSym0 
IsPrefixOf ('[] :: [a]) (_1 ': _2 :: [a]) = TrueSym0 
IsPrefixOf (_1 ': _2 :: [a]) ('[] :: [a]) = FalseSym0 
IsPrefixOf (x ': xs :: [a]) (y ': ys :: [a]) = Apply (Apply (&&@#@$) (Apply (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x) y)) (Apply (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) xs) ys) 

sIsPrefixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (IsPrefixOf t1 t2) Source #

type family IsSuffixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOf (x :: [a]) (y :: [a]) = Apply (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (Apply (ReverseSym0 :: TyFun [a] [a] -> Type) x)) (Apply (ReverseSym0 :: TyFun [a] [a] -> Type) y) 

sIsSuffixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (IsSuffixOf t1 t2) Source #

type family IsInfixOf (a1 :: [a]) (a2 :: [a]) :: Bool where ... Source #

Equations

IsInfixOf (needle :: [a]) (haystack :: [a]) = Apply (Apply (AnySym0 :: TyFun ([a] ~> Bool) ([[a]] ~> Bool) -> Type) (Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) needle)) (Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) haystack) 

sIsInfixOf :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (IsInfixOf t1 t2) Source #

Searching lists

Searching by equality

type family Elem (arg :: a) (arg1 :: t a) :: Bool Source #

Instances

Instances details
type Elem (arg :: a) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: First a)
type Elem (arg :: a) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Last a)
type Elem (arg :: a) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Max a)
type Elem (arg :: a) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Min a)
type Elem (arg1 :: a) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: NonEmpty a)
type Elem (arg1 :: a) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: First a)
type Elem (arg1 :: a) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Last a)
type Elem (arg1 :: a) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Maybe a)
type Elem (a2 :: a1) (a3 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Elem (a2 :: a1) (a3 :: Identity a1)
type Elem (a2 :: a1) (a3 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a2 :: a1) (a3 :: Dual a1)
type Elem (a2 :: a1) (a3 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a2 :: a1) (a3 :: Product a1)
type Elem (a2 :: a1) (a3 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a2 :: a1) (a3 :: Sum a1)
type Elem (a2 :: a1) (a3 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a2 :: a1) (a3 :: [a1])
type Elem (arg :: a1) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a1) (arg1 :: Arg a2 a1)
type Elem (arg1 :: a1) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: Either a2 a1)
type Elem (a2 :: a1) (a3 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a2 :: a1) (a3 :: Proxy a1)
type Elem (arg1 :: a1) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: (a2, a1))
type Elem (arg :: a) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg :: a) (arg1 :: Const m a)
type Elem (arg :: a) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Elem (arg :: a) (arg1 :: Product f g a)
type Elem (arg :: a) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Elem (arg :: a) (arg1 :: Sum f g a)
type Elem (arg :: a) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Elem (arg :: a) (arg1 :: Compose f g a)

sElem :: forall a (t1 :: a) (t2 :: t a). (SFoldable t, SEq a) => Sing t1 -> Sing t2 -> Sing (Elem t1 t2) Source #

type family NotElem (a1 :: a) (a2 :: t a) :: Bool where ... Source #

Equations

NotElem (x :: k1) (a_6989586621679922301 :: t k1) = Apply (Apply (Apply ((.@#@$) :: TyFun (Bool ~> Bool) ((t k1 ~> Bool) ~> (t k1 ~> Bool)) -> Type) NotSym0) (Apply (ElemSym0 :: TyFun k1 (t k1 ~> Bool) -> Type) x)) a_6989586621679922301 

sNotElem :: forall a (t1 :: Type -> Type) (t2 :: a) (t3 :: t1 a). (SFoldable t1, SEq a) => Sing t2 -> Sing t3 -> Sing (NotElem t2 t3) Source #

type family Lookup (a1 :: a) (a2 :: [(a, b)]) :: Maybe b where ... Source #

Equations

Lookup (_key :: a) ('[] :: [(a, b)]) = NothingSym0 :: Maybe b 
Lookup (key :: k2) ('(x, y) ': xys :: [(k2, k3)]) = Apply (LamCases_6989586621679544356Sym0 key x y xys) (Apply (Apply ((==@#@$) :: TyFun k2 (k2 ~> Bool) -> Type) key) x) 

sLookup :: forall a b (t1 :: a) (t2 :: [(a, b)]). SEq a => Sing t1 -> Sing t2 -> Sing (Lookup t1 t2) Source #

Searching with a predicate

type family Find (a1 :: a ~> Bool) (a2 :: t a) :: Maybe a where ... Source #

Equations

Find (p :: a ~> Bool) (a_6989586621679922281 :: t a) = Apply (Apply (Apply ((.@#@$) :: TyFun (First a ~> Maybe a) ((t a ~> First a) ~> (t a ~> Maybe a)) -> Type) (GetFirstSym0 :: TyFun (First a) (Maybe a) -> Type)) (Apply (FoldMapSym0 :: TyFun (a ~> First a) (t a ~> First a) -> Type) (LamCases_6989586621679922290Sym0 p a_6989586621679922281))) a_6989586621679922281 

sFind :: forall a (t1 :: Type -> Type) (t2 :: a ~> Bool) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (Find t2 t3) Source #

type family Filter (a1 :: a ~> Bool) (a2 :: [a]) :: [a] where ... Source #

Equations

Filter (_p :: a ~> Bool) ('[] :: [a]) = NilSym0 :: [a] 
Filter (p :: k1 ~> Bool) (x ': xs :: [k1]) = Apply (LamCases_6989586621679544680Sym0 p x xs) (Apply p x) 

sFilter :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Filter t1 t2) Source #

type family Partition (a1 :: a ~> Bool) (a2 :: [a]) :: ([a], [a]) where ... Source #

Equations

Partition (p :: a ~> Bool) (xs :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> (([a], [a]) ~> ([a], [a]))) (([a], [a]) ~> ([a] ~> ([a], [a]))) -> Type) (Apply (SelectSym0 :: TyFun (a ~> Bool) (a ~> (([a], [a]) ~> ([a], [a]))) -> Type) p)) (Apply (Apply (Tuple2Sym0 :: TyFun [a] ([a] ~> ([a], [a])) -> Type) (NilSym0 :: [a])) (NilSym0 :: [a]))) xs 

sPartition :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Partition t1 t2) Source #

Indexing lists

type family (a1 :: [a]) !! (a2 :: Natural) :: a where ... infixl 9 Source #

Equations

('[] :: [a]) !! _1 = Apply (ErrorSym0 :: TyFun Symbol a -> Type) "Data.Singletons.List.!!: index too large" 
(x ': xs :: [k2]) !! n = Apply (LamCases_6989586621679544271Sym0 x xs n) (Apply (Apply ((==@#@$) :: TyFun Natural (Natural ~> Bool) -> Type) n) (FromInteger 0 :: Natural)) 

(%!!) :: forall a (t1 :: [a]) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (t1 !! t2) infixl 9 Source #

type family ElemIndex (a1 :: a) (a2 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndex (x :: a) (a_6989586621679544653 :: [a]) = Apply (Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x)) a_6989586621679544653 

sElemIndex :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (ElemIndex t1 t2) Source #

type family ElemIndices (a1 :: a) (a2 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndices (x :: a) (a_6989586621679544644 :: [a]) = Apply (Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) x)) a_6989586621679544644 

sElemIndices :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (ElemIndices t1 t2) Source #

type family FindIndex (a1 :: a ~> Bool) (a2 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndex (p :: a ~> Bool) (a_6989586621679544635 :: [a]) = Apply (Apply (Apply ((.@#@$) :: TyFun ([Natural] ~> Maybe Natural) (([a] ~> [Natural]) ~> ([a] ~> Maybe Natural)) -> Type) (ListToMaybeSym0 :: TyFun [Natural] (Maybe Natural) -> Type)) (Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) p)) a_6989586621679544635 

sFindIndex :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (FindIndex t1 t2) Source #

type family FindIndices (a1 :: a ~> Bool) (a2 :: [a]) :: [Natural] where ... Source #

Equations

FindIndices (p :: a ~> Bool) (xs :: [a]) = Apply (Apply (MapSym0 :: TyFun ((a, Natural) ~> Natural) ([(a, Natural)] ~> [Natural]) -> Type) (SndSym0 :: TyFun (a, Natural) Natural -> Type)) (Apply (Apply (FilterSym0 :: TyFun ((a, Natural) ~> Bool) ([(a, Natural)] ~> [(a, Natural)]) -> Type) (LamCases_6989586621679544629Sym0 p xs :: TyFun (a, Natural) Bool -> Type)) (Apply (Apply (ZipSym0 :: TyFun [a] ([Natural] ~> [(a, Natural)]) -> Type) xs) (Apply (Apply (Let6989586621679544623BuildListSym0 p xs :: TyFun Natural ([a] ~> [Natural]) -> Type) (FromInteger 0 :: Natural)) xs))) 

sFindIndices :: forall a (t1 :: a ~> Bool) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (FindIndices t1 t2) Source #

Zipping and unzipping lists

type family Zip (a1 :: [a]) (a2 :: [b]) :: [(a, b)] where ... Source #

Equations

Zip (x ': xs :: [a]) (y ': ys :: [b]) = Apply (Apply ((:@#@$) :: TyFun (a, b) ([(a, b)] ~> [(a, b)]) -> Type) (Apply (Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) x) y)) (Apply (Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) xs) ys) 
Zip ('[] :: [a]) ('[] :: [b]) = NilSym0 :: [(a, b)] 
Zip (_1 ': _2 :: [a]) ('[] :: [b]) = NilSym0 :: [(a, b)] 
Zip ('[] :: [a]) (_1 ': _2 :: [b]) = NilSym0 :: [(a, b)] 

sZip :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Zip t1 t2) Source #

type family Zip3 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3 (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) = Apply (Apply ((:@#@$) :: TyFun (a1, b1, c1) ([(a1, b1, c1)] ~> [(a1, b1, c1)]) -> Type) (Apply (Apply (Apply (Tuple3Sym0 :: TyFun a1 (b1 ~> (c1 ~> (a1, b1, c1))) -> Type) a2) b2) c2)) (Apply (Apply (Apply (Zip3Sym0 :: TyFun [a1] ([b1] ~> ([c1] ~> [(a1, b1, c1)])) -> Type) as) bs) cs) 
Zip3 ('[] :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) ('[] :: [b]) (_1 ': _2 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) (_1 ': _2 :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 ('[] :: [a]) (_1 ': _2 :: [b]) (_3 ': _4 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) ('[] :: [b]) (_3 ': _4 :: [c]) = NilSym0 :: [(a, b, c)] 
Zip3 (_1 ': _2 :: [a]) (_3 ': _4 :: [b]) ('[] :: [c]) = NilSym0 :: [(a, b, c)] 

sZip3 :: forall a b c (t1 :: [a]) (t2 :: [b]) (t3 :: [c]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Zip3 t1 t2 t3) Source #

type family Zip4 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4 (a_6989586621679656273 :: [a]) (a_6989586621679656275 :: [b]) (a_6989586621679656277 :: [c]) (a_6989586621679656279 :: [d]) = Apply (Apply (Apply (Apply (Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (a, b, c, d))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)])))) -> Type) (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type)) a_6989586621679656273) a_6989586621679656275) a_6989586621679656277) a_6989586621679656279 

type family Zip5 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5 (a_6989586621679656247 :: [a]) (a_6989586621679656249 :: [b]) (a_6989586621679656251 :: [c]) (a_6989586621679656253 :: [d]) (a_6989586621679656255 :: [e]) = Apply (Apply (Apply (Apply (Apply (Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))))) -> Type) (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type)) a_6989586621679656247) a_6989586621679656249) a_6989586621679656251) a_6989586621679656253) a_6989586621679656255 

type family Zip6 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) (a6 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6 (a_6989586621679656216 :: [a]) (a_6989586621679656218 :: [b]) (a_6989586621679656220 :: [c]) (a_6989586621679656222 :: [d]) (a_6989586621679656224 :: [e]) (a_6989586621679656226 :: [f]) = Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))))) -> Type) (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type)) a_6989586621679656216) a_6989586621679656218) a_6989586621679656220) a_6989586621679656222) a_6989586621679656224) a_6989586621679656226 

type family Zip7 (a1 :: [a]) (a2 :: [b]) (a3 :: [c]) (a4 :: [d]) (a5 :: [e]) (a6 :: [f]) (a7 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7 (a_6989586621679656180 :: [a]) (a_6989586621679656182 :: [b]) (a_6989586621679656184 :: [c]) (a_6989586621679656186 :: [d]) (a_6989586621679656188 :: [e]) (a_6989586621679656190 :: [f]) (a_6989586621679656192 :: [g]) = Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))))) -> Type) (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type)) a_6989586621679656180) a_6989586621679656182) a_6989586621679656184) a_6989586621679656186) a_6989586621679656188) a_6989586621679656190) a_6989586621679656192 

type family ZipWith (a1 :: a ~> (b ~> c)) (a2 :: [a]) (a3 :: [b]) :: [c] where ... Source #

Equations

ZipWith (f :: a ~> (b ~> c)) (x ': xs :: [a]) (y ': ys :: [b]) = Apply (Apply ((:@#@$) :: TyFun c ([c] ~> [c]) -> Type) (Apply (Apply f x) y)) (Apply (Apply (Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) f) xs) ys) 
ZipWith (_1 :: a ~> (b ~> c)) ('[] :: [a]) ('[] :: [b]) = NilSym0 :: [c] 
ZipWith (_1 :: a ~> (b ~> c)) (_2 ': _3 :: [a]) ('[] :: [b]) = NilSym0 :: [c] 
ZipWith (_1 :: a ~> (b ~> c)) ('[] :: [a]) (_2 ': _3 :: [b]) = NilSym0 :: [c] 

sZipWith :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (ZipWith t1 t2 t3) Source #

type family ZipWith3 (a1 :: a ~> (b ~> (c ~> d))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) :: [d] where ... Source #

Equations

ZipWith3 (z :: a1 ~> (b1 ~> (c1 ~> d))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) = Apply (Apply ((:@#@$) :: TyFun d ([d] ~> [d]) -> Type) (Apply (Apply (Apply z a2) b2) c2)) (Apply (Apply (Apply (Apply (ZipWith3Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> d))) ([a1] ~> ([b1] ~> ([c1] ~> [d]))) -> Type) z) as) bs) cs) 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) ('[] :: [b]) (_2 ': _3 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) (_2 ': _3 :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) ('[] :: [a]) (_2 ': _3 :: [b]) (_4 ': _5 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) ('[] :: [b]) ('[] :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) ('[] :: [b]) (_4 ': _5 :: [c]) = NilSym0 :: [d] 
ZipWith3 (_1 :: a ~> (b ~> (c ~> d))) (_2 ': _3 :: [a]) (_4 ': _5 :: [b]) ('[] :: [c]) = NilSym0 :: [d] 

sZipWith3 :: forall a b c d (t1 :: a ~> (b ~> (c ~> d))) (t2 :: [a]) (t3 :: [b]) (t4 :: [c]). Sing t1 -> Sing t2 -> Sing t3 -> Sing t4 -> Sing (ZipWith3 t1 t2 t3 t4) Source #

type family ZipWith4 (a1 :: a ~> (b ~> (c ~> (d ~> e)))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) :: [e] where ... Source #

Equations

ZipWith4 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> e)))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) = Apply (Apply ((:@#@$) :: TyFun e ([e] ~> [e]) -> Type) (Apply (Apply (Apply (Apply z a2) b2) c2) d2)) (Apply (Apply (Apply (Apply (Apply (ZipWith4Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> e)))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> [e])))) -> Type) z) as) bs) cs) ds) 
ZipWith4 (_1 :: a ~> (b ~> (c ~> (d ~> e)))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) = NilSym0 :: [e] 

type family ZipWith5 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) :: [f] where ... Source #

Equations

ZipWith5 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> f))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) = Apply (Apply ((:@#@$) :: TyFun f ([f] ~> [f]) -> Type) (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2)) (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith5Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> f))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> [f]))))) -> Type) z) as) bs) cs) ds) es) 
ZipWith5 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) = NilSym0 :: [f] 

type family ZipWith6 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) (a7 :: [f]) :: [g] where ... Source #

Equations

ZipWith6 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> g)))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) (f2 ': fs :: [f1]) = Apply (Apply ((:@#@$) :: TyFun g ([g] ~> [g]) -> Type) (Apply (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2) f2)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith6Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> g)))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> ([f1] ~> [g])))))) -> Type) z) as) bs) cs) ds) es) fs) 
ZipWith6 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) (_7 :: [f]) = NilSym0 :: [g] 

type family ZipWith7 (a1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a2 :: [a]) (a3 :: [b]) (a4 :: [c]) (a5 :: [d]) (a6 :: [e]) (a7 :: [f]) (a8 :: [g]) :: [h] where ... Source #

