Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Pattern.Functor.Covariant
Synopsis
- class (Semigroupoid source, Semigroupoid target) => Covariant source target t where
- (<-|-) :: source a b -> target (t a) (t b)
- (<-|-|-) :: (Covariant source (Betwixt source target) u, Covariant (Betwixt source target) target t) => source a b -> target (t (u a)) (t (u b))
- (<-|-|-|-) :: (Covariant source (Betwixt source (Betwixt source target)) v, Covariant (Betwixt source (Betwixt source target)) (Betwixt (Betwixt source target) target) u, Covariant (Betwixt (Betwixt source target) target) target t) => source a b -> target (t (u (v a))) (t (u (v b)))
- (<$>) :: Covariant source target t => source a b -> target (t a) (t b)
- (<$$>) :: (Covariant source target t, Covariant source (Betwixt source target) u, Covariant (Betwixt source target) target t) => source a b -> target (t (u a)) (t (u b))
- (<$$$>) :: (Covariant source target t, Covariant source (Betwixt source (Betwixt source target)) v, Covariant (Betwixt source (Betwixt source target)) (Betwixt (Betwixt source target) target) u, Covariant (Betwixt (Betwixt source target) target) target t) => source a b -> target (t (u (v a))) (t (u (v b)))
Documentation
class (Semigroupoid source, Semigroupoid target) => Covariant source target t where Source #
When providing a new instance, you should ensure it satisfies: * Identity morphism: (identity <-|-) ≡ identity * Interpreted of morphisms: (f . g <-|-) ≡ (f <-|-) . (g <-|-)
Minimal complete definition
Methods
(<-|-) :: source a b -> target (t a) (t b) infixl 4 Source #
(<-|-|-) :: (Covariant source (Betwixt source target) u, Covariant (Betwixt source target) target t) => source a b -> target (t (u a)) (t (u b)) infixl 3 Source #
(<-|-|-|-) :: (Covariant source (Betwixt source (Betwixt source target)) v, Covariant (Betwixt source (Betwixt source target)) (Betwixt (Betwixt source target) target) u, Covariant (Betwixt (Betwixt source target) target) target t) => source a b -> target (t (u (v a))) (t (u (v b))) infixl 2 Source #
Instances
Stack List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
Zippable List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List Associated Types type Breadcrumbs List :: Type -> Type Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:+:) u, Monoidal (-->) (-->) (:*:) (:+:) t) => Monoidal (-->) (-->) (:*:) (:+:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (-->) (:*:) (:+:) t, Monoidal (-->) (-->) (:*:) (:+:) t) => Monoidal (-->) (-->) (:*:) (:+:) (t <::> t') Source # | |
(Bindable ((->) :: Type -> Type -> Type) u, Monoidal (-->) (-->) (:*:) (:*:) u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t) => Monoidal (-->) (-->) (:*:) (:*:) ((t <:<.>:> t') := u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) (-->) (:*:) (:*:) t, Monoidal (-->) (-->) (:*:) (:*:) u) => Monoidal (-->) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) (-->) (:*:) (:*:) t, Monoidal (-->) (-->) (:*:) (:*:) u) => Monoidal (-->) (-->) (:*:) (:*:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (-->) (:*:) (:*:) t', Monoidal (-->) (-->) (:*:) (:*:) t, Monoidal (-->) (-->) (:*:) (:*:) t') => Monoidal (-->) (-->) (:*:) (:*:) (t <::> t') Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) ((Identity <:.:> t) := (:*:)) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t', Monoidal (<--) (-->) (:*:) (:*:) u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t t') => Monoidal (<--) (-->) (:*:) (:*:) ((t <:<.>:> t') := u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) t') => Monoidal (<--) (-->) (:*:) (:*:) (t <::> t') Source # | |
(Covariant m m t, Interpreted m (Turnover t)) => Covariant m m (Turnover t) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Turnover Methods (<-|-) :: m a b -> m (Turnover t a) (Turnover t b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u, Covariant (Betwixt m m) m (Turnover t)) => m a b -> m (Turnover t (u a)) (Turnover t (u b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u, Covariant (Betwixt (Betwixt m m) m) m (Turnover t)) => m a b -> m (Turnover t (u (v a))) (Turnover t (u (v b))) Source # | |
(Semigroupoid m, Covariant m m u, Covariant m m t, Covariant m (Betwixt m m) t, Covariant (Betwixt m m) m u, Interpreted m (t <.:> u)) => Covariant m m (t <.:> u) Source # | |
Defined in Pandora.Paradigm.Schemes.UT Methods (<-|-) :: m a b -> m ((t <.:> u) a) ((t <.:> u) b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 a)) ((t <.:> u) (u0 b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u0, Covariant (Betwixt (Betwixt m m) m) m (t <.:> u)) => m a b -> m ((t <.:> u) (u0 (v a))) ((t <.:> u) (u0 (v b))) Source # | |
(Semigroupoid m, Covariant m m t, Covariant (Betwixt (Betwixt m m) m) m t, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u, Covariant m (Betwixt m (Betwixt m m)) t', Interpreted m ((t <:<.>:> t') := u)) => Covariant m m ((t <:<.>:> t') := u) Source # | |
Defined in Pandora.Paradigm.Schemes.TUT Methods (<-|-) :: m a b -> m (((t <:<.>:> t') := u) a) (((t <:<.>:> t') := u) b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m ((t <:<.>:> t') := u)) => m a b -> m (((t <:<.>:> t') := u) (u0 a)) (((t <:<.>:> t') := u) (u0 b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u0, Covariant (Betwixt (Betwixt m m) m) m ((t <:<.>:> t') := u)) => m a b -> m (((t <:<.>:> t') := u) (u0 (v a))) (((t <:<.>:> t') := u) (u0 (v b))) Source # | |
(Semigroupoid m, Covariant m m t, Covariant (Betwixt m m) m t, Covariant m (Betwixt m m) u, Interpreted m (t <:.> u)) => Covariant m m (t <:.> u) Source # | |
Defined in Pandora.Paradigm.Schemes.TU Methods (<-|-) :: m a b -> m ((t <:.> u) a) ((t <:.> u) b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u0, Covariant (Betwixt m m) m (t <:.> u)) => m a b -> m ((t <:.> u) (u0 a)) ((t <:.> u) (u0 b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u0, Covariant (Betwixt (Betwixt m m) m) m (t <:.> u)) => m a b -> m ((t <:.> u) (u0 (v a))) ((t <:.> u) (u0 (v b))) Source # | |
