singletons-base
Copyright(C) 2017 Ryan Scott
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellNone
LanguageGHC2021

Data.Void.Singletons

Description

Defines functions and datatypes relating to the singleton for Void, including singled versions of all the definitions in Data.Void.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.Void. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

The Void singleton

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal.Wrappers

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing # 
Instance details

Defined in Data.Singletons

type Sing # 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing # 
Instance details

Defined in Data.Singletons.Sigma

type Sing = SSigma :: Sigma s t -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SVoid (a :: Void) Source #

Instances

Instances details
TestCoercion SVoid Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a :: Void) (b :: Void). SVoid a -> SVoid b -> Maybe (Coercion a b) #

TestEquality SVoid Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a :: Void) (b :: Void). SVoid a -> SVoid b -> Maybe (a :~: b) #

Show (SVoid z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SVoid z -> ShowS #

show :: SVoid z -> String #

showList :: [SVoid z] -> ShowS #

Eq (SVoid z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

(==) :: SVoid z -> SVoid z -> Bool #

(/=) :: SVoid z -> SVoid z -> Bool #

Just as Void has no constructors, SVoid also has no constructors.

Singletons from Data.Void

type family Absurd (a1 :: Void) :: a where ... Source #

Equations

Absurd a2 = Apply (LamCases_6989586621679152717Sym0 a2 :: TyFun Void a1 -> Type) a2 

sAbsurd :: forall a (t :: Void). Sing t -> Sing (Absurd t :: a) Source #

Defunctionalization symbols

data AbsurdSym0 (a1 :: TyFun Void a) Source #

Instances

Instances details
SingI (AbsurdSym0 :: TyFun Void a -> Type) Source # 
Instance details

Defined in Data.Void.Singletons

Methods

sing :: Sing (AbsurdSym0 :: TyFun Void a -> Type) #

SuppressUnusedWarnings (AbsurdSym0 :: TyFun Void a -> Type) Source # 
Instance details

Defined in Data.Void.Singletons

type Apply (AbsurdSym0 :: TyFun Void a -> Type) (a6989586621679152715 :: Void) Source # 
Instance details

Defined in Data.Void.Singletons

type Apply (AbsurdSym0 :: TyFun Void a -> Type) (a6989586621679152715 :: Void) = Absurd a6989586621679152715 :: a

type family AbsurdSym1 (a6989586621679152715 :: Void) :: a where ... Source #

Equations

AbsurdSym1 a6989586621679152715 = Absurd a6989586621679152715 :: a