Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Documentation
newtype Straight (v :: * -> * -> *) a e Source #
Straight (v a e) |
Instances
Covariant m m t => Covariant m (Straight m) t Source # | |
Defined in Pandora.Pattern.Morphism.Straight | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) Maybe Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) Identity Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) Maybe Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) (Comprehension t) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) ((:+:) e) Source # | |
Semigroup e => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Validation e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Instruction t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Construction t) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (State s) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Environment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Tagged tag) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Schematic Monad t u) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t :> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Backwards t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Reverse t) Source # | |
Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (Schematic Comonad t u) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t :< u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:+:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) t', Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) ((t <:<.>:> t') := u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) t, Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) u) => Monoidal (-->) ((->) :: Type -> Type -> Type) (:*:) (:*:) (t <:.> u) Source # | |
Semigroupoid m => Semigroupoid (Straight m) Source # | |
Category m => Category (Straight m) Source # | |
Covariant m m t => Covariant (Straight m) m t Source # | |
Defined in Pandora.Pattern.Morphism.Straight | |
Semimonoidal (-->) (:*:) (:+:) Maybe Source # | |
Semimonoidal (-->) (:*:) (:*:) Identity Source # | |
Semimonoidal (-->) (:*:) (:*:) Maybe Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) right t, Semimonoidal (-->) (:*:) right (t <:.> Construction t)) => Semimonoidal (-->) (:*:) (right :: Type -> Type -> Type) (Comprehension t :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Comprehension mult :: forall (a :: k) (b :: k). (Comprehension t a :*: Comprehension t b) --> Comprehension t (right a b) Source # | |
Semimonoidal (-->) (:*:) (:+:) ((:+:) e :: Type -> Type) Source # | |
Semigroup e => Semimonoidal (-->) (:*:) (:+:) (Validation e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation mult :: forall (a :: k) (b :: k). (Validation e a :*: Validation e b) --> Validation e (a :+: b) Source # | |
Semigroup e => Semimonoidal (-->) (:*:) (:+:) (Conclusion e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion mult :: forall (a :: k) (b :: k). (Conclusion e a :*: Conclusion e b) --> Conclusion e (a :+: b) Source # | |
Semimonoidal (-->) (:*:) (:*:) ((:+:) e :: Type -> Type) Source # | |
Semigroup e => Semimonoidal (-->) (:*:) (:*:) (Validation e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation mult :: forall (a :: k) (b :: k). (Validation e a :*: Validation e b) --> Validation e (a :*: b) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t) => Semimonoidal (-->) (:*:) (:*:) (Instruction t :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Instruction mult :: forall (a :: k) (b :: k). (Instruction t a :*: Instruction t b) --> Instruction t (a :*: b) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t) => Semimonoidal (-->) (:*:) (:*:) (Construction t :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction mult :: forall (a :: k) (b :: k). (Construction t a :*: Construction t b) --> Construction t (a :*: b) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Conclusion e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion mult :: forall (a :: k) (b :: k). (Conclusion e a :*: Conclusion e b) --> Conclusion e (a :*: b) Source # | |
Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) (Tap t :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) (Tap ((t <:.:> t) := (:*:)) :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) (State s :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Environment e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Inventory.Environment mult :: forall (a :: k) (b :: k). (Environment e a :*: Environment e b) --> Environment e (a :*: b) Source # | |
Semigroup e => Semimonoidal (-->) (:*:) (:*:) (Accumulator e :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Inventory.Accumulator mult :: forall (a :: k) (b :: k). (Accumulator e a :*: Accumulator e b) --> Accumulator e (a :*: b) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Tagged tag :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Schematic Monad t u) => Semimonoidal (-->) (:*:) (:*:) (t :> u :: Type -> Type) Source # | |
(Semimonoidal (-->) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (-->) (:*:) (:*:) (Backwards t :: Type -> Type) Source # | |
(Semimonoidal (-->) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (-->) (:*:) (:*:) (Reverse t :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) (Schematic Comonad t u) => Semimonoidal (-->) (:*:) (:*:) (t :< u :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) ((->) e :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:+:) t) => Semimonoidal (-->) (:*:) (:+:) (t <:.> u :: Type -> Type) Source # | |
Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) ((t <:.:> t) := (:*:) :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u, Semimonoidal (-->) (:*:) (:*:) t') => Semimonoidal (-->) (:*:) (:*:) ((t <:<.>:> t') := u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
Covariant m m t => Covariant (Straight m) (Straight m) t Source # | |
Appliable (Straight m :: Type -> Type -> Type) (c :: Type) (b :: Type) (m :: Type -> Type -> Type) (c :: Type) (b :: Type) Source # | |
Defined in Pandora.Pattern.Morphism.Straight | |
Interpreted ((->) :: Type -> Type -> Type) (Straight v e) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Interpreted run :: Straight v e a -> Primary (Straight v e) a Source # unite :: Primary (Straight v e) a -> Straight v e a Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> Straight v e a -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Straight v e a -> u b) -> Primary (Straight v e) a -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> (j := Straight v e a) -> (j := u b) Source # (<$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. k) := Straight v e a) -> ((j :. k) := u b) Source # (<$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. (k :. l)) := Straight v e a) -> ((j :. (k :. l)) := u b) Source # (<$$$$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Primary (Straight v e) a -> Primary u b) -> ((j :. (k :. (l :. n))) := Straight v e a) -> ((j :. (k :. (l :. n))) := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Straight v e a -> u b) -> (j := Primary (Straight v e) a) -> (j := Primary u b) Source # (=||$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. k) := Primary (Straight v e) a) -> ((j :. k) := Primary u b) Source # (=||$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. (k :. l)) := Primary (Straight v e) a) -> ((j :. (k :. l)) := Primary u b) Source # (=||$$$$>) :: (Covariant (->) (->) j, Covariant (->) (->) k, Covariant (->) (->) l, Covariant (->) (->) n, Interpreted (->) u) => (Straight v e a -> u b) -> ((j :. (k :. (l :. n))) := Primary (Straight v e) a) -> ((j :. (k :. (l :. n))) := Primary u b) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((-->) b) Source # | |
type Primary (Straight v e) a Source # | |