(Semigroupoid m, Covariant m m t, Covariant (Betwixt m m) m t, Covariant m (Betwixt m m) t', Interpreted m (t <::> t')) => Covariant m m (t <::> t') Source # | |
Defined in Pandora.Paradigm.Schemes.TT Methods (<-|-) :: m a b -> m ((t <::> t') a) ((t <::> t') b) Source # (<-|-|-) :: (Covariant m (Betwixt m m) u, Covariant (Betwixt m m) m (t <::> t')) => m a b -> m ((t <::> t') (u a)) ((t <::> t') (u b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m m)) v, Covariant (Betwixt m (Betwixt m m)) (Betwixt (Betwixt m m) m) u, Covariant (Betwixt (Betwixt m m) m) m (t <::> t')) => m a b -> m ((t <::> t') (u (v a))) ((t <::> t') (u (v b))) Source # | |
Covariant m m t => Covariant m (Straight m) t Source # | |
Defined in Pandora.Pattern.Morphism.Straight Methods (<-|-) :: m a b -> Straight m (t a) (t b) Source # (<-|-|-) :: (Covariant m (Betwixt m (Straight m)) u, Covariant (Betwixt m (Straight m)) (Straight m) t) => m a b -> Straight m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant m (Betwixt m (Betwixt m (Straight m))) v, Covariant (Betwixt m (Betwixt m (Straight m))) (Betwixt (Betwixt m (Straight m)) (Straight m)) u, Covariant (Betwixt (Betwixt m (Straight m)) (Straight m)) (Straight m) t) => m a b -> Straight m (t (u (v a))) (t (u (v b))) Source # | |
Monotonic a ((t :. Construction t) := a) => Monotonic a ((t <::> Construction t) := a) Source # | |
Semigroup (List a) Source # | |
Monoid (List a) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
Setoid a => Setoid (List a) Source # | |
Nullable Binary Source # | |
Nullable List Source # | |
Nullable Rose Source # | |
Covariant m m t => Covariant (Straight m) m t Source # | |
Defined in Pandora.Pattern.Morphism.Straight Methods (<-|-) :: Straight m a b -> m (t a) (t b) Source # (<-|-|-) :: (Covariant (Straight m) (Betwixt (Straight m) m) u, Covariant (Betwixt (Straight m) m) m t) => Straight m a b -> m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant (Straight m) (Betwixt (Straight m) (Betwixt (Straight m) m)) v, Covariant (Betwixt (Straight m) (Betwixt (Straight m) m)) (Betwixt (Betwixt (Straight m) m) m) u, Covariant (Betwixt (Betwixt (Straight m) m) m) m t) => Straight m a b -> m (t (u (v a))) (t (u (v b))) Source # | |
Semimonoidal (-->) (:*:) (:*:) t => Semimonoidal (-->) (:*:) (:*:) (Tap ((t <:.:> t) := (:*:)) :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:+:) u) => Semimonoidal (-->) (:*:) (:+:) ((((->) s :: Type -> Type) <:<.>:> (:*:) s) := u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) u, Semimonoidal (-->) (:*:) (:+:) t) => Semimonoidal (-->) (:*:) (:+:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:+:) u) => Semimonoidal (-->) (:*:) (:+:) (t <:.> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (-->) (:*:) (:+:) t) => Semimonoidal (-->) (:*:) (:+:) (t <::> t' :: Type -> Type) Source # | |
(Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) ((t <:.:> u) := (:*:) :: Type -> Type) Source # | |
(Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t, Bindable ((->) :: Type -> Type -> Type) u) => Semimonoidal (-->) (:*:) (:*:) ((t <:<.>:> t') := u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) u) => Semimonoidal (-->) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t, Semimonoidal (-->) (:*:) (:*:) t') => Semimonoidal (-->) (:*:) (:*:) (t <::> t' :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) ((t <:.:> u) := (:*:) :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) ((Identity <:.:> t) := (:*:) :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) ((t <:<.>:> t') := u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) (t <::> t' :: Type -> Type) Source # | |
(Monoidal (-->) (-->) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Catchable e (Conclusion e <.:> u :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods catch :: forall (a :: k). (Conclusion e <.:> u) a -> (e -> (Conclusion e <.:> u) a) -> (Conclusion e <.:> u) a Source # | |
Covariant m m t => Covariant (Straight m) (Straight m) t Source # | |
Defined in Pandora.Pattern.Morphism.Straight Methods (<-|-) :: Straight m a b -> Straight m (t a) (t b) Source # (<-|-|-) :: (Covariant (Straight m) (Betwixt (Straight m) (Straight m)) u, Covariant (Betwixt (Straight m) (Straight m)) (Straight m) t) => Straight m a b -> Straight m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant (Straight m) (Betwixt (Straight m) (Betwixt (Straight m) (Straight m))) v, Covariant (Betwixt (Straight m) (Betwixt (Straight m) (Straight m))) (Betwixt (Betwixt (Straight m) (Straight m)) (Straight m)) u, Covariant (Betwixt (Betwixt (Straight m) (Straight m)) (Straight m)) (Straight m) t) => Straight m a b -> Straight m (t (u (v a))) (t (u (v b))) Source # | |
(Category m, Covariant m m t) => Covariant (Flip m) (Flip m) t Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods (<-|-) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) v, Covariant (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) u, Covariant (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u (v a))) (t (u (v b))) Source # | |
Morphable ('Into (Tape List)) List Source # | |
Morphable ('Delete ('All :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Morphable ('Delete ('First :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Morphable ('Find ('Element :: a -> Morph a) :: Morph (a -> Morph a)) List Source # | |
Morphable ('Into (o ds)) (Construction Wye) => Morphable ('Into (o ds) :: Morph a) Binary Source # | |
Morphable ('Rotate ('Right ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
Morphable ('Rotate ('Left ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
Morphable ('Rotate ('Right ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
Morphable ('Rotate ('Left ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
Morphable ('Rotate ('Right ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
Morphable ('Rotate ('Left ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