Equations

ZipWith7 (z :: a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> (g1 ~> h))))))) (a2 ': as :: [a1]) (b2 ': bs :: [b1]) (c2 ': cs :: [c1]) (d2 ': ds :: [d1]) (e2 ': es :: [e1]) (f2 ': fs :: [f1]) (g2 ': gs :: [g1]) = Apply (Apply ((:@#@$) :: TyFun h ([h] ~> [h]) -> Type) (Apply (Apply (Apply (Apply (Apply (Apply (Apply z a2) b2) c2) d2) e2) f2) g2)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply (ZipWith7Sym0 :: TyFun (a1 ~> (b1 ~> (c1 ~> (d1 ~> (e1 ~> (f1 ~> (g1 ~> h))))))) ([a1] ~> ([b1] ~> ([c1] ~> ([d1] ~> ([e1] ~> ([f1] ~> ([g1] ~> [h]))))))) -> Type) z) as) bs) cs) ds) es) fs) gs) 
ZipWith7 (_1 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (_2 :: [a]) (_3 :: [b]) (_4 :: [c]) (_5 :: [d]) (_6 :: [e]) (_7 :: [f]) (_8 :: [g]) = NilSym0 :: [h] 

type family Unzip (a1 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

Unzip (xs :: [(k2, k3)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3) ~> (([k2], [k3]) ~> ([k2], [k3]))) (([k2], [k3]) ~> ([(k2, k3)] ~> ([k2], [k3]))) -> Type) (LamCases_6989586621679544931Sym0 xs :: TyFun (k2, k3) (TyFun ([k2], [k3]) ([k2], [k3]) -> Type) -> Type)) (Apply (Apply (Tuple2Sym0 :: TyFun [k2] ([k3] ~> ([k2], [k3])) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3]))) xs 

sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Unzip t) Source #

type family Unzip3 (a1 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3 (xs :: [(k2, k3, k4)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4) ~> (([k2], [k3], [k4]) ~> ([k2], [k3], [k4]))) (([k2], [k3], [k4]) ~> ([(k2, k3, k4)] ~> ([k2], [k3], [k4]))) -> Type) (LamCases_6989586621679544914Sym0 xs :: TyFun (k2, k3, k4) (TyFun ([k2], [k3], [k4]) ([k2], [k3], [k4]) -> Type) -> Type)) (Apply (Apply (Apply (Tuple3Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k2], [k3], [k4]))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4]))) xs 

sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Unzip3 t) Source #

type family Unzip4 (a1 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4 (xs :: [(k2, k3, k4, k5)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5) ~> (([k2], [k3], [k4], [k5]) ~> ([k2], [k3], [k4], [k5]))) (([k2], [k3], [k4], [k5]) ~> ([(k2, k3, k4, k5)] ~> ([k2], [k3], [k4], [k5]))) -> Type) (LamCases_6989586621679544895Sym0 xs :: TyFun (k2, k3, k4, k5) (TyFun ([k2], [k3], [k4], [k5]) ([k2], [k3], [k4], [k5]) -> Type) -> Type)) (Apply (Apply (Apply (Apply (Tuple4Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k2], [k3], [k4], [k5])))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5]))) xs 

sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Unzip4 t) Source #

type family Unzip5 (a1 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5 (xs :: [(k2, k3, k4, k5, k6)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6) ~> (([k2], [k3], [k4], [k5], [k6]) ~> ([k2], [k3], [k4], [k5], [k6]))) (([k2], [k3], [k4], [k5], [k6]) ~> ([(k2, k3, k4, k5, k6)] ~> ([k2], [k3], [k4], [k5], [k6]))) -> Type) (LamCases_6989586621679544874Sym0 xs :: TyFun (k2, k3, k4, k5, k6) (TyFun ([k2], [k3], [k4], [k5], [k6]) ([k2], [k3], [k4], [k5], [k6]) -> Type) -> Type)) (Apply (Apply (Apply (Apply (Apply (Tuple5Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k2], [k3], [k4], [k5], [k6]))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6]))) xs 

sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Unzip5 t) Source #

type family Unzip6 (a1 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6 (xs :: [(k2, k3, k4, k5, k6, k7)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6, k7) ~> (([k2], [k3], [k4], [k5], [k6], [k7]) ~> ([k2], [k3], [k4], [k5], [k6], [k7]))) (([k2], [k3], [k4], [k5], [k6], [k7]) ~> ([(k2, k3, k4, k5, k6, k7)] ~> ([k2], [k3], [k4], [k5], [k6], [k7]))) -> Type) (LamCases_6989586621679544851Sym0 xs :: TyFun (k2, k3, k4, k5, k6, k7) (TyFun ([k2], [k3], [k4], [k5], [k6], [k7]) ([k2], [k3], [k4], [k5], [k6], [k7]) -> Type) -> Type)) (Apply (Apply (Apply (Apply (Apply (Apply (Tuple6Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k7] ~> ([k2], [k3], [k4], [k5], [k6], [k7])))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6])) (NilSym0 :: [k7]))) xs 

sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Unzip6 t) Source #

type family Unzip7 (a1 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7 (xs :: [(k2, k3, k4, k5, k6, k7, k8)]) = Apply (Apply (Apply (FoldrSym0 :: TyFun ((k2, k3, k4, k5, k6, k7, k8) ~> (([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))) (([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ~> ([(k2, k3, k4, k5, k6, k7, k8)] ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))) -> Type) (LamCases_6989586621679544826Sym0 xs :: TyFun (k2, k3, k4, k5, k6, k7, k8) (TyFun ([k2], [k3], [k4], [k5], [k6], [k7], [k8]) ([k2], [k3], [k4], [k5], [k6], [k7], [k8]) -> Type) -> Type)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Tuple7Sym0 :: TyFun [k2] ([k3] ~> ([k4] ~> ([k5] ~> ([k6] ~> ([k7] ~> ([k8] ~> ([k2], [k3], [k4], [k5], [k6], [k7], [k8]))))))) -> Type) (NilSym0 :: [k2])) (NilSym0 :: [k3])) (NilSym0 :: [k4])) (NilSym0 :: [k5])) (NilSym0 :: [k6])) (NilSym0 :: [k7])) (NilSym0 :: [k8]))) xs 

sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Unzip7 t) Source #

Special lists

Functions on Symbols

type family Unlines (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unlines ('[] :: [Symbol]) = "" 
Unlines (l ': ls) = Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) l) (Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) "\n") (Apply UnlinesSym0 ls)) 

sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Unlines t) Source #

type family Unwords (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unwords ('[] :: [Symbol]) = "" 
Unwords (w ': ws) = Apply (Apply ((<>@#@$) :: TyFun Symbol (Symbol ~> Symbol) -> Type) w) (Apply (Let6989586621679544812GoSym0 w ws) ws) 

sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Unwords t) Source #

"Set" operations

type family Nub (a1 :: [a]) :: [a] where ... Source #

Equations

Nub (l :: [a]) = Apply (Apply (Let6989586621679544251Nub'Sym0 a l) l) (NilSym0 :: [a]) 

sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Nub t) Source #

type family Delete (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Delete (a_6989586621679544796 :: k1) (a_6989586621679544798 :: [k1]) = Apply (Apply (Apply (DeleteBySym0 :: TyFun (k1 ~> (k1 ~> Bool)) (k1 ~> ([k1] ~> [k1])) -> Type) ((==@#@$) :: TyFun k1 (k1 ~> Bool) -> Type)) a_6989586621679544796) a_6989586621679544798 

sDelete :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Delete t1 t2) Source #

type family (a1 :: [a]) \\ (a2 :: [a]) :: [a] where ... infix 5 Source #

Equations

(a_6989586621679544785 :: [a]) \\ (a_6989586621679544787 :: [a]) = Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type))) a_6989586621679544785) a_6989586621679544787 

(%\\) :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (t1 \\ t2) infix 5 Source #

type family Union (a1 :: [a]) (a2 :: [a]) :: [a] where ... Source #

Equations

Union (a_6989586621679544196 :: [a]) (a_6989586621679544198 :: [a]) = Apply (Apply (Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) a_6989586621679544196) a_6989586621679544198 

sUnion :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Union t1 t2) Source #

type family Intersect (a1 :: [a]) (a2 :: [a]) :: [a] where ... Source #

Equations

Intersect (a_6989586621679544605 :: [a]) (a_6989586621679544607 :: [a]) = Apply (Apply (Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) ((==@#@$) :: TyFun a (a ~> Bool) -> Type)) a_6989586621679544605) a_6989586621679544607 

sIntersect :: forall a (t1 :: [a]) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Intersect t1 t2) Source #

Ordered lists

type family Insert (a1 :: a) (a2 :: [a]) :: [a] where ... Source #

Equations

Insert (e :: k1) (ls :: [k1]) = Apply (Apply (Apply (InsertBySym0 :: TyFun (k1 ~> (k1 ~> Ordering)) (k1 ~> ([k1] ~> [k1])) -> Type) (CompareSym0 :: TyFun k1 (k1 ~> Ordering) -> Type)) e) ls 

sInsert :: forall a (t1 :: a) (t2 :: [a]). SOrd a => Sing t1 -> Sing t2 -> Sing (Insert t1 t2) Source #

type family Sort (a1 :: [a]) :: [a] where ... Source #

Equations

Sort (a_6989586621679544391 :: [a]) = Apply (Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (CompareSym0 :: TyFun a (a ~> Ordering) -> Type)) a_6989586621679544391 

sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Sort t) Source #

Generalized functions

The "By" operations

User-supplied equality (replacing an Eq context)

The predicate is assumed to define an equivalence.

type family NubBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) :: [a] where ... Source #

Equations

NubBy (eq :: a6989586621679540586 ~> (a6989586621679540586 ~> Bool)) (l :: [a6989586621679540586]) = Apply (Apply (Let6989586621679544235NubBy'Sym0 eq l) l) (NilSym0 :: [a6989586621679540586]) 

sNubBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (NubBy t1 t2) Source #

type family DeleteBy (a1 :: a ~> (a ~> Bool)) (a2 :: a) (a3 :: [a]) :: [a] where ... Source #

Equations

DeleteBy (_1 :: a ~> (a ~> Bool)) (_2 :: a) ('[] :: [a]) = NilSym0 :: [a] 
DeleteBy (eq :: k1 ~> (k1 ~> Bool)) (x :: k1) (y ': ys :: [k1]) = Apply (LamCases_6989586621679544780Sym0 eq x y ys) (Apply (Apply eq x) y) 

sDeleteBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: a) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (DeleteBy t1 t2 t3) Source #

type family DeleteFirstsBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBy (eq :: a ~> (a ~> Bool)) (a_6989586621679544755 :: [a]) (a_6989586621679544757 :: [a]) = Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) eq))) a_6989586621679544755) a_6989586621679544757 

sDeleteFirstsBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (DeleteFirstsBy t1 t2 t3) Source #

type family UnionBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

UnionBy (eq :: a ~> (a ~> Bool)) (xs :: [a]) (ys :: [a]) = Apply (Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) xs) (Apply (Apply (Apply (FoldlSym0 :: TyFun ([a] ~> (a ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (FlipSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> (a ~> [a])) -> Type) (Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) eq))) (Apply (Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) eq) ys)) xs) 

sUnionBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (UnionBy t1 t2 t3) Source #

type family IntersectBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) (a3 :: [a]) :: [a] where ... Source #

Equations

IntersectBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) ('[] :: [a]) = NilSym0 :: [a] 
IntersectBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) (_2 ': _3 :: [a]) = NilSym0 :: [a] 
IntersectBy (_1 :: a ~> (a ~> Bool)) (_2 ': _3 :: [a]) ('[] :: [a]) = NilSym0 :: [a] 
IntersectBy (eq :: b ~> (b ~> Bool)) (wild_6989586621679541185 ': wild_6989586621679541187 :: [b]) (wild_6989586621679541189 ': wild_6989586621679541191 :: [b]) = Apply (Apply ((>>=@#@$) :: TyFun [b] ((b ~> [b]) ~> [b]) -> Type) (Let6989586621679544596XsSym0 eq wild_6989586621679541185 wild_6989586621679541187 wild_6989586621679541189 wild_6989586621679541191)) (LamCases_6989586621679544599Sym0 eq wild_6989586621679541185 wild_6989586621679541187 wild_6989586621679541189 wild_6989586621679541191 :: TyFun b [b] -> Type) 

sIntersectBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (IntersectBy t1 t2 t3) Source #

type family GroupBy (a1 :: a ~> (a ~> Bool)) (a2 :: [a]) :: [[a]] where ... Source #

Equations

GroupBy (_1 :: a ~> (a ~> Bool)) ('[] :: [a]) = NilSym0 :: [[a]] 
GroupBy (eq :: a6989586621679540598 ~> (a6989586621679540598 ~> Bool)) (x ': xs :: [a6989586621679540598]) = Apply (Apply ((:@#@$) :: TyFun [a6989586621679540598] ([[a6989586621679540598]] ~> [[a6989586621679540598]]) -> Type) (Apply (Apply ((:@#@$) :: TyFun a6989586621679540598 ([a6989586621679540598] ~> [a6989586621679540598]) -> Type) x) (Let6989586621679544369YsSym0 eq x xs))) (Apply (Apply (GroupBySym0 :: TyFun (a6989586621679540598 ~> (a6989586621679540598 ~> Bool)) ([a6989586621679540598] ~> [[a6989586621679540598]]) -> Type) eq) (Let6989586621679544369ZsSym0 eq x xs)) 

sGroupBy :: forall a (t1 :: a ~> (a ~> Bool)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (GroupBy t1 t2) Source #

User-supplied comparison (replacing an Ord context)

The function is assumed to define a total ordering.

type family SortBy (a1 :: a ~> (a ~> Ordering)) (a2 :: [a]) :: [a] where ... Source #

Equations

SortBy (cmp :: a ~> (a ~> Ordering)) (a_6989586621679544746 :: [a]) = Apply (Apply (Apply (FoldrSym0 :: TyFun (a ~> ([a] ~> [a])) ([a] ~> ([a] ~> [a])) -> Type) (Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) cmp)) (NilSym0 :: [a])) a_6989586621679544746 

sSortBy :: forall a (t1 :: a ~> (a ~> Ordering)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (SortBy t1 t2) Source #

type family InsertBy (a1 :: a ~> (a ~> Ordering)) (a2 :: a) (a3 :: [a]) :: [a] where ... Source #

Equations

InsertBy (_1 :: k1 ~> (k1 ~> Ordering)) (x :: k1) ('[] :: [k1]) = Apply (Apply ((:@#@$) :: TyFun k1 ([k1] ~> [k1]) -> Type) x) (NilSym0 :: [k1]) 
InsertBy (cmp :: k1 ~> (k1 ~> Ordering)) (x :: k1) (y ': ys' :: [k1]) = Apply (LamCases_6989586621679544741Sym0 cmp x y ys') (Apply (Apply cmp x) y) 

sInsertBy :: forall a (t1 :: a ~> (a ~> Ordering)) (t2 :: a) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (InsertBy t1 t2 t3) Source #

type family MaximumBy (a1 :: a ~> (a ~> Ordering)) (a2 :: t a) :: a where ... Source #

Equations

MaximumBy (cmp :: k2 ~> (k2 ~> Ordering)) (a_6989586621679922330 :: t k2) = Apply (Apply (Foldl1Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (t k2 ~> k2) -> Type) (Let6989586621679922339Max'Sym0 cmp a_6989586621679922330)) a_6989586621679922330 

sMaximumBy :: forall a (t1 :: Type -> Type) (t2 :: a ~> (a ~> Ordering)) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (MaximumBy t2 t3) Source #

type family MinimumBy (a1 :: a ~> (a ~> Ordering)) (a2 :: t a) :: a where ... Source #

Equations

MinimumBy (cmp :: k2 ~> (k2 ~> Ordering)) (a_6989586621679922310 :: t k2) = Apply (Apply (Foldl1Sym0 :: TyFun (k2 ~> (k2 ~> k2)) (t k2 ~> k2) -> Type) (Let6989586621679922319Min'Sym0 cmp a_6989586621679922310)) a_6989586621679922310 

sMinimumBy :: forall a (t1 :: Type -> Type) (t2 :: a ~> (a ~> Ordering)) (t3 :: t1 a). SFoldable t1 => Sing t2 -> Sing t3 -> Sing (MinimumBy t2 t3) Source #

The "generic" operations

The prefix `generic' indicates an overloaded function that is a generalized version of a Prelude function.

type family GenericLength (a1 :: [a]) :: i where ... Source #

Equations

GenericLength ('[] :: [a]) = FromInteger 0 :: i 
GenericLength (_1 ': xs :: [a]) = Apply (Apply ((+@#@$) :: TyFun i (i ~> i) -> Type) (FromInteger 1 :: i)) (Apply (GenericLengthSym0 :: TyFun [a] i -> Type) xs) 

sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (GenericLength t :: i) Source #

Defunctionalization symbols

type family NilSym0 :: [a] where ... Source #

Equations

NilSym0 = '[] :: [a] 

data (:@#@$) (a1 :: TyFun a ([a] ~> [a])) infixr 5 Source #

Instances

Instances details
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679050289 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679050289 :: a) = (:@#@$$) a6989586621679050289

data (a6989586621679050289 :: a) :@#@$$ (b :: TyFun [a] [a]) infixr 5 Source #

Instances

Instances details
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: a). Sing x -> Sing ((:@#@$$) x) #

SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$$) d) #

SuppressUnusedWarnings ((:@#@$$) a6989586621679050289 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679050289 :: TyFun [a] [a] -> Type) (a6989586621679050290 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679050289 :: TyFun [a] [a] -> Type) (a6989586621679050290 :: [a]) = a6989586621679050289 ': a6989586621679050290

type family (a6989586621679050289 :: a) :@#@$$$ (a6989586621679050290 :: [a]) :: [a] where ... infixr 5 Source #

Equations

(a6989586621679050289 :: a) :@#@$$$ (a6989586621679050290 :: [a]) = a6989586621679050289 ': a6989586621679050290 

type family (a6989586621679154364 :: [a]) ++@#@$$$ (a6989586621679154365 :: [a]) :: [a] where ... infixr 5 Source #