Morphable ('Into (Construction Maybe)) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List Associated Types type Morphing ('Into (Construction Maybe)) (Tape (Construction Maybe)) :: Type -> Type Source # Methods morphing :: (Tagged ('Into (Construction Maybe)) <::> Tape (Construction Maybe)) ~> Morphing ('Into (Construction Maybe)) (Tape (Construction Maybe)) Source # | |
Morphable ('Into (Comprehension Maybe)) (Tape List) Source # | |
Morphable ('Into (Tape (Construction Maybe))) (Tape List) Source # | |
Morphable ('Into (Tape List)) (Construction Maybe) Source # | |
Morphable ('Into (Tape List)) (Tape (Construction Maybe)) Source # | |
Morphable ('Into Binary) (Construction Wye) Source # | |
Morphable ('Into List) (Construction Maybe) Source # | |
Morphable ('Into List) (Vector r) Source # | |
Morphable ('Into List) (Tape (Construction Maybe)) Source # | |
Morphable ('Into List) (Tape List) Source # | |
Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape Stream) Source # | |
Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape Stream) Source # | |
Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape (Construction Maybe)) Source # | |
Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape (Construction Maybe)) Source # | |
Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape List) Source # | |
Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape List) Source # | |
Chain k => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
Setoid key => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed List key) Source # | |
Morphable ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Turnover (Tape List)) Source # | |
Morphable ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Turnover (Tape List)) Source # | |
Setoid k => Morphable ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Rose k) Source # | |
Morphable ('Into Wye) ((Maybe <:.:> Maybe) := (:*:)) Source # | |
Morphable ('Into List) (Construction Maybe <::> Maybe) Source # | |
Morphable ('Rotate ('Up :: a -> Vertical a) :: Morph (a -> Vertical a)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Morphable ('Rotate ('Down ('Right :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary Associated Types type Morphing ('Rotate ('Down 'Right)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) :: Type -> Type Source # Methods morphing :: (Tagged ('Rotate ('Down 'Right)) <::> ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:))) ~> Morphing ('Rotate ('Down 'Right)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Morphable ('Rotate ('Down ('Left :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary Associated Types type Morphing ('Rotate ('Down 'Left)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) :: Type -> Type Source # Methods morphing :: (Tagged ('Rotate ('Down 'Left)) <::> ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:))) ~> Morphing ('Rotate ('Down 'Left)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Hoistable ((->) :: Type -> Type -> Type) (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Hoistable ((->) :: Type -> Type -> Type) (TT Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Extendable ((->) :: Type -> Type -> Type) (Tape Stream) Source # | |
Extendable ((->) :: Type -> Type -> Type) (Tape List) Source # | |
Morphable ('Insert :: a -> Morph a) Binary Source # | |
Morphable ('Pop :: a -> Morph a) List Source # | |
Morphable ('Push :: a -> Morph a) List Source # | |
Substructure ('Right :: a -> Wye a) Binary Source # | |
Substructure ('Left :: a -> Wye a) Binary Source # | |
Substructure ('Tail :: a -> Segment a) List Source # | |
Substructure ('Root :: a -> Segment a) List Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Right :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Tap Associated Types type Available 'Right (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # type Substance 'Right (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # Methods substructure :: ((Tagged 'Right <:.> Tap ((t <:.:> t) := (:*:))) #=@ Substance 'Right (Tap ((t <:.:> t) := (:*:)))) := Available 'Right (Tap ((t <:.:> t) := (:*:))) Source # sub :: (Tap ((t <:.:> t) := (:*:)) #=@ Substance 'Right (Tap ((t <:.:> t) := (:*:)))) := Available 'Right (Tap ((t <:.:> t) := (:*:))) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Left :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Tap Associated Types type Available 'Left (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # type Substance 'Left (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # Methods substructure :: ((Tagged 'Left <:.> Tap ((t <:.:> t) := (:*:))) #=@ Substance 'Left (Tap ((t <:.:> t) := (:*:)))) := Available 'Left (Tap ((t <:.:> t) := (:*:))) Source # sub :: (Tap ((t <:.:> t) := (:*:)) #=@ Substance 'Left (Tap ((t <:.:> t) := (:*:)))) := Available 'Left (Tap ((t <:.:> t) := (:*:))) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Root :: a -> Segment a) (Tap ((t <:.:> t) := (:*:))) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Tap Associated Types type Available 'Root (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # type Substance 'Root (Tap ((t <:.:> t) := (:*:))) :: Type -> Type Source # Methods substructure :: ((Tagged 'Root <:.> Tap ((t <:.:> t) := (:*:))) #=@ Substance 'Root (Tap ((t <:.:> t) := (:*:)))) := Available 'Root (Tap ((t <:.:> t) := (:*:))) Source # sub :: (Tap ((t <:.:> t) := (:*:)) #=@ Substance 'Root (Tap ((t <:.:> t) := (:*:)))) := Available 'Root (Tap ((t <:.:> t) := (:*:))) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Right :: a -> Wye a) (Tape t) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Left :: a -> Wye a) (Tape t) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Root :: a -> Segment a) (Tape t) Source # | |
Substructure ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose Associated Types type Available 'Tail (Construction List) :: Type -> Type Source # type Substance 'Tail (Construction List) :: Type -> Type Source # Methods substructure :: ((Tagged 'Tail <:.> Construction List) #=@ Substance 'Tail (Construction List)) := Available 'Tail (Construction List) Source # sub :: (Construction List #=@ Substance 'Tail (Construction List)) := Available 'Tail (Construction List) Source # | |
Substructure ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose Associated Types type Available 'Root (Construction List) :: Type -> Type Source # type Substance 'Root (Construction List) :: Type -> Type Source # Methods substructure :: ((Tagged 'Root <:.> Construction List) #=@ Substance 'Root (Construction List)) := Available 'Root (Construction List) Source # sub :: (Construction List #=@ Substance 'Root (Construction List)) := Available 'Root (Construction List) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t) => Substructure ('Right :: a -> Wye a) (Tape t <::> Tape t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) t) => Substructure ('Left :: a -> Wye a) (Tape t <::> Tape t) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Down :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Up :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Right :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Substructure ('Left :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Wye Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Wye Methods (<-|-) :: (a -> b) -> Wye a -> Wye b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Wye) => (a -> b) -> Wye (u a) -> Wye (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Wye) => (a -> b) -> Wye (u (v a)) -> Wye (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Identity Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Identity Methods (<-|-) :: (a -> b) -> Identity a -> Identity b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Identity) => (a -> b) -> Identity (u a) -> Identity (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Identity) => (a -> b) -> Identity (u (v a)) -> Identity (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Edges Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Edges Methods (<-|-) :: (a -> b) -> Edges a -> Edges b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Edges) => (a -> b) -> Edges (u a) -> Edges (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Edges) => (a -> b) -> Edges (u (v a)) -> Edges (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Maybe Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Maybe Methods (<-|-) :: (a -> b) -> Maybe a -> Maybe b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Maybe) => (a -> b) -> Maybe (u a) -> Maybe (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Maybe) => (a -> b) -> Maybe (u (v a)) -> Maybe (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) Biforked Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary Methods (<-|-) :: (a -> b) -> Biforked a -> Biforked b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Biforked) => (a -> b) -> Biforked (u a) -> Biforked (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Biforked) => (a -> b) -> Biforked (u (v a)) -> Biforked (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((-->) b) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Exponential Methods (<-|-) :: (a -> b0) -> (b --> a) -> (b --> b0) Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) ((-->) b)) => (a -> b0) -> (b --> u a) -> (b --> u b0) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((-->) b)) => (a -> b0) -> (b --> u (v a)) -> (b --> u (v b0)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Proxy :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Proxy Methods (<-|-) :: (a -> b) -> Proxy a -> Proxy b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) Proxy) => (a -> b) -> Proxy (u a) -> Proxy (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) Proxy) => (a -> b) -> Proxy (u (v a)) -> Proxy (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Yoneda t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Yoneda Methods (<-|-) :: (a -> b) -> Yoneda t a -> Yoneda t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Yoneda t)) => (a -> b) -> Yoneda t (u a) -> Yoneda t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Yoneda t)) => (a -> b) -> Yoneda t (u (v a)) -> Yoneda t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Outline t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Outline Methods (<-|-) :: (a -> b) -> Outline t a -> Outline t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Outline t)) => (a -> b) -> Outline t (u a) -> Outline t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Outline t)) => (a -> b) -> Outline t (u (v a)) -> Outline t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((:+:) o) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Sum Methods (<-|-) :: (a -> b) -> (o :+: a) -> (o :+: b) Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) ((:+:) o)) => (a -> b) -> (o :+: u a) -> (o :+: u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((:+:) o)) => (a -> b) -> (o :+: u (v a)) -> (o :+: u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((:*:) s) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Product Methods (<-|-) :: (a -> b) -> (s :*: a) -> (s :*: b) Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) ((:*:) s)) => (a -> b) -> (s :*: u a) -> (s :*: u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((:*:) s)) => (a -> b) -> (s :*: u (v a)) -> (s :*: u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Jet t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Jet Methods (<-|-) :: (a -> b) -> Jet t a -> Jet t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Jet t)) => (a -> b) -> Jet t (u a) -> Jet t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Jet t)) => (a -> b) -> Jet t (u (v a)) -> Jet t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Jack t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Jack Methods (<-|-) :: (a -> b) -> Jack t a -> Jack t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Jack t)) => (a -> b) -> Jack t (u a) -> Jack t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Jack t)) => (a -> b) -> Jack t (u (v a)) -> Jack t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Wedge e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Wedge