Equations

(a6989586621679154364 :: [a]) ++@#@$$$ (a6989586621679154365 :: [a]) = a6989586621679154364 ++ a6989586621679154365 

data (a6989586621679154364 :: [a]) ++@#@$$ (b :: TyFun [a] [a]) infixr 5 Source #

Instances

Instances details
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((++@#@$$) x) #

SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$$) d) #

SuppressUnusedWarnings ((++@#@$$) a6989586621679154364 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679154364 :: TyFun [a] [a] -> Type) (a6989586621679154365 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679154364 :: TyFun [a] [a] -> Type) (a6989586621679154365 :: [a]) = a6989586621679154364 ++ a6989586621679154365

data (++@#@$) (a1 :: TyFun [a] ([a] ~> [a])) infixr 5 Source #

Instances

Instances details
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679154364 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679154364 :: [a]) = (++@#@$$) a6989586621679154364

data HeadSym0 (a1 :: TyFun [a] a) Source #

Instances

Instances details
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (HeadSym0 :: TyFun [a] a -> Type) #

SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679545466 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679545466 :: [a]) = Head a6989586621679545466

type family HeadSym1 (a6989586621679545466 :: [a]) :: a where ... Source #

Equations

HeadSym1 (a6989586621679545466 :: [a]) = Head a6989586621679545466 

data LastSym0 (a1 :: TyFun [a] a) Source #

Instances

Instances details
SingI (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LastSym0 :: TyFun [a] a -> Type) #

SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679545460 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679545460 :: [a]) = Last a6989586621679545460

type family LastSym1 (a6989586621679545460 :: [a]) :: a where ... Source #

Equations

LastSym1 (a6989586621679545460 :: [a]) = Last a6989586621679545460 

data TailSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TailSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679545456 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679545456 :: [a]) = Tail a6989586621679545456

type family TailSym1 (a6989586621679545456 :: [a]) :: [a] where ... Source #

Equations

TailSym1 (a6989586621679545456 :: [a]) = Tail a6989586621679545456 

data InitSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InitSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679545444 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679545444 :: [a]) = Init a6989586621679545444

type family InitSym1 (a6989586621679545444 :: [a]) :: [a] where ... Source #

Equations

InitSym1 (a6989586621679545444 :: [a]) = Init a6989586621679545444 

data NullSym0 (a1 :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NullSym0 :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621679922560 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621679922560 :: t a) = Null a6989586621679922560

type family NullSym1 (a6989586621679922560 :: t a) :: Bool where ... Source #

Equations

NullSym1 (a6989586621679922560 :: t a) = Null a6989586621679922560 

data LengthSym0 (a1 :: TyFun (t a) Natural) Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (LengthSym0 :: TyFun (t a) Natural -> Type) #

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621679922563 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621679922563 :: t a) = Length a6989586621679922563

type family LengthSym1 (a6989586621679922563 :: t a) :: Natural where ... Source #

Equations

LengthSym1 (a6989586621679922563 :: t a) = Length a6989586621679922563 

data MapSym0 (a1 :: TyFun (a ~> b) ([a] ~> [b])) Source #

Instances

Instances details
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) #

SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679154373 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679154373 :: a ~> b) = MapSym1 a6989586621679154373

data MapSym1 (a6989586621679154373 :: a ~> b) (b1 :: TyFun [a] [b]) Source #

Instances

Instances details
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: a ~> b). Sing x -> Sing (MapSym1 x) #

SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym1 d) #

SuppressUnusedWarnings (MapSym1 a6989586621679154373 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679154373 :: TyFun [a] [b] -> Type) (a6989586621679154374 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679154373 :: TyFun [a] [b] -> Type) (a6989586621679154374 :: [a]) = Map a6989586621679154373 a6989586621679154374

type family MapSym2 (a6989586621679154373 :: a ~> b) (a6989586621679154374 :: [a]) :: [b] where ... Source #

Equations

MapSym2 (a6989586621679154373 :: a ~> b) (a6989586621679154374 :: [a]) = Map a6989586621679154373 a6989586621679154374 

data ReverseSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReverseSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679545429 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679545429 :: [a]) = Reverse a6989586621679545429

type family ReverseSym1 (a6989586621679545429 :: [a]) :: [a] where ... Source #

Equations

ReverseSym1 (a6989586621679545429 :: [a]) = Reverse a6989586621679545429 

data IntersperseSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679545422 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679545422 :: a) = IntersperseSym1 a6989586621679545422

data IntersperseSym1 (a6989586621679545422 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (IntersperseSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (IntersperseSym1 x) #

SingI d => SingI (IntersperseSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym1 d) #

SuppressUnusedWarnings (IntersperseSym1 a6989586621679545422 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679545422 :: TyFun [a] [a] -> Type) (a6989586621679545423 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679545422 :: TyFun [a] [a] -> Type) (a6989586621679545423 :: [a]) = Intersperse a6989586621679545422 a6989586621679545423

type family IntersperseSym2 (a6989586621679545422 :: a) (a6989586621679545423 :: [a]) :: [a] where ... Source #

Equations

IntersperseSym2 (a6989586621679545422 :: a) (a6989586621679545423 :: [a]) = Intersperse a6989586621679545422 a6989586621679545423 

data IntercalateSym0 (a1 :: TyFun [a] ([[a]] ~> [a])) Source #

Instances

Instances details
SingI (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679545415 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679545415 :: [a]) = IntercalateSym1 a6989586621679545415

data IntercalateSym1 (a6989586621679545415 :: [a]) (b :: TyFun [[a]] [a]) Source #

Instances

Instances details
SingI1 (IntercalateSym1 :: [a] -> TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntercalateSym1 x) #

SingI d => SingI (IntercalateSym1 d :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym1 d) #

SuppressUnusedWarnings (IntercalateSym1 a6989586621679545415 :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679545415 :: TyFun [[a]] [a] -> Type) (a6989586621679545416 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679545415 :: TyFun [[a]] [a] -> Type) (a6989586621679545416 :: [[a]]) = Intercalate a6989586621679545415 a6989586621679545416

type family IntercalateSym2 (a6989586621679545415 :: [a]) (a6989586621679545416 :: [[a]]) :: [a] where ... Source #

Equations

IntercalateSym2 (a6989586621679545415 :: [a]) (a6989586621679545416 :: [[a]]) = Intercalate a6989586621679545415 a6989586621679545416 

data TransposeSym0 (a1 :: TyFun [[a]] [[a]]) Source #

Instances

Instances details
SingI (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) #

SuppressUnusedWarnings (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679544278 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679544278 :: [[a]]) = Transpose a6989586621679544278

type family TransposeSym1 (a6989586621679544278 :: [[a]]) :: [[a]] where ... Source #

Equations

TransposeSym1 (a6989586621679544278 :: [[a]]) = Transpose a6989586621679544278 

data SubsequencesSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545410 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545410 :: [a]) = Subsequences a6989586621679545410

type family SubsequencesSym1 (a6989586621679545410 :: [a]) :: [[a]] where ... Source #

Equations

SubsequencesSym1 (a6989586621679545410 :: [a]) = Subsequences a6989586621679545410 

data PermutationsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PermutationsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545330 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545330 :: [a]) = Permutations a6989586621679545330

type family PermutationsSym1 (a6989586621679545330 :: [a]) :: [[a]] where ... Source #

Equations

PermutationsSym1 (a6989586621679545330 :: [a]) = Permutations a6989586621679545330 

data FoldlSym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922535 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922535 :: b ~> (a ~> b)) = FoldlSym1 a6989586621679922535 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 (a6989586621679922535 :: b ~> (a ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (FoldlSym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (FoldlSym1 a6989586621679922535 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621679922535 :: TyFun b (t a ~> b) -> Type) (a6989586621679922536 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621679922535 :: TyFun b (t a ~> b) -> Type) (a6989586621679922536 :: b) = FoldlSym2 a6989586621679922535 a6989586621679922536 :: TyFun (t a) b -> Type

data FoldlSym2 (a6989586621679922535 :: b ~> (a ~> b)) (a6989586621679922536 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (FoldlSym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (FoldlSym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (FoldlSym2 a6989586621679922535 a6989586621679922536 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621679922535 a6989586621679922536 :: TyFun (t a) b -> Type) (a6989586621679922537 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621679922535 a6989586621679922536 :: TyFun (t a) b -> Type) (a6989586621679922537 :: t a) = Foldl a6989586621679922535 a6989586621679922536 a6989586621679922537

type family FoldlSym3 (a6989586621679922535 :: b ~> (a ~> b)) (a6989586621679922536 :: b) (a6989586621679922537 :: t a) :: b where ... Source #

Equations

FoldlSym3 (a6989586621679922535 :: b ~> (a ~> b)) (a6989586621679922536 :: b) (a6989586621679922537 :: t a) = Foldl a6989586621679922535 a6989586621679922536 a6989586621679922537 

data Foldl'Sym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922542 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922542 :: b ~> (a ~> b)) = Foldl'Sym1 a6989586621679922542 :: TyFun b (t a ~> b) -> Type

data Foldl'Sym1 (a6989586621679922542 :: b ~> (a ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl'Sym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (Foldl'Sym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (Foldl'Sym1 a6989586621679922542 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621679922542 :: TyFun b (t a ~> b) -> Type) (a6989586621679922543 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621679922542 :: TyFun b (t a ~> b) -> Type) (a6989586621679922543 :: b) = Foldl'Sym2 a6989586621679922542 a6989586621679922543 :: TyFun (t a) b -> Type

data Foldl'Sym2 (a6989586621679922542 :: b ~> (a ~> b)) (a6989586621679922543 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (Foldl'Sym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (Foldl'Sym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (Foldl'Sym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (Foldl'Sym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (Foldl'Sym2 a6989586621679922542 a6989586621679922543 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621679922542 a6989586621679922543 :: TyFun (t a) b -> Type) (a6989586621679922544 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621679922542 a6989586621679922543 :: TyFun (t a) b -> Type) (a6989586621679922544 :: t a) = Foldl' a6989586621679922542 a6989586621679922543 a6989586621679922544

type family Foldl'Sym3 (a6989586621679922542 :: b ~> (a ~> b)) (a6989586621679922543 :: b) (a6989586621679922544 :: t a) :: b where ... Source #

Equations

Foldl'Sym3 (a6989586621679922542 :: b ~> (a ~> b)) (a6989586621679922543 :: b) (a6989586621679922544 :: t a) = Foldl' a6989586621679922542 a6989586621679922543 a6989586621679922544 

data Foldl1Sym0 (a1 :: TyFun (a ~> (a ~> a)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621679922553 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621679922553 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621679922553 :: TyFun (t a) a -> Type

data Foldl1Sym1 (a6989586621679922553 :: a ~> (a ~> a)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldl1Sym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (Foldl1Sym1 a6989586621679922553 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621679922553 :: TyFun (t a) a -> Type) (a6989586621679922554 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621679922553 :: TyFun (t a) a -> Type) (a6989586621679922554 :: t a) = Foldl1 a6989586621679922553 a6989586621679922554

type family Foldl1Sym2 (a6989586621679922553 :: a ~> (a ~> a)) (a6989586621679922554 :: t a) :: a where ... Source #

Equations

Foldl1Sym2 (a6989586621679922553 :: a ~> (a ~> a)) (a6989586621679922554 :: t a) = Foldl1 a6989586621679922553 a6989586621679922554 

data Foldl1'Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> a)) Source #

Instances

Instances details
SingI (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) #

SuppressUnusedWarnings (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679545295 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679545295 :: a ~> (a ~> a)) = Foldl1'Sym1 a6989586621679545295

data Foldl1'Sym1 (a6989586621679545295 :: a ~> (a ~> a)) (b :: TyFun [a] a) Source #

Instances

Instances details
SingI d => SingI (Foldl1'Sym1 d :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym1 d) #

SuppressUnusedWarnings (Foldl1'Sym1 a6989586621679545295 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Foldl1'Sym1 :: (a ~> (a ~> a)) -> TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldl1'Sym1 x) #

type Apply (Foldl1'Sym1 a6989586621679545295 :: TyFun [a] a -> Type) (a6989586621679545296 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym1 a6989586621679545295 :: TyFun [a] a -> Type) (a6989586621679545296 :: [a]) = Foldl1' a6989586621679545295 a6989586621679545296

type family Foldl1'Sym2 (a6989586621679545295 :: a ~> (a ~> a)) (a6989586621679545296 :: [a]) :: a where ... Source #

Equations

Foldl1'Sym2 (a6989586621679545295 :: a ~> (a ~> a)) (a6989586621679545296 :: [a]) = Foldl1' a6989586621679545295 a6989586621679545296 

data FoldrSym0 (a1 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b))) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) #

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922521 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621679922521 :: a ~> (b ~> b)) = FoldrSym1 a6989586621679922521 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 (a6989586621679922521 :: a ~> (b ~> b)) (b1 :: TyFun b (t a ~> b)) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> b)). Sing x -> Sing (FoldrSym1 x :: TyFun b (t a ~> b) -> Type) #

(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) #

SuppressUnusedWarnings (FoldrSym1 a6989586621679922521 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621679922521 :: TyFun b (t a ~> b) -> Type) (a6989586621679922522 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621679922521 :: TyFun b (t a ~> b) -> Type) (a6989586621679922522 :: b) = FoldrSym2 a6989586621679922521 a6989586621679922522 :: TyFun (t a) b -> Type

data FoldrSym2 (a6989586621679922521 :: a ~> (b ~> b)) (a6989586621679922522 :: b) (c :: TyFun (t a) b) Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: b). Sing x -> Sing (FoldrSym2 d x :: TyFun (t a) b -> Type) #

SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> b)) (y :: b). Sing x -> Sing y -> Sing (FoldrSym2 x y :: TyFun (t a) b -> Type) #

(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) #

SuppressUnusedWarnings (FoldrSym2 a6989586621679922521 a6989586621679922522 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621679922521 a6989586621679922522 :: TyFun (t a) b -> Type) (a6989586621679922523 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621679922521 a6989586621679922522 :: TyFun (t a) b -> Type) (a6989586621679922523 :: t a) = Foldr a6989586621679922521 a6989586621679922522 a6989586621679922523

type family FoldrSym3 (a6989586621679922521 :: a ~> (b ~> b)) (a6989586621679922522 :: b) (a6989586621679922523 :: t a) :: b where ... Source #

Equations

FoldrSym3 (a6989586621679922521 :: a ~> (b ~> b)) (a6989586621679922522 :: b) (a6989586621679922523 :: t a) = Foldr a6989586621679922521 a6989586621679922522 a6989586621679922523 

data Foldr1Sym0 (a1 :: TyFun (a ~> (a ~> a)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621679922548 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621679922548 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621679922548 :: TyFun (t a) a -> Type

data Foldr1Sym1 (a6989586621679922548 :: a ~> (a ~> a)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Foldr1Sym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (Foldr1Sym1 a6989586621679922548 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621679922548 :: TyFun (t a) a -> Type) (a6989586621679922549 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621679922548 :: TyFun (t a) a -> Type) (a6989586621679922549 :: t a) = Foldr1 a6989586621679922548 a6989586621679922549

type family Foldr1Sym2 (a6989586621679922548 :: a ~> (a ~> a)) (a6989586621679922549 :: t a) :: a where ... Source #

Equations

Foldr1Sym2 (a6989586621679922548 :: a ~> (a ~> a)) (a6989586621679922549 :: t a) = Foldr1 a6989586621679922548 a6989586621679922549 

data ConcatSym0 (a1 :: TyFun (t [a]) [a]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatSym0 :: TyFun (t [a]) [a] -> Type) #

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621679922398 :: t [a]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621679922398 :: t [a]) = Concat a6989586621679922398

type family ConcatSym1 (a6989586621679922398 :: t [a]) :: [a] where ... Source #

Equations

ConcatSym1 (a6989586621679922398 :: t [a]) = Concat a6989586621679922398 

data ConcatMapSym0 (a1 :: TyFun (a ~> [b]) (t a ~> [b])) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) #

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621679922383 :: a ~> [b]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621679922383 :: a ~> [b]) = ConcatMapSym1 a6989586621679922383 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 (a6989586621679922383 :: a ~> [b]) (b1 :: TyFun (t a) [b]) Source #

Instances

Instances details
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> [b]). Sing x -> Sing (ConcatMapSym1 x :: TyFun (t a) [b] -> Type) #

(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) #

SuppressUnusedWarnings (ConcatMapSym1 a6989586621679922383 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621679922383 :: TyFun (t a) [b] -> Type) (a6989586621679922384 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621679922383 :: TyFun (t a) [b] -> Type) (a6989586621679922384 :: t a) = ConcatMap a6989586621679922383 a6989586621679922384

type family ConcatMapSym2 (a6989586621679922383 :: a ~> [b]) (a6989586621679922384 :: t a) :: [b] where ... Source #

Equations

ConcatMapSym2 (a6989586621679922383 :: a ~> [b]) (a6989586621679922384 :: t a) = ConcatMap a6989586621679922383 a6989586621679922384 

data AndSym0 (a :: TyFun (t Bool) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AndSym0 :: TyFun (t Bool) Bool -> Type) #

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621679922378 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621679922378 :: t Bool) = And a6989586621679922378

type family AndSym1 (a6989586621679922378 :: t Bool) :: Bool where ... Source #

Equations

AndSym1 (a6989586621679922378 :: t Bool) = And a6989586621679922378 

data OrSym0 (a :: TyFun (t Bool) Bool) Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (OrSym0 :: TyFun (t Bool) Bool -> Type) #