Methods (<-|-) :: (a -> b) -> Wedge e a -> Wedge e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Wedge e)) => (a -> b) -> Wedge e (u a) -> Wedge e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Wedge e)) => (a -> b) -> Wedge e (u (v a)) -> Wedge e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Validation e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation Methods (<-|-) :: (a -> b) -> Validation e a -> Validation e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Validation e)) => (a -> b) -> Validation e (u a) -> Validation e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Validation e)) => (a -> b) -> Validation e (u (v a)) -> Validation e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (These e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.These Methods (<-|-) :: (a -> b) -> These e a -> These e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (These e)) => (a -> b) -> These e (u a) -> These e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (These e)) => (a -> b) -> These e (u (v a)) -> These e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Instruction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Instruction Methods (<-|-) :: (a -> b) -> Instruction t a -> Instruction t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Instruction t)) => (a -> b) -> Instruction t (u a) -> Instruction t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Instruction t)) => (a -> b) -> Instruction t (u (v a)) -> Instruction t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Construction t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods (<-|-) :: (a -> b) -> Construction t a -> Construction t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Construction t)) => (a -> b) -> Construction t (u a) -> Construction t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Construction t)) => (a -> b) -> Construction t (u (v a)) -> Construction t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<-|-) :: (a -> b) -> Conclusion e a -> Conclusion e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Conclusion e)) => (a -> b) -> Conclusion e (u a) -> Conclusion e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Conclusion e)) => (a -> b) -> Conclusion e (u (v a)) -> Conclusion e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <::> Construction t) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Comprehension t) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Comprehension Methods (<-|-) :: (a -> b) -> Comprehension t a -> Comprehension t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Comprehension t)) => (a -> b) -> Comprehension t (u a) -> Comprehension t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Comprehension t)) => (a -> b) -> Comprehension t (u (v a)) -> Comprehension t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Store s) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Store Methods (<-|-) :: (a -> b) -> Store s a -> Store s b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Store s)) => (a -> b) -> Store s (u a) -> Store s (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Store s)) => (a -> b) -> Store s (u (v a)) -> Store s (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Tap t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Tap Methods (<-|-) :: (a -> b) -> Tap t a -> Tap t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Tap t)) => (a -> b) -> Tap t (u a) -> Tap t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Tap t)) => (a -> b) -> Tap t (u (v a)) -> Tap t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (State s) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.State Methods (<-|-) :: (a -> b) -> State s a -> State s b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (State s)) => (a -> b) -> State s (u a) -> State s (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (State s)) => (a -> b) -> State s (u (v a)) -> State s (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Provision e) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Provision Methods (<-|-) :: (a -> b) -> Provision e a -> Provision e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u a) -> Provision e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Provision e)) => (a -> b) -> Provision e (u (v a)) -> Provision e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Imprint e) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Imprint Methods (<-|-) :: (a -> b) -> Imprint e a -> Imprint e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Imprint e)) => (a -> b) -> Imprint e (u a) -> Imprint e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Imprint e)) => (a -> b) -> Imprint e (u (v a)) -> Imprint e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Equipment e) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Equipment Methods (<-|-) :: (a -> b) -> Equipment e a -> Equipment e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Equipment e)) => (a -> b) -> Equipment e (u a) -> Equipment e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Equipment e)) => (a -> b) -> Equipment e (u (v a)) -> Equipment e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Accumulator e) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Accumulator Methods (<-|-) :: (a -> b) -> Accumulator e a -> Accumulator e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Accumulator e)) => (a -> b) -> Accumulator e (u a) -> Accumulator e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Accumulator e)) => (a -> b) -> Accumulator e (u (v a)) -> Accumulator e (u (v b)) Source # | |
Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Tape List) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Constant :: Type -> Type -> Type) b) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Constant Methods (<-|-) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u (v a)) -> Flip Constant b (u (v b0)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:+:) a) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Sum Methods (<-|-) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u (v a0)) -> Flip (:+:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:*:) a) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Product Methods (<-|-) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u (v a0)) -> Flip (:*:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Validation a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation Methods (<-|-) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u (v a0)) -> Flip Validation a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Tagged :: Type -> Type -> Type) a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Tagged Methods (<-|-) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u (v a0)) -> Flip Tagged a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<-|-) :: (a -> b) -> Flip Conclusion e a -> Flip Conclusion e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion e)) => (a -> b) -> Flip Conclusion e (u a) -> Flip Conclusion e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Conclusion e)) => (a -> b) -> Flip Conclusion e (u (v a)) -> Flip Conclusion e (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Day t u) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Day Methods (<-|-) :: (a -> b) -> Day t u a -> Day t u b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) (Day t u)) => (a -> b) -> Day t u (u0 a) -> Day t u (u0 b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Day t u)) => (a -> b) -> Day t u (u0 (v a)) -> Day t u (u0 (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Constant a :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Constant Methods (<-|-) :: (a0 -> b) -> Constant a a0 -> Constant a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Constant a)) => (a0 -> b) -> Constant a (u a0) -> Constant a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Constant a)) => (a0 -> b) -> Constant a (u (v a0)) -> Constant a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Tagged tag) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Tagged Methods (<-|-) :: (a -> b) -> Tagged tag a -> Tagged tag b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Tagged tag)) => (a -> b) -> Tagged tag (u a) -> Tagged tag (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Tagged tag)) => (a -> b) -> Tagged tag (u (v a)) -> Tagged tag (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Schematic Monad t u) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t :> u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Monadic Methods (<-|-) :: (a -> b) -> (t :> u) a -> (t :> u) b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) (t :> u)) => (a -> b) -> (t :> u) (u0 a) -> (t :> u) (u0 b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (t :> u)) => (a -> b) -> (t :> u) (u0 (v a)) -> (t :> u) (u0 (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Backwards t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Backwards Methods (<-|-) :: (a -> b) -> Backwards t a -> Backwards t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Backwards t)) => (a -> b) -> Backwards t (u a) -> Backwards t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Backwards t)) => (a -> b) -> Backwards t (u (v a)) -> Backwards t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Reverse t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Reverse Methods (<-|-) :: (a -> b) -> Reverse t a -> Reverse t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Reverse t)) => (a -> b) -> Reverse t (u a) -> Reverse t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Reverse t)) => (a -> b) -> Reverse t (u (v a)) -> Reverse t (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Schematic Comonad t u) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t :< u) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Transformer.Comonadic Methods (<-|-) :: (a -> b) -> (t :< u) a -> (t :< u) b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) (t :< u)) => (a -> b) -> (t :< u) (u0 a) -> (t :< u) (u0 b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (t :< u)) => (a -> b) -> (t :< u) (u0 (v a)) -> (t :< u) (u0 (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Prefixed t k) Source # | |
Defined in Pandora.Paradigm.Structure.Modification.Prefixed Methods (<-|-) :: (a -> b) -> Prefixed t k a -> Prefixed t k b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Prefixed t k)) => (a -> b) -> Prefixed t k (u a) -> Prefixed t k (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Prefixed t k)) => (a -> b) -> Prefixed t k (u (v a)) -> Prefixed t k (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((->) a :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Exponential Methods (<-|-) :: (a0 -> b) -> (a -> a0) -> (a -> b) Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) ((->) a)) => (a0 -> b) -> (a -> u a0) -> (a -> u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((->) a)) => (a0 -> b) -> (a -> u (v a0)) -> (a -> u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Continuation r t) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Continuation Methods (<-|-) :: (a -> b) -> Continuation r t a -> Continuation r t b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Continuation r t)) => (a -> b) -> Continuation r t (u a) -> Continuation r t (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Continuation r t)) => (a -> b) -> Continuation r t (u (v a)) -> Continuation r t (u (v b)) Source # | |
(Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, forall a. Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (p (t a)), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, forall b. Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip p (u b))) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((t >:.:> u) := p) Source # | |
Defined in Pandora.Paradigm.Schemes.T_U Methods (<-|-) :: (a -> b) -> ((t >:.:> u) := p) a -> ((t >:.:> u) := p) b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) ((t >:.:> u) := p)) => (a -> b) -> ((t >:.:> u) := p) (u0 a) -> ((t >:.:> u) := p) (u0 b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((t >:.:> u) := p)) => (a -> b) -> ((t >:.:> u) := p) (u0 (v a)) -> ((t >:.:> u) := p) (u0 (v b)) Source # | |
(forall i. Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (p i), forall o. Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip p o), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u) => Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((t <:.:> u) := p) Source # | |
Defined in Pandora.Paradigm.Schemes.T_U Methods (<-|-) :: (a -> b) -> ((t <:.:> u) := p) a -> ((t <:.:> u) := p) b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) ((t <:.:> u) := p)) => (a -> b) -> ((t <:.:> u) := p) (u0 a) -> ((t <:.:> u) := p) (u0 b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) ((t <:.:> u) := p)) => (a -> b) -> ((t <:.:> u) := p) (u0 (v a)) -> ((t <:.:> u) := p) (u0 (v b)) Source # | |
(Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u) => Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <:.> u) Source # | |
(Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t') => Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <::> t') Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <:.> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (t <.:> v) (w <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (w <.:> u), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (w <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (u <:.> w), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v w) => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (v <:.> t) (u <:.> w) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Kan ('Right :: Type -> Wye Type) t u b) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Kan Methods (<-|-) :: (a -> b0) -> Kan 'Right t u b a -> Kan 'Right t u b b0 Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u0, Covariant (Betwixt (->) (->)) (->) (Kan 'Right t u b)) => (a -> b0) -> Kan 'Right t u b (u0 a) -> Kan 'Right t u b (u0 b0) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u0, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Kan 'Right t u b)) => (a -> b0) -> Kan 'Right t u b (u0 (v a)) -> Kan 'Right t u b (u0 (v b0)) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((t <:<.>:> u) t'), Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((v <:<.>:> w) v'), Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t w, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' v', Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t v, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u v, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) v' t') => Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((t <:<.>:> u) t') ((v <:<.>:> w) v') Source # | |
(Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t, Extendable ((->) :: Type -> Type -> Type) u) => Extendable ((->) :: Type -> Type -> Type) ((t' <:<.>:> t) := u) Source # | |
(Semigroup e, Extendable ((->) :: Type -> Type -> Type) u) => Extendable ((->) :: Type -> Type -> Type) (((->) e :: Type -> Type) <.:> u) Source # | |
Extendable ((->) :: Type -> Type -> Type) u => Extendable ((->) :: Type -> Type -> Type) ((:*:) e <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) ((t <:<.>:> t') := u) Source # | |
(Traversable ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Bindable ((->) :: Type -> Type -> Type) t, Semimonoidal (-->) (:*:) (:*:) u, Monoidal (-->) (-->) (:*:) (:*:) u, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) (t <.:> u) Source # | |
(Bindable ((->) :: Type -> Type -> Type) t, Distributive ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Bindable ((->) :: Type -> Type -> Type) u) => Bindable ((->) :: Type -> Type -> Type) (t <:.> u) Source # | |
(Bindable ((->) :: Type -> Type -> Type) t, Distributive ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Bindable ((->) :: Type -> Type -> Type) t') => Bindable ((->) :: Type -> Type -> Type) (t <::> t') Source # | |
(Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t' t, Distributive ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Liftable ((->) :: Type -> Type -> Type) (t <:<.>:> t') Source # | |
(Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t t', Distributive ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t') => Lowerable ((->) :: Type -> Type -> Type) (t <:<.>:> t') Source # | |
Monoidal (-->) (-->) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Monoidal (-->) (-->) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Monoidal (-->) (-->) (:*:) (:*:) t => Liftable ((->) :: Type -> Type -> Type) (TT Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (UT Covariant Covariant t) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (TU Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) t => Lowerable ((->) :: Type -> Type -> Type) (TT Covariant Covariant t :: (Type -> Type) -> Type -> Type) Source # | |
type Nonempty Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
type Nonempty List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Nonempty Rose Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
type Combinative List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Breadcrumbs List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into (Tape List)) List Source # | |
type Morphing ('Delete ('All :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Delete ('First :: a -> Occurrence a) :: Morph (a -> Occurrence a)) List Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Find ('Element :: a -> Morph a) :: Morph (a -> Morph a)) List Source # | |
type Morphing ('Into (o ds) :: Morph a) Binary Source # | |
type Morphing ('Rotate ('Right ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
type Morphing ('Rotate ('Left ('Zig :: a -> Splay a)) :: Morph (Wye (a -> Splay a))) Binary Source # | |
type Morphing ('Rotate ('Right ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
type Morphing ('Rotate ('Left ('Zig ('Zag :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
type Morphing ('Rotate ('Right ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