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621679922372 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621679922372 :: t Bool) = Or a6989586621679922372

type family OrSym1 (a6989586621679922372 :: t Bool) :: Bool where ... Source #

Equations

OrSym1 (a6989586621679922372 :: t Bool) = Or a6989586621679922372 

data AnySym0 (a1 :: TyFun (a ~> Bool) (t a ~> Bool)) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621679922364 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621679922364 :: a ~> Bool) = AnySym1 a6989586621679922364 :: TyFun (t a) Bool -> Type

data AnySym1 (a6989586621679922364 :: a ~> Bool) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (AnySym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (AnySym1 a6989586621679922364 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621679922364 :: TyFun (t a) Bool -> Type) (a6989586621679922365 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621679922364 :: TyFun (t a) Bool -> Type) (a6989586621679922365 :: t a) = Any a6989586621679922364 a6989586621679922365

type family AnySym2 (a6989586621679922364 :: a ~> Bool) (a6989586621679922365 :: t a) :: Bool where ... Source #

Equations

AnySym2 (a6989586621679922364 :: a ~> Bool) (a6989586621679922365 :: t a) = Any a6989586621679922364 a6989586621679922365 

data AllSym0 (a1 :: TyFun (a ~> Bool) (t a ~> Bool)) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621679922355 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621679922355 :: a ~> Bool) = AllSym1 a6989586621679922355 :: TyFun (t a) Bool -> Type

data AllSym1 (a6989586621679922355 :: a ~> Bool) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (AllSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (AllSym1 a6989586621679922355 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621679922355 :: TyFun (t a) Bool -> Type) (a6989586621679922356 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621679922355 :: TyFun (t a) Bool -> Type) (a6989586621679922356 :: t a) = All a6989586621679922355 a6989586621679922356

type family AllSym2 (a6989586621679922355 :: a ~> Bool) (a6989586621679922356 :: t a) :: Bool where ... Source #

Equations

AllSym2 (a6989586621679922355 :: a ~> Bool) (a6989586621679922356 :: t a) = All a6989586621679922355 a6989586621679922356 

data SumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (SumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621679922577 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621679922577 :: t a) = Sum a6989586621679922577

type family SumSym1 (a6989586621679922577 :: t a) :: a where ... Source #

Equations

SumSym1 (a6989586621679922577 :: t a) = Sum a6989586621679922577 

data ProductSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ProductSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621679922580 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621679922580 :: t a) = Product a6989586621679922580

type family ProductSym1 (a6989586621679922580 :: t a) :: a where ... Source #

Equations

ProductSym1 (a6989586621679922580 :: t a) = Product a6989586621679922580 

data MaximumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621679922571 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621679922571 :: t a) = Maximum a6989586621679922571

type family MaximumSym1 (a6989586621679922571 :: t a) :: a where ... Source #

Equations

MaximumSym1 (a6989586621679922571 :: t a) = Maximum a6989586621679922571 

data MinimumSym0 (a1 :: TyFun (t a) a) Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumSym0 :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621679922574 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621679922574 :: t a) = Minimum a6989586621679922574

type family MinimumSym1 (a6989586621679922574 :: t a) :: a where ... Source #

Equations

MinimumSym1 (a6989586621679922574 :: t a) = Minimum a6989586621679922574 

data ScanlSym0 (a1 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b]))) Source #

Instances

Instances details
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) #

SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679545226 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679545226 :: b ~> (a ~> b)) = ScanlSym1 a6989586621679545226

data ScanlSym1 (a6989586621679545226 :: b ~> (a ~> b)) (b1 :: TyFun b ([a] ~> [b])) Source #

Instances

Instances details
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b ~> (a ~> b)). Sing x -> Sing (ScanlSym1 x) #

SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym1 d) #

SuppressUnusedWarnings (ScanlSym1 a6989586621679545226 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679545226 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679545227 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679545226 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679545227 :: b) = ScanlSym2 a6989586621679545226 a6989586621679545227

data ScanlSym2 (a6989586621679545226 :: b ~> (a ~> b)) (a6989586621679545227 :: b) (c :: TyFun [a] [b]) Source #

Instances

Instances details
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b). Sing x -> Sing (ScanlSym2 d x) #

SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: b ~> (a ~> b)) (y :: b). Sing x -> Sing y -> Sing (ScanlSym2 x y) #

(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym2 d1 d2) #

SuppressUnusedWarnings (ScanlSym2 a6989586621679545226 a6989586621679545227 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679545226 a6989586621679545227 :: TyFun [a] [b] -> Type) (a6989586621679545228 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679545226 a6989586621679545227 :: TyFun [a] [b] -> Type) (a6989586621679545228 :: [a]) = Scanl a6989586621679545226 a6989586621679545227 a6989586621679545228

type family ScanlSym3 (a6989586621679545226 :: b ~> (a ~> b)) (a6989586621679545227 :: b) (a6989586621679545228 :: [a]) :: [b] where ... Source #

Equations

ScanlSym3 (a6989586621679545226 :: b ~> (a ~> b)) (a6989586621679545227 :: b) (a6989586621679545228 :: [a]) = Scanl a6989586621679545226 a6989586621679545227 a6989586621679545228 

data Scanl1Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679545217 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679545217 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679545217

data Scanl1Sym1 (a6989586621679545217 :: a ~> (a ~> a)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym1 d) #

SuppressUnusedWarnings (Scanl1Sym1 a6989586621679545217 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Scanl1Sym1 x) #

type Apply (Scanl1Sym1 a6989586621679545217 :: TyFun [a] [a] -> Type) (a6989586621679545218 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym1 a6989586621679545217 :: TyFun [a] [a] -> Type) (a6989586621679545218 :: [a]) = Scanl1 a6989586621679545217 a6989586621679545218

type family Scanl1Sym2 (a6989586621679545217 :: a ~> (a ~> a)) (a6989586621679545218 :: [a]) :: [a] where ... Source #

Equations

Scanl1Sym2 (a6989586621679545217 :: a ~> (a ~> a)) (a6989586621679545218 :: [a]) = Scanl1 a6989586621679545217 a6989586621679545218 

data ScanrSym0 (a1 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b]))) Source #

Instances

Instances details
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) #

SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679545199 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679545199 :: a ~> (b ~> b)) = ScanrSym1 a6989586621679545199

data ScanrSym1 (a6989586621679545199 :: a ~> (b ~> b)) (b1 :: TyFun b ([a] ~> [b])) Source #

Instances

Instances details
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> b)). Sing x -> Sing (ScanrSym1 x) #

SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym1 d) #

SuppressUnusedWarnings (ScanrSym1 a6989586621679545199 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679545199 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679545200 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679545199 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679545200 :: b) = ScanrSym2 a6989586621679545199 a6989586621679545200

data ScanrSym2 (a6989586621679545199 :: a ~> (b ~> b)) (a6989586621679545200 :: b) (c :: TyFun [a] [b]) Source #

Instances

Instances details
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b). Sing x -> Sing (ScanrSym2 d x) #

SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> b)) (y :: b). Sing x -> Sing y -> Sing (ScanrSym2 x y) #

(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym2 d1 d2) #

SuppressUnusedWarnings (ScanrSym2 a6989586621679545199 a6989586621679545200 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679545199 a6989586621679545200 :: TyFun [a] [b] -> Type) (a6989586621679545201 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679545199 a6989586621679545200 :: TyFun [a] [b] -> Type) (a6989586621679545201 :: [a]) = Scanr a6989586621679545199 a6989586621679545200 a6989586621679545201

type family ScanrSym3 (a6989586621679545199 :: a ~> (b ~> b)) (a6989586621679545200 :: b) (a6989586621679545201 :: [a]) :: [b] where ... Source #

Equations

ScanrSym3 (a6989586621679545199 :: a ~> (b ~> b)) (a6989586621679545200 :: b) (a6989586621679545201 :: [a]) = Scanr a6989586621679545199 a6989586621679545200 a6989586621679545201 

data Scanr1Sym0 (a1 :: TyFun (a ~> (a ~> a)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679545179 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679545179 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679545179

data Scanr1Sym1 (a6989586621679545179 :: a ~> (a ~> a)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym1 d) #

SuppressUnusedWarnings (Scanr1Sym1 a6989586621679545179 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> a)). Sing x -> Sing (Scanr1Sym1 x) #

type Apply (Scanr1Sym1 a6989586621679545179 :: TyFun [a] [a] -> Type) (a6989586621679545180 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym1 a6989586621679545179 :: TyFun [a] [a] -> Type) (a6989586621679545180 :: [a]) = Scanr1 a6989586621679545179 a6989586621679545180

type family Scanr1Sym2 (a6989586621679545179 :: a ~> (a ~> a)) (a6989586621679545180 :: [a]) :: [a] where ... Source #

Equations

Scanr1Sym2 (a6989586621679545179 :: a ~> (a ~> a)) (a6989586621679545180 :: [a]) = Scanr1 a6989586621679545179 a6989586621679545180 

data MapAccumLSym0 (a1 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c)))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) #

SuppressUnusedWarnings (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680103082 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680103082 :: a ~> (b ~> (a, c))) = MapAccumLSym1 a6989586621680103082 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumLSym1 (a6989586621680103082 :: a ~> (b ~> (a, c))) (b1 :: TyFun a (t b ~> (a, t c))) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumLSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> (a, c))). Sing x -> Sing (MapAccumLSym1 x :: TyFun a (t b ~> (a, t c)) -> Type) #

(STraversable t, SingI d) => SingI (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) #

SuppressUnusedWarnings (MapAccumLSym1 a6989586621680103082 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680103082 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680103083 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680103082 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680103083 :: a) = MapAccumLSym2 a6989586621680103082 a6989586621680103083 :: TyFun (t b) (a, t c) -> Type

data MapAccumLSym2 (a6989586621680103082 :: a ~> (b ~> (a, c))) (a6989586621680103083 :: a) (c1 :: TyFun (t b) (a, t c)) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumLSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MapAccumLSym2 d x :: TyFun (t b) (a, t c) -> Type) #

STraversable t => SingI2 (MapAccumLSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> (a, c))) (y :: a). Sing x -> Sing y -> Sing (MapAccumLSym2 x y :: TyFun (t b) (a, t c) -> Type) #

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) #

SuppressUnusedWarnings (MapAccumLSym2 a6989586621680103082 a6989586621680103083 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680103082 a6989586621680103083 :: TyFun (t b) (a, t c) -> Type) (a6989586621680103084 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680103082 a6989586621680103083 :: TyFun (t b) (a, t c) -> Type) (a6989586621680103084 :: t b) = MapAccumL a6989586621680103082 a6989586621680103083 a6989586621680103084

type family MapAccumLSym3 (a6989586621680103082 :: a ~> (b ~> (a, c))) (a6989586621680103083 :: a) (a6989586621680103084 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumLSym3 (a6989586621680103082 :: a ~> (b ~> (a, c))) (a6989586621680103083 :: a) (a6989586621680103084 :: t b) = MapAccumL a6989586621680103082 a6989586621680103083 a6989586621680103084 

data MapAccumRSym0 (a1 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c)))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) #

SuppressUnusedWarnings (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680103072 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680103072 :: a ~> (b ~> (a, c))) = MapAccumRSym1 a6989586621680103072 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumRSym1 (a6989586621680103072 :: a ~> (b ~> (a, c))) (b1 :: TyFun a (t b ~> (a, t c))) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumRSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a ~> (b ~> (a, c))). Sing x -> Sing (MapAccumRSym1 x :: TyFun a (t b ~> (a, t c)) -> Type) #

(STraversable t, SingI d) => SingI (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) #

SuppressUnusedWarnings (MapAccumRSym1 a6989586621680103072 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680103072 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680103073 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680103072 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680103073 :: a) = MapAccumRSym2 a6989586621680103072 a6989586621680103073 :: TyFun (t b) (a, t c) -> Type

data MapAccumRSym2 (a6989586621680103072 :: a ~> (b ~> (a, c))) (a6989586621680103073 :: a) (c1 :: TyFun (t b) (a, t c)) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumRSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (MapAccumRSym2 d x :: TyFun (t b) (a, t c) -> Type) #

STraversable t => SingI2 (MapAccumRSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: a ~> (b ~> (a, c))) (y :: a). Sing x -> Sing y -> Sing (MapAccumRSym2 x y :: TyFun (t b) (a, t c) -> Type) #

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) #

SuppressUnusedWarnings (MapAccumRSym2 a6989586621680103072 a6989586621680103073 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680103072 a6989586621680103073 :: TyFun (t b) (a, t c) -> Type) (a6989586621680103074 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680103072 a6989586621680103073 :: TyFun (t b) (a, t c) -> Type) (a6989586621680103074 :: t b) = MapAccumR a6989586621680103072 a6989586621680103073 a6989586621680103074

type family MapAccumRSym3 (a6989586621680103072 :: a ~> (b ~> (a, c))) (a6989586621680103073 :: a) (a6989586621680103074 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumRSym3 (a6989586621680103072 :: a ~> (b ~> (a, c))) (a6989586621680103073 :: a) (a6989586621680103074 :: t b) = MapAccumR a6989586621680103072 a6989586621680103073 a6989586621680103074 

data ReplicateSym0 (a1 :: TyFun Natural (a ~> [a])) Source #

Instances

Instances details
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) #

SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679544286 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679544286 :: Natural) = ReplicateSym1 a6989586621679544286 :: TyFun a [a] -> Type

data ReplicateSym1 (a6989586621679544286 :: Natural) (b :: TyFun a [a]) Source #

Instances

Instances details
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (ReplicateSym1 x :: TyFun a [a] -> Type) #

SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym1 d :: TyFun a [a] -> Type) #

SuppressUnusedWarnings (ReplicateSym1 a6989586621679544286 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679544286 :: TyFun a [a] -> Type) (a6989586621679544287 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679544286 :: TyFun a [a] -> Type) (a6989586621679544287 :: a) = Replicate a6989586621679544286 a6989586621679544287

type family ReplicateSym2 (a6989586621679544286 :: Natural) (a6989586621679544287 :: a) :: [a] where ... Source #

Equations

ReplicateSym2 a6989586621679544286 (a6989586621679544287 :: a) = Replicate a6989586621679544286 a6989586621679544287 

data UnfoldrSym0 (a1 :: TyFun (b ~> Maybe (a, b)) (b ~> [a])) Source #

Instances

Instances details
SingI (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) #

SuppressUnusedWarnings (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679545055 :: b ~> Maybe (a, b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679545055 :: b ~> Maybe (a, b)) = UnfoldrSym1 a6989586621679545055

data UnfoldrSym1 (a6989586621679545055 :: b ~> Maybe (a, b)) (b1 :: TyFun b [a]) Source #

Instances

Instances details
SingI1 (UnfoldrSym1 :: (b ~> Maybe (a, b)) -> TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: b ~> Maybe (a, b)). Sing x -> Sing (UnfoldrSym1 x) #

SingI d => SingI (UnfoldrSym1 d :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym1 d) #

SuppressUnusedWarnings (UnfoldrSym1 a6989586621679545055 :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679545055 :: TyFun b [a] -> Type) (a6989586621679545056 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679545055 :: TyFun b [a] -> Type) (a6989586621679545056 :: b) = Unfoldr a6989586621679545055 a6989586621679545056

type family UnfoldrSym2 (a6989586621679545055 :: b ~> Maybe (a, b)) (a6989586621679545056 :: b) :: [a] where ... Source #

Equations

UnfoldrSym2 (a6989586621679545055 :: b ~> Maybe (a, b)) (a6989586621679545056 :: b) = Unfoldr a6989586621679545055 a6989586621679545056 

data TakeSym0 (a1 :: TyFun Natural ([a] ~> [a])) Source #

Instances

Instances details
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679544445 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679544445 :: Natural) = TakeSym1 a6989586621679544445 :: TyFun [a] [a] -> Type

data TakeSym1 (a6989586621679544445 :: Natural) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (TakeSym1 x :: TyFun [a] [a] -> Type) #

SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym1 d :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (TakeSym1 a6989586621679544445 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679544445 :: TyFun [a] [a] -> Type) (a6989586621679544446 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679544445 :: TyFun [a] [a] -> Type) (a6989586621679544446 :: [a]) = Take a6989586621679544445 a6989586621679544446

type family TakeSym2 (a6989586621679544445 :: Natural) (a6989586621679544446 :: [a]) :: [a] where ... Source #

Equations

TakeSym2 a6989586621679544445 (a6989586621679544446 :: [a]) = Take a6989586621679544445 a6989586621679544446 

data DropSym0 (a1 :: TyFun Natural ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679544432 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679544432 :: Natural) = DropSym1 a6989586621679544432 :: TyFun [a] [a] -> Type

data DropSym1 (a6989586621679544432 :: Natural) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (DropSym1 x :: TyFun [a] [a] -> Type) #

SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym1 d :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (DropSym1 a6989586621679544432 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679544432 :: TyFun [a] [a] -> Type) (a6989586621679544433 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679544432 :: TyFun [a] [a] -> Type) (a6989586621679544433 :: [a]) = Drop a6989586621679544432 a6989586621679544433

type family DropSym2 (a6989586621679544432 :: Natural) (a6989586621679544433 :: [a]) :: [a] where ... Source #

Equations

DropSym2 a6989586621679544432 (a6989586621679544433 :: [a]) = Drop a6989586621679544432 a6989586621679544433 

data SplitAtSym0 (a1 :: TyFun Natural ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679544425 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679544425 :: Natural) = SplitAtSym1 a6989586621679544425 :: TyFun [a] ([a], [a]) -> Type

data SplitAtSym1 (a6989586621679544425 :: Natural) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: Natural). Sing x -> Sing (SplitAtSym1 x :: TyFun [a] ([a], [a]) -> Type) #

SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) #

SuppressUnusedWarnings (SplitAtSym1 a6989586621679544425 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679544425 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544426 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679544425 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544426 :: [a]) = SplitAt a6989586621679544425 a6989586621679544426

type family SplitAtSym2 (a6989586621679544425 :: Natural) (a6989586621679544426 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAtSym2 a6989586621679544425 (a6989586621679544426 :: [a]) = SplitAt a6989586621679544425 a6989586621679544426 

data TakeWhileSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544574 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544574 :: a ~> Bool) = TakeWhileSym1 a6989586621679544574

data TakeWhileSym1 (a6989586621679544574 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym1 d) #

SuppressUnusedWarnings (TakeWhileSym1 a6989586621679544574 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (TakeWhileSym1 x) #

type Apply (TakeWhileSym1 a6989586621679544574 :: TyFun [a] [a] -> Type) (a6989586621679544575 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym1 a6989586621679544574 :: TyFun [a] [a] -> Type) (a6989586621679544575 :: [a]) = TakeWhile a6989586621679544574 a6989586621679544575

type family TakeWhileSym2 (a6989586621679544574 :: a ~> Bool) (a6989586621679544575 :: [a]) :: [a] where ... Source #

Equations

TakeWhileSym2 (a6989586621679544574 :: a ~> Bool) (a6989586621679544575 :: [a]) = TakeWhile a6989586621679544574 a6989586621679544575 

data DropWhileSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544559 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544559 :: a ~> Bool) = DropWhileSym1 a6989586621679544559

data DropWhileSym1 (a6989586621679544559 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym1 d) #

SuppressUnusedWarnings (DropWhileSym1 a6989586621679544559 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (DropWhileSym1 x) #

type Apply (DropWhileSym1 a6989586621679544559 :: TyFun [a] [a] -> Type) (a6989586621679544560 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym1 a6989586621679544559 :: TyFun [a] [a] -> Type) (a6989586621679544560 :: [a]) = DropWhile a6989586621679544559 a6989586621679544560

type family DropWhileSym2 (a6989586621679544559 :: a ~> Bool) (a6989586621679544560 :: [a]) :: [a] where ... Source #

Equations

DropWhileSym2 (a6989586621679544559 :: a ~> Bool) (a6989586621679544560 :: [a]) = DropWhile a6989586621679544559 a6989586621679544560 

data DropWhileEndSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544538 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544538 :: a ~> Bool) = DropWhileEndSym1 a6989586621679544538

data DropWhileEndSym1 (a6989586621679544538 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym1 d) #

SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679544538 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (DropWhileEndSym1 x) #

type Apply (DropWhileEndSym1 a6989586621679544538 :: TyFun [a] [a] -> Type) (a6989586621679544539 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym1 a6989586621679544538 :: TyFun [a] [a] -> Type) (a6989586621679544539 :: [a]) = DropWhileEnd a6989586621679544538 a6989586621679544539

type family DropWhileEndSym2 (a6989586621679544538 :: a ~> Bool) (a6989586621679544539 :: [a]) :: [a] where ... Source #

Equations

DropWhileEndSym2 (a6989586621679544538 :: a ~> Bool) (a6989586621679544539 :: [a]) = DropWhileEnd a6989586621679544538 a6989586621679544539 

data SpanSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544497 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544497 :: a ~> Bool) = SpanSym1 a6989586621679544497

data SpanSym1 (a6989586621679544497 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym1 d) #

SuppressUnusedWarnings (SpanSym1 a6989586621679544497 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (SpanSym1 x) #

type Apply (SpanSym1 a6989586621679544497 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544498 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym1 a6989586621679544497 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544498 :: [a]) = Span a6989586621679544497 a6989586621679544498

type family SpanSym2 (a6989586621679544497 :: a ~> Bool) (a6989586621679544498 :: [a]) :: ([a], [a]) where ... Source #

Equations

SpanSym2 (a6989586621679544497 :: a ~> Bool) (a6989586621679544498 :: [a]) = Span a6989586621679544497 a6989586621679544498 

data BreakSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544458 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544458 :: a ~> Bool) = BreakSym1 a6989586621679544458

data BreakSym1 (a6989586621679544458 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym1 d) #

SuppressUnusedWarnings (BreakSym1 a6989586621679544458 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (BreakSym1 x) #

type Apply (BreakSym1 a6989586621679544458 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544459 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym1 a6989586621679544458 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544459 :: [a]) = Break a6989586621679544458 a6989586621679544459

type family BreakSym2 (a6989586621679544458 :: a ~> Bool) (a6989586621679544459 :: [a]) :: ([a], [a]) where ... Source #

Equations

BreakSym2 (a6989586621679544458 :: a ~> Bool) (a6989586621679544459 :: [a]) = Break a6989586621679544458 a6989586621679544459 

data StripPrefixSym0 (a1 :: TyFun [a] ([a] ~> Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679656297 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621679656297 :: [a]) = StripPrefixSym1 a6989586621679656297

data StripPrefixSym1 (a6989586621679656297 :: [a]) (b :: TyFun [a] (Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym1 a6989586621679656297 :: TyFun [a] (Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679656297 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679656298 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621679656297 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621679656298 :: [a]) = StripPrefix a6989586621679656297 a6989586621679656298

type family StripPrefixSym2 (a6989586621679656297 :: [a]) (a6989586621679656298 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefixSym2 (a6989586621679656297 :: [a]) (a6989586621679656298 :: [a]) = StripPrefix a6989586621679656297 a6989586621679656298 

data GroupSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SEq a => SingI (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679544420 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679544420 :: [a]) = Group a6989586621679544420

type family GroupSym1 (a6989586621679544420 :: [a]) :: [[a]] where ... Source #

Equations

GroupSym1 (a6989586621679544420 :: [a]) = Group a6989586621679544420 

data InitsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InitsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545043 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545043 :: [a]) = Inits a6989586621679545043

type family InitsSym1 (a6989586621679545043 :: [a]) :: [[a]] where ... Source #

Equations

InitsSym1 (a6989586621679545043 :: [a]) = Inits a6989586621679545043 

data TailsSym0 (a1 :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TailsSym0 :: TyFun [a] [[a]] -> Type) #

SuppressUnusedWarnings (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545033 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679545033 :: [a]) = Tails a6989586621679545033

type family TailsSym1 (a6989586621679545033 :: [a]) :: [[a]] where ... Source #

Equations

TailsSym1 (a6989586621679545033 :: [a]) = Tails a6989586621679545033 

data IsPrefixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545025 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545025 :: [a]) = IsPrefixOfSym1 a6989586621679545025

data IsPrefixOfSym1 (a6989586621679545025 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsPrefixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsPrefixOfSym1 x) #

(SEq a, SingI d) => SingI (IsPrefixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym1 d) #

SuppressUnusedWarnings (IsPrefixOfSym1 a6989586621679545025 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679545025 :: TyFun [a] Bool -> Type) (a6989586621679545026 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679545025 :: TyFun [a] Bool -> Type) (a6989586621679545026 :: [a]) = IsPrefixOf a6989586621679545025 a6989586621679545026

type family IsPrefixOfSym2 (a6989586621679545025 :: [a]) (a6989586621679545026 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOfSym2 (a6989586621679545025 :: [a]) (a6989586621679545026 :: [a]) = IsPrefixOf a6989586621679545025 a6989586621679545026 

data IsSuffixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545018 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545018 :: [a]) = IsSuffixOfSym1 a6989586621679545018

data IsSuffixOfSym1 (a6989586621679545018 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsSuffixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsSuffixOfSym1 x) #

(SEq a, SingI d) => SingI (IsSuffixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym1 d) #

SuppressUnusedWarnings (IsSuffixOfSym1 a6989586621679545018 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679545018 :: TyFun [a] Bool -> Type) (a6989586621679545019 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679545018 :: TyFun [a] Bool -> Type) (a6989586621679545019 :: [a]) = IsSuffixOf a6989586621679545018 a6989586621679545019

type family IsSuffixOfSym2 (a6989586621679545018 :: [a]) (a6989586621679545019 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOfSym2 (a6989586621679545018 :: [a]) (a6989586621679545019 :: [a]) = IsSuffixOf a6989586621679545018 a6989586621679545019 

data IsInfixOfSym0 (a1 :: TyFun [a] ([a] ~> Bool)) Source #

Instances

Instances details
SEq a => SingI (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) #

SuppressUnusedWarnings (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545011 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679545011 :: [a]) = IsInfixOfSym1 a6989586621679545011

data IsInfixOfSym1 (a6989586621679545011 :: [a]) (b :: TyFun [a] Bool) Source #

Instances

Instances details
SEq a => SingI1 (IsInfixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IsInfixOfSym1 x) #

(SEq a, SingI d) => SingI (IsInfixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym1 d) #

SuppressUnusedWarnings (IsInfixOfSym1 a6989586621679545011 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679545011 :: TyFun [a] Bool -> Type) (a6989586621679545012 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679545011 :: TyFun [a] Bool -> Type) (a6989586621679545012 :: [a]) = IsInfixOf a6989586621679545011 a6989586621679545012

type family IsInfixOfSym2 (a6989586621679545011 :: [a]) (a6989586621679545012 :: [a]) :: Bool where ... Source #

Equations

IsInfixOfSym2 (a6989586621679545011 :: [a]) (a6989586621679545012 :: [a]) = IsInfixOf a6989586621679545011 a6989586621679545012 

data ElemSym0 (a1 :: TyFun a (t a ~> Bool)) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621679922567 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621679922567 :: a) = ElemSym1 a6989586621679922567 :: TyFun (t a) Bool -> Type

data ElemSym1 (a6989586621679922567 :: a) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (ElemSym1 a6989586621679922567 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621679922567 :: TyFun (t a) Bool -> Type) (a6989586621679922568 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621679922567 :: TyFun (t a) Bool -> Type) (a6989586621679922568 :: t a) = Elem a6989586621679922567 a6989586621679922568

type family ElemSym2 (a6989586621679922567 :: a) (a6989586621679922568 :: t a) :: Bool where ... Source #

Equations

ElemSym2 (a6989586621679922567 :: a) (a6989586621679922568 :: t a) = Elem a6989586621679922567 a6989586621679922568 

data NotElemSym0 (a1 :: TyFun a (t a ~> Bool)) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) #

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621679922306 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621679922306 :: a) = NotElemSym1 a6989586621679922306 :: TyFun (t a) Bool -> Type

data NotElemSym1 (a6989586621679922306 :: a) (b :: TyFun (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a). Sing x -> Sing (NotElemSym1 x :: TyFun (t a) Bool -> Type) #

(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym1 d :: TyFun (t a) Bool -> Type) #

SuppressUnusedWarnings (NotElemSym1 a6989586621679922306 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621679922306 :: TyFun (t a) Bool -> Type) (a6989586621679922307 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621679922306 :: TyFun (t a) Bool -> Type) (a6989586621679922307 :: t a) = NotElem a6989586621679922306 a6989586621679922307

type family NotElemSym2 (a6989586621679922306 :: a) (a6989586621679922307 :: t a) :: Bool where ... Source #

Equations

NotElemSym2 (a6989586621679922306 :: a) (a6989586621679922307 :: t a) = NotElem a6989586621679922306 a6989586621679922307 

data LookupSym0 (a1 :: TyFun a ([(a, b)] ~> Maybe b)) Source #

Instances

Instances details
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) #

SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679544349 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679544349 :: a) = LookupSym1 a6989586621679544349 :: TyFun [(a, b)] (Maybe b) -> Type

data LookupSym1 (a6989586621679544349 :: a) (b1 :: TyFun [(a, b)] (Maybe b)) Source #

Instances

Instances details
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (LookupSym1 x :: TyFun [(a, b)] (Maybe b) -> Type) #

(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) #

SuppressUnusedWarnings (LookupSym1 a6989586621679544349 :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679544349 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679544350 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679544349 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679544350 :: [(a, b)]) = Lookup a6989586621679544349 a6989586621679544350

type family LookupSym2 (a6989586621679544349 :: a) (a6989586621679544350 :: [(a, b)]) :: Maybe b where ... Source #

Equations

LookupSym2 (a6989586621679544349 :: a) (a6989586621679544350 :: [(a, b)]) = Lookup a6989586621679544349 a6989586621679544350 

data FindSym0 (a1 :: TyFun (a ~> Bool) (t a ~> Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) #

SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621679922286 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621679922286 :: a ~> Bool) = FindSym1 a6989586621679922286 :: TyFun (t a) (Maybe a) -> Type

data FindSym1 (a6989586621679922286 :: a ~> Bool) (b :: TyFun (t a) (Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI1 (FindSym1 :: (a ~> Bool) -> TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindSym1 x :: TyFun (t a) (Maybe a) -> Type) #

(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) #

SuppressUnusedWarnings (FindSym1 a6989586621679922286 :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621679922286 :: TyFun (t a) (Maybe a) -> Type) (a6989586621679922287 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621679922286 :: TyFun (t a) (Maybe a) -> Type) (a6989586621679922287 :: t a) = Find a6989586621679922286 a6989586621679922287

type family FindSym2 (a6989586621679922286 :: a ~> Bool) (a6989586621679922287 :: t a) :: Maybe a where ... Source #

Equations

FindSym2 (a6989586621679922286 :: a ~> Bool) (a6989586621679922287 :: t a) = Find a6989586621679922286 a6989586621679922287 

data FilterSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [a])) Source #

Instances

Instances details
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544674 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679544674 :: a ~> Bool) = FilterSym1 a6989586621679544674

data FilterSym1 (a6989586621679544674 :: a ~> Bool) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym1 d) #

SuppressUnusedWarnings (FilterSym1 a6989586621679544674 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FilterSym1 x) #

type Apply (FilterSym1 a6989586621679544674 :: TyFun [a] [a] -> Type) (a6989586621679544675 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym1 a6989586621679544674 :: TyFun [a] [a] -> Type) (a6989586621679544675 :: [a]) = Filter a6989586621679544674 a6989586621679544675

type family FilterSym2 (a6989586621679544674 :: a ~> Bool) (a6989586621679544675 :: [a]) :: [a] where ... Source #

Equations

FilterSym2 (a6989586621679544674 :: a ~> Bool) (a6989586621679544675 :: [a]) = Filter a6989586621679544674 a6989586621679544675 

data PartitionSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> ([a], [a]))) Source #

Instances

Instances details
SingI (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) #

SuppressUnusedWarnings (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544342 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679544342 :: a ~> Bool) = PartitionSym1 a6989586621679544342

data PartitionSym1 (a6989586621679544342 :: a ~> Bool) (b :: TyFun [a] ([a], [a])) Source #

Instances

Instances details
SingI d => SingI (PartitionSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym1 d) #

SuppressUnusedWarnings (PartitionSym1 a6989586621679544342 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (PartitionSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (PartitionSym1 x) #

type Apply (PartitionSym1 a6989586621679544342 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544343 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym1 a6989586621679544342 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679544343 :: [a]) = Partition a6989586621679544342 a6989586621679544343

type family PartitionSym2 (a6989586621679544342 :: a ~> Bool) (a6989586621679544343 :: [a]) :: ([a], [a]) where ... Source #

Equations

PartitionSym2 (a6989586621679544342 :: a ~> Bool) (a6989586621679544343 :: [a]) = Partition a6989586621679544342 a6989586621679544343 

data (!!@#@$) (a1 :: TyFun [a] (Natural ~> a)) infixl 9 Source #

Instances

Instances details
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) #

SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679544266 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679544266 :: [a]) = (!!@#@$$) a6989586621679544266

data (a6989586621679544266 :: [a]) !!@#@$$ (b :: TyFun Natural a) infixl 9 Source #

Instances

Instances details
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((!!@#@$$) x) #

SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$$) d) #

SuppressUnusedWarnings ((!!@#@$$) a6989586621679544266 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679544266 :: TyFun Natural a -> Type) (a6989586621679544267 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679544266 :: TyFun Natural a -> Type) (a6989586621679544267 :: Natural) = a6989586621679544266 !! a6989586621679544267

type family (a6989586621679544266 :: [a]) !!@#@$$$ (a6989586621679544267 :: Natural) :: a where ... infixl 9 Source #

Equations

(a6989586621679544266 :: [a]) !!@#@$$$ a6989586621679544267 = a6989586621679544266 !! a6989586621679544267 

data ElemIndexSym0 (a1 :: TyFun a ([a] ~> Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) #

SuppressUnusedWarnings (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679544658 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679544658 :: a) = ElemIndexSym1 a6989586621679544658

data ElemIndexSym1 (a6989586621679544658 :: a) (b :: TyFun [a] (Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndexSym1 :: a -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemIndexSym1 x) #

(SEq a, SingI d) => SingI (ElemIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym1 d) #

SuppressUnusedWarnings (ElemIndexSym1 a6989586621679544658 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679544658 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679544659 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679544658 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679544659 :: [a]) = ElemIndex a6989586621679544658 a6989586621679544659

type family ElemIndexSym2 (a6989586621679544658 :: a) (a6989586621679544659 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndexSym2 (a6989586621679544658 :: a) (a6989586621679544659 :: [a]) = ElemIndex a6989586621679544658 a6989586621679544659 

data ElemIndicesSym0 (a1 :: TyFun a ([a] ~> [Natural])) Source #

Instances

Instances details
SEq a => SingI (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) #

SuppressUnusedWarnings (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679544649 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679544649 :: a) = ElemIndicesSym1 a6989586621679544649

data ElemIndicesSym1 (a6989586621679544649 :: a) (b :: TyFun [a] [Natural]) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndicesSym1 :: a -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (ElemIndicesSym1 x) #