type Morphing ('Rotate ('Left ('Zig ('Zig :: a -> Splay a))) :: Morph (Wye (Splay (a -> Splay a)))) Binary Source # | |
type Morphing ('Into (Construction Maybe)) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into (Comprehension Maybe)) (Tape List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into (Tape (Construction Maybe))) (Tape List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into (Tape List)) (Construction Maybe) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into (Tape List)) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into Binary) (Construction Wye) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
type Morphing ('Into List) (Construction Maybe) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into List) (Vector r) Source # | |
type Morphing ('Into List) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Into List) (Tape List) Source # | |
type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape Stream) Source # | |
type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape Stream) Source # | |
type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape (Construction Maybe)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Tape List) Source # | |
type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Tape List) Source # | |
type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Binary k) Source # | |
type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed List key) Source # | |
type Morphing ('Rotate ('Right :: a -> Wye a) :: Morph (a -> Wye a)) (Turnover (Tape List)) Source # | |
type Morphing ('Rotate ('Left :: a -> Wye a) :: Morph (a -> Wye a)) (Turnover (Tape List)) Source # | |
type Morphing ('Lookup ('Key :: a -> Morph a) :: Morph (a -> Morph a)) (Prefixed Rose k) Source # | |
type Morphing ('Into Wye) ((Maybe <:.:> Maybe) := (:*:)) Source # | |
type Morphing ('Into List) (Construction Maybe <::> Maybe) Source # | |
Defined in Pandora.Paradigm.Structure.Some.List | |
type Morphing ('Rotate ('Up :: a -> Vertical a) :: Morph (a -> Vertical a)) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
type Morphing ('Rotate ('Down ('Right :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary type Morphing ('Rotate ('Down ('Right :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) = Maybe <::> ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) | |
type Morphing ('Rotate ('Down ('Left :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary type Morphing ('Rotate ('Down ('Left :: a -> Wye a)) :: Morph (Vertical (a -> Wye a))) ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) = Maybe <::> ((((Identity <:.:> (Wye <::> Construction Wye)) := (:*:)) <:.:> (Bifurcation <::> Bicursor)) := (:*:)) | |
type Morphing ('Insert :: a -> Morph a) Binary Source # | |
type Morphing ('Pop :: a -> Morph a) List Source # | |
type Morphing ('Push :: a -> Morph a) List Source # | |
type Available ('Right :: a -> Wye a) Binary Source # | |
type Available ('Left :: a -> Wye a) Binary Source # | |
type Available ('Tail :: a -> Segment a) List Source # | |
type Available ('Root :: a -> Segment a) List Source # | |
type Substance ('Right :: a -> Wye a) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
type Substance ('Left :: a -> Wye a) Binary Source # | |
Defined in Pandora.Paradigm.Structure.Some.Binary | |
type Substance ('Tail :: a -> Segment a) List Source # | |
type Substance ('Root :: a -> Segment a) List Source # | |
type Available ('Right :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Available ('Left :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Available ('Root :: a -> Segment a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Available ('Right :: a -> Wye a) (Tape t) Source # | |
type Available ('Left :: a -> Wye a) (Tape t) Source # | |
type Available ('Root :: a -> Segment a) (Tape t) Source # | |
type Available ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
type Available ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
type Substance ('Right :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Substance ('Left :: a -> Wye a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Substance ('Root :: a -> Segment a) (Tap ((t <:.:> t) := (:*:))) Source # | |
type Substance ('Right :: a -> Wye a) (Tape t) Source # | |
Defined in Pandora.Paradigm.Structure.Ability.Zipper | |
type Substance ('Left :: a -> Wye a) (Tape t) Source # | |
type Substance ('Root :: a -> Segment a) (Tape t) Source # | |
type Substance ('Tail :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
type Substance ('Root :: a -> Segment a) (Construction List) Source # | |
Defined in Pandora.Paradigm.Structure.Some.Rose | |
type Available ('Right :: a -> Wye a) (Tape t <::> Tape t) Source # | |
type Available ('Left :: a -> Wye a) (Tape t <::> Tape t) Source # | |
type Available ('Down :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
type Available ('Up :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
type Available ('Right :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
type Available ('Left :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
type Substance ('Right :: a -> Wye a) (Tape t <::> Tape t) Source # | |
type Substance ('Left :: a -> Wye a) (Tape t <::> Tape t) Source # | |
type Substance ('Down :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
type Substance ('Up :: a -> Vertical a) (Tape t <::> Tape t) Source # | |
type Substance ('Right :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
type Substance ('Left :: a -> Wye a) ((t <:.:> t) := (:*:)) Source # | |
(<$$>) :: (Covariant source target t, Covariant source (Betwixt source target) u, Covariant (Betwixt source target) target t) => source a b -> target (t (u a)) (t (u b)) infixl 3 Source #
(<$$$>) :: (Covariant source target t, Covariant source (Betwixt source (Betwixt source target)) v, Covariant (Betwixt source (Betwixt source target)) (Betwixt (Betwixt source target) target) u, Covariant (Betwixt (Betwixt source target) target) target t) => source a b -> target (t (u (v a))) (t (u (v b))) infixl 2 Source #