(SEq a, SingI d) => SingI (ElemIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym1 d) #

SuppressUnusedWarnings (ElemIndicesSym1 a6989586621679544649 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679544649 :: TyFun [a] [Natural] -> Type) (a6989586621679544650 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679544649 :: TyFun [a] [Natural] -> Type) (a6989586621679544650 :: [a]) = ElemIndices a6989586621679544649 a6989586621679544650

type family ElemIndicesSym2 (a6989586621679544649 :: a) (a6989586621679544650 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndicesSym2 (a6989586621679544649 :: a) (a6989586621679544650 :: [a]) = ElemIndices a6989586621679544649 a6989586621679544650 

data FindIndexSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural)) Source #

Instances

Instances details
SingI (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) #

SuppressUnusedWarnings (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679544640 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679544640 :: a ~> Bool) = FindIndexSym1 a6989586621679544640

data FindIndexSym1 (a6989586621679544640 :: a ~> Bool) (b :: TyFun [a] (Maybe Natural)) Source #

Instances

Instances details
SingI d => SingI (FindIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym1 d) #

SuppressUnusedWarnings (FindIndexSym1 a6989586621679544640 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndexSym1 :: (a ~> Bool) -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindIndexSym1 x) #

type Apply (FindIndexSym1 a6989586621679544640 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679544641 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym1 a6989586621679544640 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679544641 :: [a]) = FindIndex a6989586621679544640 a6989586621679544641

type family FindIndexSym2 (a6989586621679544640 :: a ~> Bool) (a6989586621679544641 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndexSym2 (a6989586621679544640 :: a ~> Bool) (a6989586621679544641 :: [a]) = FindIndex a6989586621679544640 a6989586621679544641 

data FindIndicesSym0 (a1 :: TyFun (a ~> Bool) ([a] ~> [Natural])) Source #

Instances

Instances details
SingI (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) #

SuppressUnusedWarnings (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679544619 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679544619 :: a ~> Bool) = FindIndicesSym1 a6989586621679544619

data FindIndicesSym1 (a6989586621679544619 :: a ~> Bool) (b :: TyFun [a] [Natural]) Source #

Instances

Instances details
SingI d => SingI (FindIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym1 d) #

SuppressUnusedWarnings (FindIndicesSym1 a6989586621679544619 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndicesSym1 :: (a ~> Bool) -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> Bool). Sing x -> Sing (FindIndicesSym1 x) #

type Apply (FindIndicesSym1 a6989586621679544619 :: TyFun [a] [Natural] -> Type) (a6989586621679544620 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym1 a6989586621679544619 :: TyFun [a] [Natural] -> Type) (a6989586621679544620 :: [a]) = FindIndices a6989586621679544619 a6989586621679544620

type family FindIndicesSym2 (a6989586621679544619 :: a ~> Bool) (a6989586621679544620 :: [a]) :: [Natural] where ... Source #

Equations

FindIndicesSym2 (a6989586621679544619 :: a ~> Bool) (a6989586621679544620 :: [a]) = FindIndices a6989586621679544619 a6989586621679544620 

data ZipSym0 (a1 :: TyFun [a] ([b] ~> [(a, b)])) Source #

Instances

Instances details
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) #

SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679544986 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679544986 :: [a]) = ZipSym1 a6989586621679544986 :: TyFun [b] [(a, b)] -> Type

data ZipSym1 (a6989586621679544986 :: [a]) (b1 :: TyFun [b] [(a, b)]) Source #

Instances

Instances details
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipSym1 x :: TyFun [b] [(a, b)] -> Type) #

SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) #

SuppressUnusedWarnings (ZipSym1 a6989586621679544986 :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679544986 :: TyFun [b] [(a, b)] -> Type) (a6989586621679544987 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679544986 :: TyFun [b] [(a, b)] -> Type) (a6989586621679544987 :: [b]) = Zip a6989586621679544986 a6989586621679544987

type family ZipSym2 (a6989586621679544986 :: [a]) (a6989586621679544987 :: [b]) :: [(a, b)] where ... Source #

Equations

ZipSym2 (a6989586621679544986 :: [a]) (a6989586621679544987 :: [b]) = Zip a6989586621679544986 a6989586621679544987 

data Zip3Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)]))) Source #

Instances

Instances details
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) #

SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679544974 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679544974 :: [a]) = Zip3Sym1 a6989586621679544974 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type

data Zip3Sym1 (a6989586621679544974 :: [a]) (b1 :: TyFun [b] ([c] ~> [(a, b, c)])) Source #

Instances

Instances details
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (Zip3Sym1 x :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) #

SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) #

SuppressUnusedWarnings (Zip3Sym1 a6989586621679544974 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679544974 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679544975 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679544974 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679544975 :: [b]) = Zip3Sym2 a6989586621679544974 a6989586621679544975 :: TyFun [c] [(a, b, c)] -> Type

data Zip3Sym2 (a6989586621679544974 :: [a]) (a6989586621679544975 :: [b]) (c1 :: TyFun [c] [(a, b, c)]) Source #

Instances

Instances details
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: [a]) (y :: [b]). Sing x -> Sing y -> Sing (Zip3Sym2 x y :: TyFun [c] [(a, b, c)] -> Type) #

SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [b]). Sing x -> Sing (Zip3Sym2 d x :: TyFun [c] [(a, b, c)] -> Type) #

(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) #

SuppressUnusedWarnings (Zip3Sym2 a6989586621679544974 a6989586621679544975 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679544974 a6989586621679544975 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679544976 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679544974 a6989586621679544975 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679544976 :: [c]) = Zip3 a6989586621679544974 a6989586621679544975 a6989586621679544976

type family Zip3Sym3 (a6989586621679544974 :: [a]) (a6989586621679544975 :: [b]) (a6989586621679544976 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3Sym3 (a6989586621679544974 :: [a]) (a6989586621679544975 :: [b]) (a6989586621679544976 :: [c]) = Zip3 a6989586621679544974 a6989586621679544975 a6989586621679544976 

data Zip4Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679656286 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621679656286 :: [a]) = Zip4Sym1 a6989586621679656286 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type

data Zip4Sym1 (a6989586621679656286 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym1 a6989586621679656286 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679656286 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679656287 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621679656286 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621679656287 :: [b]) = Zip4Sym2 a6989586621679656286 a6989586621679656287 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type

data Zip4Sym2 (a6989586621679656286 :: [a]) (a6989586621679656287 :: [b]) (c1 :: TyFun [c] ([d] ~> [(a, b, c, d)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym2 a6989586621679656286 a6989586621679656287 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679656286 a6989586621679656287 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679656288 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621679656286 a6989586621679656287 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621679656288 :: [c]) = Zip4Sym3 a6989586621679656286 a6989586621679656287 a6989586621679656288 :: TyFun [d] [(a, b, c, d)] -> Type

data Zip4Sym3 (a6989586621679656286 :: [a]) (a6989586621679656287 :: [b]) (a6989586621679656288 :: [c]) (d1 :: TyFun [d] [(a, b, c, d)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym3 a6989586621679656286 a6989586621679656287 a6989586621679656288 :: TyFun [d] [(a, b, c, d)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679656286 a6989586621679656287 a6989586621679656288 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679656289 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621679656286 a6989586621679656287 a6989586621679656288 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621679656289 :: [d]) = Zip4 a6989586621679656286 a6989586621679656287 a6989586621679656288 a6989586621679656289

type family Zip4Sym4 (a6989586621679656286 :: [a]) (a6989586621679656287 :: [b]) (a6989586621679656288 :: [c]) (a6989586621679656289 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4Sym4 (a6989586621679656286 :: [a]) (a6989586621679656287 :: [b]) (a6989586621679656288 :: [c]) (a6989586621679656289 :: [d]) = Zip4 a6989586621679656286 a6989586621679656287 a6989586621679656288 a6989586621679656289 

data Zip5Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679656263 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621679656263 :: [a]) = Zip5Sym1 a6989586621679656263 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type

data Zip5Sym1 (a6989586621679656263 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym1 a6989586621679656263 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679656263 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679656264 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621679656263 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621679656264 :: [b]) = Zip5Sym2 a6989586621679656263 a6989586621679656264 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type

data Zip5Sym2 (a6989586621679656263 :: [a]) (a6989586621679656264 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym2 a6989586621679656263 a6989586621679656264 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679656263 a6989586621679656264 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679656265 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621679656263 a6989586621679656264 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621679656265 :: [c]) = Zip5Sym3 a6989586621679656263 a6989586621679656264 a6989586621679656265 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type

data Zip5Sym3 (a6989586621679656263 :: [a]) (a6989586621679656264 :: [b]) (a6989586621679656265 :: [c]) (d1 :: TyFun [d] ([e] ~> [(a, b, c, d, e)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym3 a6989586621679656263 a6989586621679656264 a6989586621679656265 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679656263 a6989586621679656264 a6989586621679656265 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679656266 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621679656263 a6989586621679656264 a6989586621679656265 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621679656266 :: [d]) = Zip5Sym4 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 :: TyFun [e] [(a, b, c, d, e)] -> Type

data Zip5Sym4 (a6989586621679656263 :: [a]) (a6989586621679656264 :: [b]) (a6989586621679656265 :: [c]) (a6989586621679656266 :: [d]) (e1 :: TyFun [e] [(a, b, c, d, e)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym4 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 :: TyFun [e] [(a, b, c, d, e)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679656267 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621679656267 :: [e]) = Zip5 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 a6989586621679656267

type family Zip5Sym5 (a6989586621679656263 :: [a]) (a6989586621679656264 :: [b]) (a6989586621679656265 :: [c]) (a6989586621679656266 :: [d]) (a6989586621679656267 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5Sym5 (a6989586621679656263 :: [a]) (a6989586621679656264 :: [b]) (a6989586621679656265 :: [c]) (a6989586621679656266 :: [d]) (a6989586621679656267 :: [e]) = Zip5 a6989586621679656263 a6989586621679656264 a6989586621679656265 a6989586621679656266 a6989586621679656267 

data Zip6Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679656235 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621679656235 :: [a]) = Zip6Sym1 a6989586621679656235 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type

data Zip6Sym1 (a6989586621679656235 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym1 a6989586621679656235 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679656235 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679656236 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621679656235 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621679656236 :: [b]) = Zip6Sym2 a6989586621679656235 a6989586621679656236 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type

data Zip6Sym2 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym2 a6989586621679656235 a6989586621679656236 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679656235 a6989586621679656236 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679656237 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621679656235 a6989586621679656236 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621679656237 :: [c]) = Zip6Sym3 a6989586621679656235 a6989586621679656236 a6989586621679656237 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type

data Zip6Sym3 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (a6989586621679656237 :: [c]) (d1 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym3 a6989586621679656235 a6989586621679656236 a6989586621679656237 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679656235 a6989586621679656236 a6989586621679656237 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679656238 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621679656235 a6989586621679656236 a6989586621679656237 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621679656238 :: [d]) = Zip6Sym4 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type

data Zip6Sym4 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (a6989586621679656237 :: [c]) (a6989586621679656238 :: [d]) (e1 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym4 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679656239 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621679656239 :: [e]) = Zip6Sym5 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 :: TyFun [f] [(a, b, c, d, e, f)] -> Type

data Zip6Sym5 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (a6989586621679656237 :: [c]) (a6989586621679656238 :: [d]) (a6989586621679656239 :: [e]) (f1 :: TyFun [f] [(a, b, c, d, e, f)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym5 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679656240 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621679656240 :: [f]) = Zip6 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 a6989586621679656240

type family Zip6Sym6 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (a6989586621679656237 :: [c]) (a6989586621679656238 :: [d]) (a6989586621679656239 :: [e]) (a6989586621679656240 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6Sym6 (a6989586621679656235 :: [a]) (a6989586621679656236 :: [b]) (a6989586621679656237 :: [c]) (a6989586621679656238 :: [d]) (a6989586621679656239 :: [e]) (a6989586621679656240 :: [f]) = Zip6 a6989586621679656235 a6989586621679656236 a6989586621679656237 a6989586621679656238 a6989586621679656239 a6989586621679656240 

data Zip7Sym0 (a1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679656202 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621679656202 :: [a]) = Zip7Sym1 a6989586621679656202 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type

data Zip7Sym1 (a6989586621679656202 :: [a]) (b1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym1 a6989586621679656202 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679656202 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679656203 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621679656202 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621679656203 :: [b]) = Zip7Sym2 a6989586621679656202 a6989586621679656203 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type

data Zip7Sym2 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (c1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym2 a6989586621679656202 a6989586621679656203 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679656202 a6989586621679656203 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679656204 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621679656202 a6989586621679656203 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621679656204 :: [c]) = Zip7Sym3 a6989586621679656202 a6989586621679656203 a6989586621679656204 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type

data Zip7Sym3 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (d1 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym3 a6989586621679656202 a6989586621679656203 a6989586621679656204 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679656202 a6989586621679656203 a6989586621679656204 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679656205 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621679656202 a6989586621679656203 a6989586621679656204 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621679656205 :: [d]) = Zip7Sym4 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type

data Zip7Sym4 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (a6989586621679656205 :: [d]) (e1 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym4 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679656206 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621679656206 :: [e]) = Zip7Sym5 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type

data Zip7Sym5 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (a6989586621679656205 :: [d]) (a6989586621679656206 :: [e]) (f1 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym5 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679656207 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621679656207 :: [f]) = Zip7Sym6 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type

data Zip7Sym6 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (a6989586621679656205 :: [d]) (a6989586621679656206 :: [e]) (a6989586621679656207 :: [f]) (g1 :: TyFun [g] [(a, b, c, d, e, f, g)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym6 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679656208 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621679656208 :: [g]) = Zip7 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 a6989586621679656208

type family Zip7Sym7 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (a6989586621679656205 :: [d]) (a6989586621679656206 :: [e]) (a6989586621679656207 :: [f]) (a6989586621679656208 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7Sym7 (a6989586621679656202 :: [a]) (a6989586621679656203 :: [b]) (a6989586621679656204 :: [c]) (a6989586621679656205 :: [d]) (a6989586621679656206 :: [e]) (a6989586621679656207 :: [f]) (a6989586621679656208 :: [g]) = Zip7 a6989586621679656202 a6989586621679656203 a6989586621679656204 a6989586621679656205 a6989586621679656206 a6989586621679656207 a6989586621679656208 

data ZipWithSym0 (a1 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c]))) Source #

Instances

Instances details
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) #

SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679544962 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679544962 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679544962

data ZipWithSym1 (a6989586621679544962 :: a ~> (b ~> c)) (b1 :: TyFun [a] ([b] ~> [c])) Source #

Instances

Instances details
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> c)). Sing x -> Sing (ZipWithSym1 x) #

SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym1 d) #

SuppressUnusedWarnings (ZipWithSym1 a6989586621679544962 :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679544962 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679544963 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679544962 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679544963 :: [a]) = ZipWithSym2 a6989586621679544962 a6989586621679544963

data ZipWithSym2 (a6989586621679544962 :: a ~> (b ~> c)) (a6989586621679544963 :: [a]) (c1 :: TyFun [b] [c]) Source #

Instances

Instances details
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWithSym2 d x) #

SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> c)) (y :: [a]). Sing x -> Sing y -> Sing (ZipWithSym2 x y) #

(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym2 d1 d2) #

SuppressUnusedWarnings (ZipWithSym2 a6989586621679544962 a6989586621679544963 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679544962 a6989586621679544963 :: TyFun [b] [c] -> Type) (a6989586621679544964 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679544962 a6989586621679544963 :: TyFun [b] [c] -> Type) (a6989586621679544964 :: [b]) = ZipWith a6989586621679544962 a6989586621679544963 a6989586621679544964

type family ZipWithSym3 (a6989586621679544962 :: a ~> (b ~> c)) (a6989586621679544963 :: [a]) (a6989586621679544964 :: [b]) :: [c] where ... Source #

Equations

ZipWithSym3 (a6989586621679544962 :: a ~> (b ~> c)) (a6989586621679544963 :: [a]) (a6989586621679544964 :: [b]) = ZipWith a6989586621679544962 a6989586621679544963 a6989586621679544964 

data ZipWith3Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d])))) Source #

Instances

Instances details
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) #

SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679544947 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679544947 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679544947

data ZipWith3Sym1 (a6989586621679544947 :: a ~> (b ~> (c ~> d))) (b1 :: TyFun [a] ([b] ~> ([c] ~> [d]))) Source #

Instances

Instances details
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (b ~> (c ~> d))). Sing x -> Sing (ZipWith3Sym1 x) #

SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym1 d2) #

SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679544947 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679544947 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679544948 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679544947 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679544948 :: [a]) = ZipWith3Sym2 a6989586621679544947 a6989586621679544948

data ZipWith3Sym2 (a6989586621679544947 :: a ~> (b ~> (c ~> d))) (a6989586621679544948 :: [a]) (c1 :: TyFun [b] ([c] ~> [d])) Source #

Instances

Instances details
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (ZipWith3Sym2 d2 x) #

SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (b ~> (c ~> d))) (y :: [a]). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y) #

(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym2 d2 d3) #

SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679544947 a6989586621679544948 :: TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679544947 a6989586621679544948 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679544949 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679544947 a6989586621679544948 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679544949 :: [b]) = ZipWith3Sym3 a6989586621679544947 a6989586621679544948 a6989586621679544949

data ZipWith3Sym3 (a6989586621679544947 :: a ~> (b ~> (c ~> d))) (a6989586621679544948 :: [a]) (a6989586621679544949 :: [b]) (d1 :: TyFun [c] [d]) Source #

Instances

Instances details
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: [a]) (y :: [b]). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y) #

(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [b]). Sing x -> Sing (ZipWith3Sym3 d2 d3 x) #

(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym3 d2 d3 d4) #

SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679544947 a6989586621679544948 a6989586621679544949 :: TyFun [c] [d] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679544947 a6989586621679544948 a6989586621679544949 :: TyFun [c] [d] -> Type) (a6989586621679544950 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679544947 a6989586621679544948 a6989586621679544949 :: TyFun [c] [d] -> Type) (a6989586621679544950 :: [c]) = ZipWith3 a6989586621679544947 a6989586621679544948 a6989586621679544949 a6989586621679544950

type family ZipWith3Sym4 (a6989586621679544947 :: a ~> (b ~> (c ~> d))) (a6989586621679544948 :: [a]) (a6989586621679544949 :: [b]) (a6989586621679544950 :: [c]) :: [d] where ... Source #

Equations

ZipWith3Sym4 (a6989586621679544947 :: a ~> (b ~> (c ~> d))) (a6989586621679544948 :: [a]) (a6989586621679544949 :: [b]) (a6989586621679544950 :: [c]) = ZipWith3 a6989586621679544947 a6989586621679544948 a6989586621679544949 a6989586621679544950 

data ZipWith4Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) = ZipWith4Sym1 a6989586621679656166

data ZipWith4Sym1 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym1 a6989586621679656166 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679656166 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679656167 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621679656166 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621679656167 :: [a]) = ZipWith4Sym2 a6989586621679656166 a6989586621679656167

data ZipWith4Sym2 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679656167 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> [e]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym2 a6989586621679656166 a6989586621679656167 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679656166 a6989586621679656167 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679656168 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621679656166 a6989586621679656167 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621679656168 :: [b]) = ZipWith4Sym3 a6989586621679656166 a6989586621679656167 a6989586621679656168

data ZipWith4Sym3 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679656167 :: [a]) (a6989586621679656168 :: [b]) (d1 :: TyFun [c] ([d] ~> [e])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym3 a6989586621679656166 a6989586621679656167 a6989586621679656168 :: TyFun [c] ([d] ~> [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679656166 a6989586621679656167 a6989586621679656168 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679656169 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621679656166 a6989586621679656167 a6989586621679656168 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621679656169 :: [c]) = ZipWith4Sym4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169

data ZipWith4Sym4 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679656167 :: [a]) (a6989586621679656168 :: [b]) (a6989586621679656169 :: [c]) (e1 :: TyFun [d] [e]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169 :: TyFun [d] [e] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169 :: TyFun [d] [e] -> Type) (a6989586621679656170 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169 :: TyFun [d] [e] -> Type) (a6989586621679656170 :: [d]) = ZipWith4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169 a6989586621679656170

type family ZipWith4Sym5 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679656167 :: [a]) (a6989586621679656168 :: [b]) (a6989586621679656169 :: [c]) (a6989586621679656170 :: [d]) :: [e] where ... Source #

Equations

ZipWith4Sym5 (a6989586621679656166 :: a ~> (b ~> (c ~> (d ~> e)))) (a6989586621679656167 :: [a]) (a6989586621679656168 :: [b]) (a6989586621679656169 :: [c]) (a6989586621679656170 :: [d]) = ZipWith4 a6989586621679656166 a6989586621679656167 a6989586621679656168 a6989586621679656169 a6989586621679656170 

data ZipWith5Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) = ZipWith5Sym1 a6989586621679656143

data ZipWith5Sym1 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym1 a6989586621679656143 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679656143 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679656144 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621679656143 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621679656144 :: [a]) = ZipWith5Sym2 a6989586621679656143 a6989586621679656144

data ZipWith5Sym2 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym2 a6989586621679656143 a6989586621679656144 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679656143 a6989586621679656144 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679656145 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621679656143 a6989586621679656144 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621679656145 :: [b]) = ZipWith5Sym3 a6989586621679656143 a6989586621679656144 a6989586621679656145

data ZipWith5Sym3 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (a6989586621679656145 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> [f]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym3 a6989586621679656143 a6989586621679656144 a6989586621679656145 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679656143 a6989586621679656144 a6989586621679656145 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679656146 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621679656143 a6989586621679656144 a6989586621679656145 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621679656146 :: [c]) = ZipWith5Sym4 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146

data ZipWith5Sym4 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (a6989586621679656145 :: [b]) (a6989586621679656146 :: [c]) (e1 :: TyFun [d] ([e] ~> [f])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym4 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 :: TyFun [d] ([e] ~> [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679656147 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621679656147 :: [d]) = ZipWith5Sym5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147

data ZipWith5Sym5 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (a6989586621679656145 :: [b]) (a6989586621679656146 :: [c]) (a6989586621679656147 :: [d]) (f1 :: TyFun [e] [f]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147 :: TyFun [e] [f] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147 :: TyFun [e] [f] -> Type) (a6989586621679656148 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147 :: TyFun [e] [f] -> Type) (a6989586621679656148 :: [e]) = ZipWith5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147 a6989586621679656148

type family ZipWith5Sym6 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (a6989586621679656145 :: [b]) (a6989586621679656146 :: [c]) (a6989586621679656147 :: [d]) (a6989586621679656148 :: [e]) :: [f] where ... Source #

Equations

ZipWith5Sym6 (a6989586621679656143 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) (a6989586621679656144 :: [a]) (a6989586621679656145 :: [b]) (a6989586621679656146 :: [c]) (a6989586621679656147 :: [d]) (a6989586621679656148 :: [e]) = ZipWith5 a6989586621679656143 a6989586621679656144 a6989586621679656145 a6989586621679656146 a6989586621679656147 a6989586621679656148 

data ZipWith6Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) = ZipWith6Sym1 a6989586621679656116

data ZipWith6Sym1 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym1 a6989586621679656116 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679656116 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679656117 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621679656116 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621679656117 :: [a]) = ZipWith6Sym2 a6989586621679656116 a6989586621679656117

data ZipWith6Sym2 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym2 a6989586621679656116 a6989586621679656117 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679656116 a6989586621679656117 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679656118 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621679656116 a6989586621679656117 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621679656118 :: [b]) = ZipWith6Sym3 a6989586621679656116 a6989586621679656117 a6989586621679656118

data ZipWith6Sym3 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym3 a6989586621679656116 a6989586621679656117 a6989586621679656118 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679656116 a6989586621679656117 a6989586621679656118 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679656119 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621679656116 a6989586621679656117 a6989586621679656118 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621679656119 :: [c]) = ZipWith6Sym4 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119

data ZipWith6Sym4 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (a6989586621679656119 :: [c]) (e1 :: TyFun [d] ([e] ~> ([f] ~> [g]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym4 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679656120 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621679656120 :: [d]) = ZipWith6Sym5 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120

data ZipWith6Sym5 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (a6989586621679656119 :: [c]) (a6989586621679656120 :: [d]) (f1 :: TyFun [e] ([f] ~> [g])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym5 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 :: TyFun [e] ([f] ~> [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679656121 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621679656121 :: [e]) = ZipWith6Sym6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121

data ZipWith6Sym6 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (a6989586621679656119 :: [c]) (a6989586621679656120 :: [d]) (a6989586621679656121 :: [e]) (g1 :: TyFun [f] [g]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121 :: TyFun [f] [g] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121 :: TyFun [f] [g] -> Type) (a6989586621679656122 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121 :: TyFun [f] [g] -> Type) (a6989586621679656122 :: [f]) = ZipWith6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121 a6989586621679656122

type family ZipWith6Sym7 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (a6989586621679656119 :: [c]) (a6989586621679656120 :: [d]) (a6989586621679656121 :: [e]) (a6989586621679656122 :: [f]) :: [g] where ... Source #

Equations

ZipWith6Sym7 (a6989586621679656116 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) (a6989586621679656117 :: [a]) (a6989586621679656118 :: [b]) (a6989586621679656119 :: [c]) (a6989586621679656120 :: [d]) (a6989586621679656121 :: [e]) (a6989586621679656122 :: [f]) = ZipWith6 a6989586621679656116 a6989586621679656117 a6989586621679656118 a6989586621679656119 a6989586621679656120 a6989586621679656121 a6989586621679656122 

data ZipWith7Sym0 (a1 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) = ZipWith7Sym1 a6989586621679656085

data ZipWith7Sym1 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (b1 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym1 a6989586621679656085 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679656085 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679656086 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621679656085 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621679656086 :: [a]) = ZipWith7Sym2 a6989586621679656085 a6989586621679656086

data ZipWith7Sym2 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (c1 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym2 a6989586621679656085 a6989586621679656086 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679656085 a6989586621679656086 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679656087 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621679656085 a6989586621679656086 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621679656087 :: [b]) = ZipWith7Sym3 a6989586621679656085 a6989586621679656086 a6989586621679656087

data ZipWith7Sym3 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (d1 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym3 a6989586621679656085 a6989586621679656086 a6989586621679656087 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679656085 a6989586621679656086 a6989586621679656087 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679656088 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621679656085 a6989586621679656086 a6989586621679656087 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621679656088 :: [c]) = ZipWith7Sym4 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088

data ZipWith7Sym4 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (e1 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym4 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679656089 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621679656089 :: [d]) = ZipWith7Sym5 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089

data ZipWith7Sym5 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (a6989586621679656089 :: [d]) (f1 :: TyFun [e] ([f] ~> ([g] ~> [h]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym5 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679656090 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621679656090 :: [e]) = ZipWith7Sym6 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090

data ZipWith7Sym6 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (a6989586621679656089 :: [d]) (a6989586621679656090 :: [e]) (g1 :: TyFun [f] ([g] ~> [h])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym6 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 :: TyFun [f] ([g] ~> [h]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679656091 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621679656091 :: [f]) = ZipWith7Sym7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091

data ZipWith7Sym7 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (a6989586621679656089 :: [d]) (a6989586621679656090 :: [e]) (a6989586621679656091 :: [f]) (h1 :: TyFun [g] [h]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091 :: TyFun [g] [h] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091 :: TyFun [g] [h] -> Type) (a6989586621679656092 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091 :: TyFun [g] [h] -> Type) (a6989586621679656092 :: [g]) = ZipWith7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091 a6989586621679656092

type family ZipWith7Sym8 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (a6989586621679656089 :: [d]) (a6989586621679656090 :: [e]) (a6989586621679656091 :: [f]) (a6989586621679656092 :: [g]) :: [h] where ... Source #

Equations

ZipWith7Sym8 (a6989586621679656085 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) (a6989586621679656086 :: [a]) (a6989586621679656087 :: [b]) (a6989586621679656088 :: [c]) (a6989586621679656089 :: [d]) (a6989586621679656090 :: [e]) (a6989586621679656091 :: [f]) (a6989586621679656092 :: [g]) = ZipWith7 a6989586621679656085 a6989586621679656086 a6989586621679656087 a6989586621679656088 a6989586621679656089 a6989586621679656090 a6989586621679656091 a6989586621679656092 

data UnzipSym0 (a1 :: TyFun [(a, b)] ([a], [b])) Source #

Instances

Instances details
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) #

SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679544929 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679544929 :: [(a, b)]) = Unzip a6989586621679544929

type family UnzipSym1 (a6989586621679544929 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

UnzipSym1 (a6989586621679544929 :: [(a, b)]) = Unzip a6989586621679544929 

data Unzip3Sym0 (a1 :: TyFun [(a, b, c)] ([a], [b], [c])) Source #

Instances

Instances details
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) #

SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679544912 :: [(a, b, c)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679544912 :: [(a, b, c)]) = Unzip3 a6989586621679544912

type family Unzip3Sym1 (a6989586621679544912 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3Sym1 (a6989586621679544912 :: [(a, b, c)]) = Unzip3 a6989586621679544912 

data Unzip4Sym0 (a1 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d])) Source #

Instances

Instances details
SingI (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) #

SuppressUnusedWarnings (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679544893 :: [(a, b, c, d)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679544893 :: [(a, b, c, d)]) = Unzip4 a6989586621679544893

type family Unzip4Sym1 (a6989586621679544893 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4Sym1 (a6989586621679544893 :: [(a, b, c, d)]) = Unzip4 a6989586621679544893 

data Unzip5Sym0 (a1 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e])) Source #

Instances

Instances details
SingI (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) #

SuppressUnusedWarnings (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679544872 :: [(a, b, c, d, e)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679544872 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679544872

type family Unzip5Sym1 (a6989586621679544872 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5Sym1 (a6989586621679544872 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679544872 

data Unzip6Sym0 (a1 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f])) Source #

Instances

Instances details
SingI (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) #

SuppressUnusedWarnings (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679544849 :: [(a, b, c, d, e, f)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679544849 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679544849

type family Unzip6Sym1 (a6989586621679544849 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6Sym1 (a6989586621679544849 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679544849 

data Unzip7Sym0 (a1 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g])) Source #

Instances

Instances details
SingI (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) #

SuppressUnusedWarnings (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679544824 :: [(a, b, c, d, e, f, g)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679544824 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679544824

type family Unzip7Sym1 (a6989586621679544824 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7Sym1 (a6989586621679544824 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679544824 

data UnlinesSym0 (a :: TyFun [Symbol] Symbol) Source #

Instances

Instances details
SingI UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679544819 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679544819 :: [Symbol]) = Unlines a6989586621679544819

type family UnlinesSym1 (a6989586621679544819 :: [Symbol]) :: Symbol where ... Source #

Equations

UnlinesSym1 a6989586621679544819 = Unlines a6989586621679544819 

data UnwordsSym0 (a :: TyFun [Symbol] Symbol) Source #

Instances

Instances details
SingI UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679544809 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679544809 :: [Symbol]) = Unwords a6989586621679544809

type family UnwordsSym1 (a6989586621679544809 :: [Symbol]) :: Symbol where ... Source #

Equations

UnwordsSym1 a6989586621679544809 = Unwords a6989586621679544809 

data NubSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679544249 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679544249 :: [a]) = Nub a6989586621679544249

type family NubSym1 (a6989586621679544249 :: [a]) :: [a] where ... Source #

Equations

NubSym1 (a6989586621679544249 :: [a]) = Nub a6989586621679544249 

data DeleteSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544803 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544803 :: a) = DeleteSym1 a6989586621679544803

data DeleteSym1 (a6989586621679544803 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (DeleteSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (DeleteSym1 x) #

(SEq a, SingI d) => SingI (DeleteSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym1 d) #

SuppressUnusedWarnings (DeleteSym1 a6989586621679544803 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679544803 :: TyFun [a] [a] -> Type) (a6989586621679544804 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679544803 :: TyFun [a] [a] -> Type) (a6989586621679544804 :: [a]) = Delete a6989586621679544803 a6989586621679544804

type family DeleteSym2 (a6989586621679544803 :: a) (a6989586621679544804 :: [a]) :: [a] where ... Source #

Equations

DeleteSym2 (a6989586621679544803 :: a) (a6989586621679544804 :: [a]) = Delete a6989586621679544803 a6989586621679544804 

data (\\@#@$) (a1 :: TyFun [a] ([a] ~> [a])) infix 5 Source #

Instances

Instances details
SEq a => SingI ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544792 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544792 :: [a]) = (\\@#@$$) a6989586621679544792

data (a6989586621679544792 :: [a]) \\@#@$$ (b :: TyFun [a] [a]) infix 5 Source #

Instances

Instances details
SEq a => SingI1 ((\\@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing ((\\@#@$$) x) #

(SEq a, SingI d) => SingI ((\\@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$$) d) #

SuppressUnusedWarnings ((\\@#@$$) a6989586621679544792 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679544792 :: TyFun [a] [a] -> Type) (a6989586621679544793 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679544792 :: TyFun [a] [a] -> Type) (a6989586621679544793 :: [a]) = a6989586621679544792 \\ a6989586621679544793

type family (a6989586621679544792 :: [a]) \\@#@$$$ (a6989586621679544793 :: [a]) :: [a] where ... infix 5 Source #

Equations

(a6989586621679544792 :: [a]) \\@#@$$$ (a6989586621679544793 :: [a]) = a6989586621679544792 \\ a6989586621679544793 

data UnionSym0 (a1 :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544203 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544203 :: [a]) = UnionSym1 a6989586621679544203

data UnionSym1 (a6989586621679544203 :: [a]) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (UnionSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (UnionSym1 x) #

(SEq a, SingI d) => SingI (UnionSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym1 d) #

SuppressUnusedWarnings (UnionSym1 a6989586621679544203 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679544203 :: TyFun [a] [a] -> Type) (a6989586621679544204 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679544203 :: TyFun [a] [a] -> Type) (a6989586621679544204 :: [a]) = Union a6989586621679544203 a6989586621679544204

type family UnionSym2 (a6989586621679544203 :: [a]) (a6989586621679544204 :: [a]) :: [a] where ... Source #

Equations

UnionSym2 (a6989586621679544203 :: [a]) (a6989586621679544204 :: [a]) = Union a6989586621679544203 a6989586621679544204 

data IntersectSym0 (a1 :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SEq a => SingI (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544612 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544612 :: [a]) = IntersectSym1 a6989586621679544612

data IntersectSym1 (a6989586621679544612 :: [a]) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SEq a => SingI1 (IntersectSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntersectSym1 x) #

(SEq a, SingI d) => SingI (IntersectSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym1 d) #

SuppressUnusedWarnings (IntersectSym1 a6989586621679544612 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679544612 :: TyFun [a] [a] -> Type) (a6989586621679544613 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679544612 :: TyFun [a] [a] -> Type) (a6989586621679544613 :: [a]) = Intersect a6989586621679544612 a6989586621679544613

type family IntersectSym2 (a6989586621679544612 :: [a]) (a6989586621679544613 :: [a]) :: [a] where ... Source #

Equations

IntersectSym2 (a6989586621679544612 :: [a]) (a6989586621679544613 :: [a]) = Intersect a6989586621679544612 a6989586621679544613 

data InsertSym0 (a1 :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SOrd a => SingI (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544400 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544400 :: a) = InsertSym1 a6989586621679544400

data InsertSym1 (a6989586621679544400 :: a) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SOrd a => SingI1 (InsertSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (InsertSym1 x) #

(SOrd a, SingI d) => SingI (InsertSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym1 d) #

SuppressUnusedWarnings (InsertSym1 a6989586621679544400 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679544400 :: TyFun [a] [a] -> Type) (a6989586621679544401 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679544400 :: TyFun [a] [a] -> Type) (a6989586621679544401 :: [a]) = Insert a6989586621679544400 a6989586621679544401

type family InsertSym2 (a6989586621679544400 :: a) (a6989586621679544401 :: [a]) :: [a] where ... Source #

Equations

InsertSym2 (a6989586621679544400 :: a) (a6989586621679544401 :: [a]) = Insert a6989586621679544400 a6989586621679544401 

data SortSym0 (a1 :: TyFun [a] [a]) Source #

Instances

Instances details
SOrd a => SingI (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortSym0 :: TyFun [a] [a] -> Type) #

SuppressUnusedWarnings (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679544395 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679544395 :: [a]) = Sort a6989586621679544395

type family SortSym1 (a6989586621679544395 :: [a]) :: [a] where ... Source #

Equations

SortSym1 (a6989586621679544395 :: [a]) = Sort a6989586621679544395 

data NubBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679544231 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679544231 :: a ~> (a ~> Bool)) = NubBySym1 a6989586621679544231

data NubBySym1 (a6989586621679544231 :: a ~> (a ~> Bool)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (NubBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym1 d) #

SuppressUnusedWarnings (NubBySym1 a6989586621679544231 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (NubBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (NubBySym1 x) #

type Apply (NubBySym1 a6989586621679544231 :: TyFun [a] [a] -> Type) (a6989586621679544232 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym1 a6989586621679544231 :: TyFun [a] [a] -> Type) (a6989586621679544232 :: [a]) = NubBy a6989586621679544231 a6989586621679544232

type family NubBySym2 (a6989586621679544231 :: a ~> (a ~> Bool)) (a6989586621679544232 :: [a]) :: [a] where ... Source #

Equations

NubBySym2 (a6989586621679544231 :: a ~> (a ~> Bool)) (a6989586621679544232 :: [a]) = NubBy a6989586621679544231 a6989586621679544232 

data DeleteBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679544773 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679544773 :: a ~> (a ~> Bool)) = DeleteBySym1 a6989586621679544773

data DeleteBySym1 (a6989586621679544773 :: a ~> (a ~> Bool)) (b :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (DeleteBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym1 d) #

SuppressUnusedWarnings (DeleteBySym1 a6989586621679544773 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteBySym1 :: (a ~> (a ~> Bool)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (DeleteBySym1 x) #

type Apply (DeleteBySym1 a6989586621679544773 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544774 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym1 a6989586621679544773 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544774 :: a) = DeleteBySym2 a6989586621679544773 a6989586621679544774

data DeleteBySym2 (a6989586621679544773 :: a ~> (a ~> Bool)) (a6989586621679544774 :: a) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (DeleteBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (DeleteBySym2 d x) #

SingI2 (DeleteBySym2 :: (a ~> (a ~> Bool)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: a). Sing x -> Sing y -> Sing (DeleteBySym2 x y) #

(SingI d1, SingI d2) => SingI (DeleteBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym2 d1 d2) #

SuppressUnusedWarnings (DeleteBySym2 a6989586621679544773 a6989586621679544774 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679544773 a6989586621679544774 :: TyFun [a] [a] -> Type) (a6989586621679544775 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679544773 a6989586621679544774 :: TyFun [a] [a] -> Type) (a6989586621679544775 :: [a]) = DeleteBy a6989586621679544773 a6989586621679544774 a6989586621679544775

type family DeleteBySym3 (a6989586621679544773 :: a ~> (a ~> Bool)) (a6989586621679544774 :: a) (a6989586621679544775 :: [a]) :: [a] where ... Source #

Equations

DeleteBySym3 (a6989586621679544773 :: a ~> (a ~> Bool)) (a6989586621679544774 :: a) (a6989586621679544775 :: [a]) = DeleteBy a6989586621679544773 a6989586621679544774 a6989586621679544775 

data DeleteFirstsBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544763 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544763 :: a ~> (a ~> Bool)) = DeleteFirstsBySym1 a6989586621679544763

data DeleteFirstsBySym1 (a6989586621679544763 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (DeleteFirstsBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym1 a6989586621679544763 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteFirstsBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (DeleteFirstsBySym1 x) #

type Apply (DeleteFirstsBySym1 a6989586621679544763 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544764 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym1 a6989586621679544763 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544764 :: [a]) = DeleteFirstsBySym2 a6989586621679544763 a6989586621679544764

data DeleteFirstsBySym2 (a6989586621679544763 :: a ~> (a ~> Bool)) (a6989586621679544764 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (DeleteFirstsBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (DeleteFirstsBySym2 d x) #

SingI2 (DeleteFirstsBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (DeleteFirstsBySym2 x y) #

(SingI d1, SingI d2) => SingI (DeleteFirstsBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym2 d1 d2) #

SuppressUnusedWarnings (DeleteFirstsBySym2 a6989586621679544763 a6989586621679544764 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679544763 a6989586621679544764 :: TyFun [a] [a] -> Type) (a6989586621679544765 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679544763 a6989586621679544764 :: TyFun [a] [a] -> Type) (a6989586621679544765 :: [a]) = DeleteFirstsBy a6989586621679544763 a6989586621679544764 a6989586621679544765

type family DeleteFirstsBySym3 (a6989586621679544763 :: a ~> (a ~> Bool)) (a6989586621679544764 :: [a]) (a6989586621679544765 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBySym3 (a6989586621679544763 :: a ~> (a ~> Bool)) (a6989586621679544764 :: [a]) (a6989586621679544765 :: [a]) = DeleteFirstsBy a6989586621679544763 a6989586621679544764 a6989586621679544765 

data UnionBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544211 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544211 :: a ~> (a ~> Bool)) = UnionBySym1 a6989586621679544211

data UnionBySym1 (a6989586621679544211 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (UnionBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym1 d) #

SuppressUnusedWarnings (UnionBySym1 a6989586621679544211 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (UnionBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (UnionBySym1 x) #

type Apply (UnionBySym1 a6989586621679544211 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544212 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym1 a6989586621679544211 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544212 :: [a]) = UnionBySym2 a6989586621679544211 a6989586621679544212

data UnionBySym2 (a6989586621679544211 :: a ~> (a ~> Bool)) (a6989586621679544212 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (UnionBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (UnionBySym2 d x) #

SingI2 (UnionBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (UnionBySym2 x y) #

(SingI d1, SingI d2) => SingI (UnionBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym2 d1 d2) #

SuppressUnusedWarnings (UnionBySym2 a6989586621679544211 a6989586621679544212 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679544211 a6989586621679544212 :: TyFun [a] [a] -> Type) (a6989586621679544213 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679544211 a6989586621679544212 :: TyFun [a] [a] -> Type) (a6989586621679544213 :: [a]) = UnionBy a6989586621679544211 a6989586621679544212 a6989586621679544213

type family UnionBySym3 (a6989586621679544211 :: a ~> (a ~> Bool)) (a6989586621679544212 :: [a]) (a6989586621679544213 :: [a]) :: [a] where ... Source #

Equations

UnionBySym3 (a6989586621679544211 :: a ~> (a ~> Bool)) (a6989586621679544212 :: [a]) (a6989586621679544213 :: [a]) = UnionBy a6989586621679544211 a6989586621679544212 a6989586621679544213 

data IntersectBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544588 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679544588 :: a ~> (a ~> Bool)) = IntersectBySym1 a6989586621679544588

data IntersectBySym1 (a6989586621679544588 :: a ~> (a ~> Bool)) (b :: TyFun [a] ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (IntersectBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym1 d) #

SuppressUnusedWarnings (IntersectBySym1 a6989586621679544588 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (IntersectBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (IntersectBySym1 x) #

type Apply (IntersectBySym1 a6989586621679544588 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544589 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym1 a6989586621679544588 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679544589 :: [a]) = IntersectBySym2 a6989586621679544588 a6989586621679544589

data IntersectBySym2 (a6989586621679544588 :: a ~> (a ~> Bool)) (a6989586621679544589 :: [a]) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (IntersectBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: [a]). Sing x -> Sing (IntersectBySym2 d x) #

SingI2 (IntersectBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Bool)) (y :: [a]). Sing x -> Sing y -> Sing (IntersectBySym2 x y) #

(SingI d1, SingI d2) => SingI (IntersectBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym2 d1 d2) #

SuppressUnusedWarnings (IntersectBySym2 a6989586621679544588 a6989586621679544589 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679544588 a6989586621679544589 :: TyFun [a] [a] -> Type) (a6989586621679544590 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679544588 a6989586621679544589 :: TyFun [a] [a] -> Type) (a6989586621679544590 :: [a]) = IntersectBy a6989586621679544588 a6989586621679544589 a6989586621679544590

type family IntersectBySym3 (a6989586621679544588 :: a ~> (a ~> Bool)) (a6989586621679544589 :: [a]) (a6989586621679544590 :: [a]) :: [a] where ... Source #

Equations

IntersectBySym3 (a6989586621679544588 :: a ~> (a ~> Bool)) (a6989586621679544589 :: [a]) (a6989586621679544590 :: [a]) = IntersectBy a6989586621679544588 a6989586621679544589 a6989586621679544590 

data GroupBySym0 (a1 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]])) Source #

Instances

Instances details
SingI (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) #

SuppressUnusedWarnings (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679544364 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679544364 :: a ~> (a ~> Bool)) = GroupBySym1 a6989586621679544364

data GroupBySym1 (a6989586621679544364 :: a ~> (a ~> Bool)) (b :: TyFun [a] [[a]]) Source #

Instances

Instances details
SingI d => SingI (GroupBySym1 d :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym1 d) #

SuppressUnusedWarnings (GroupBySym1 a6989586621679544364 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (GroupBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Bool)). Sing x -> Sing (GroupBySym1 x) #

type Apply (GroupBySym1 a6989586621679544364 :: TyFun [a] [[a]] -> Type) (a6989586621679544365 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym1 a6989586621679544364 :: TyFun [a] [[a]] -> Type) (a6989586621679544365 :: [a]) = GroupBy a6989586621679544364 a6989586621679544365

type family GroupBySym2 (a6989586621679544364 :: a ~> (a ~> Bool)) (a6989586621679544365 :: [a]) :: [[a]] where ... Source #

Equations

GroupBySym2 (a6989586621679544364 :: a ~> (a ~> Bool)) (a6989586621679544365 :: [a]) = GroupBy a6989586621679544364 a6989586621679544365 

data SortBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a])) Source #

Instances

Instances details
SingI (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) #

SuppressUnusedWarnings (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679544751 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679544751 :: a ~> (a ~> Ordering)) = SortBySym1 a6989586621679544751

data SortBySym1 (a6989586621679544751 :: a ~> (a ~> Ordering)) (b :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI (SortBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym1 d) #

SuppressUnusedWarnings (SortBySym1 a6989586621679544751 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SortBySym1 :: (a ~> (a ~> Ordering)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (SortBySym1 x) #

type Apply (SortBySym1 a6989586621679544751 :: TyFun [a] [a] -> Type) (a6989586621679544752 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym1 a6989586621679544751 :: TyFun [a] [a] -> Type) (a6989586621679544752 :: [a]) = SortBy a6989586621679544751 a6989586621679544752

type family SortBySym2 (a6989586621679544751 :: a ~> (a ~> Ordering)) (a6989586621679544752 :: [a]) :: [a] where ... Source #

Equations

SortBySym2 (a6989586621679544751 :: a ~> (a ~> Ordering)) (a6989586621679544752 :: [a]) = SortBy a6989586621679544751 a6989586621679544752 

data InsertBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a]))) Source #

Instances

Instances details
SingI (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) #

SuppressUnusedWarnings (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679544731 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679544731 :: a ~> (a ~> Ordering)) = InsertBySym1 a6989586621679544731

data InsertBySym1 (a6989586621679544731 :: a ~> (a ~> Ordering)) (b :: TyFun a ([a] ~> [a])) Source #

Instances

Instances details
SingI d => SingI (InsertBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym1 d) #

SuppressUnusedWarnings (InsertBySym1 a6989586621679544731 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (InsertBySym1 :: (a ~> (a ~> Ordering)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (InsertBySym1 x) #

type Apply (InsertBySym1 a6989586621679544731 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544732 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym1 a6989586621679544731 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679544732 :: a) = InsertBySym2 a6989586621679544731 a6989586621679544732

data InsertBySym2 (a6989586621679544731 :: a ~> (a ~> Ordering)) (a6989586621679544732 :: a) (c :: TyFun [a] [a]) Source #

Instances

Instances details
SingI d => SingI1 (InsertBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: a). Sing x -> Sing (InsertBySym2 d x) #

SingI2 (InsertBySym2 :: (a ~> (a ~> Ordering)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: a ~> (a ~> Ordering)) (y :: a). Sing x -> Sing y -> Sing (InsertBySym2 x y) #

(SingI d1, SingI d2) => SingI (InsertBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym2 d1 d2) #

SuppressUnusedWarnings (InsertBySym2 a6989586621679544731 a6989586621679544732 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679544731 a6989586621679544732 :: TyFun [a] [a] -> Type) (a6989586621679544733 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679544731 a6989586621679544732 :: TyFun [a] [a] -> Type) (a6989586621679544733 :: [a]) = InsertBy a6989586621679544731 a6989586621679544732 a6989586621679544733

type family InsertBySym3 (a6989586621679544731 :: a ~> (a ~> Ordering)) (a6989586621679544732 :: a) (a6989586621679544733 :: [a]) :: [a] where ... Source #

Equations

InsertBySym3 (a6989586621679544731 :: a ~> (a ~> Ordering)) (a6989586621679544732 :: a) (a6989586621679544733 :: [a]) = InsertBy a6989586621679544731 a6989586621679544732 a6989586621679544733 

data MaximumBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621679922335 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621679922335 :: a ~> (a ~> Ordering)) = MaximumBySym1 a6989586621679922335 :: TyFun (t a) a -> Type

data MaximumBySym1 (a6989586621679922335 :: a ~> (a ~> Ordering)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (MaximumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (MaximumBySym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MaximumBySym1 a6989586621679922335 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621679922335 :: TyFun (t a) a -> Type) (a6989586621679922336 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621679922335 :: TyFun (t a) a -> Type) (a6989586621679922336 :: t a) = MaximumBy a6989586621679922335 a6989586621679922336

type family MaximumBySym2 (a6989586621679922335 :: a ~> (a ~> Ordering)) (a6989586621679922336 :: t a) :: a where ... Source #

Equations

MaximumBySym2 (a6989586621679922335 :: a ~> (a ~> Ordering)) (a6989586621679922336 :: t a) = MaximumBy a6989586621679922335 a6989586621679922336 

data MinimumBySym0 (a1 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a)) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) #

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621679922315 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621679922315 :: a ~> (a ~> Ordering)) = MinimumBySym1 a6989586621679922315 :: TyFun (t a) a -> Type

data MinimumBySym1 (a6989586621679922315 :: a ~> (a ~> Ordering)) (b :: TyFun (t a) a) Source #

Instances

Instances details
SFoldable t => SingI1 (MinimumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: a ~> (a ~> Ordering)). Sing x -> Sing (MinimumBySym1 x :: TyFun (t a) a -> Type) #

(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym1 d :: TyFun (t a) a -> Type) #

SuppressUnusedWarnings (MinimumBySym1 a6989586621679922315 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621679922315 :: TyFun (t a) a -> Type) (a6989586621679922316 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621679922315 :: TyFun (t a) a -> Type) (a6989586621679922316 :: t a) = MinimumBy a6989586621679922315 a6989586621679922316

type family MinimumBySym2 (a6989586621679922315 :: a ~> (a ~> Ordering)) (a6989586621679922316 :: t a) :: a where ... Source #

Equations

MinimumBySym2 (a6989586621679922315 :: a ~> (a ~> Ordering)) (a6989586621679922316 :: t a) = MinimumBy a6989586621679922315 a6989586621679922316 

data GenericLengthSym0 (a1 :: TyFun [a] i) Source #

Instances

Instances details
SNum i => SingI (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GenericLengthSym0 :: TyFun [a] i -> Type) #

SuppressUnusedWarnings (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] i -> Type) (a6989586621679544194 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] i -> Type) (a6989586621679544194 :: [a]) = GenericLength a6989586621679544194 :: i

type family GenericLengthSym1 (a6989586621679544194 :: [a]) :: i where ... Source #

Equations

GenericLengthSym1 (a6989586621679544194 :: [a]) = GenericLength a6989586621679544194 :: i