Safe Haskell | Safe-Inferred |
---|---|
Language | Haskell2010 |
Pandora.Pattern.Morphism.Flip
Documentation
newtype Flip (v :: * -> * -> *) a e Source #
Constructors
Flip (v e a) |
Instances
Monoidal (-->) (<--) (:*:) (:*:) Predicate Source # | |
Monoidal (<--) (-->) (:*:) (:*:) Identity Source # | |
Monoid r => Monoidal (-->) (<--) (:*:) (:*:) (Convergence r) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) ((:*:) s) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Construction t) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Store s) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) (Tap t) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Flip (:*:) a) Source # | |
Monoidal (<--) (-->) (:*:) (:*:) (Tagged tag) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Backwards t) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t) => Monoidal (<--) (-->) (:*:) (:*:) (Reverse t) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Monoidal (<--) (-->) (:*:) (:*:) ((Identity <:.:> t) := (:*:)) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t', Monoidal (<--) (-->) (:*:) (:*:) u, Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t t') => Monoidal (<--) (-->) (:*:) (:*:) ((t <:<.>:> t') := u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <.:> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) u) => Monoidal (<--) (-->) (:*:) (:*:) (t <:.> u) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Monoidal (<--) (-->) (:*:) (:*:) t, Monoidal (<--) (-->) (:*:) (:*:) t') => Monoidal (<--) (-->) (:*:) (:*:) (t <::> t') Source # | |
(Category m, Covariant m m t) => Contravariant m (Flip m) t Source # | |
Semigroupoid m => Semigroupoid (Flip m) Source # | |
Category m => Category (Flip m) Source # | |
(Category m, Covariant m m t) => Contravariant (Flip m) m t Source # | |
Semimonoidal (<--) (:*:) (:*:) Wye Source # | |
Semimonoidal (<--) (:*:) (:*:) Identity Source # | |
Semimonoidal (<--) (:*:) (:*:) Maybe Source # | |
Semimonoidal (<--) (:*:) (:*:) ((:*:) s :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t) => Semimonoidal (<--) (:*:) (:*:) (Construction t :: Type -> Type) Source # | |
Defined in Pandora.Paradigm.Primary.Transformer.Construction Methods mult :: forall (a :: k) (b :: k). (Construction t a :*: Construction t b) <-- Construction t (a :*: b) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Store s :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) (Tap t :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Flip (:*:) a :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) (Tagged tag :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (<--) (:*:) (:*:) (Backwards t :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t) => Semimonoidal (<--) (:*:) (:*:) (Reverse t :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) ((->) e :: Type -> Type) Source # | |
(Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) ((t <:.:> u) := (:*:) :: Type -> Type) Source # | |
Semimonoidal (<--) (:*:) (:*:) t => Semimonoidal (<--) (:*:) (:*:) ((Identity <:.:> t) := (:*:) :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) u, Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t', Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) ((t <:<.>:> t') := u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) u, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <.:> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) u) => Semimonoidal (<--) (:*:) (:*:) (t <:.> u :: Type -> Type) Source # | |
(Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) t, Semimonoidal (<--) (:*:) (:*:) t, Semimonoidal (<--) (:*:) (:*:) t') => Semimonoidal (<--) (:*:) (:*:) (t <::> t' :: Type -> Type) Source # | |
(Category m, Covariant m m t) => Covariant (Flip m) (Flip m) t Source # | |
Defined in Pandora.Pattern.Morphism.Flip Methods (<-|-) :: Flip m a b -> Flip m (t a) (t b) Source # (<-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Flip m)) u, Covariant (Betwixt (Flip m) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u a)) (t (u b)) Source # (<-|-|-|-) :: (Covariant (Flip m) (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) v, Covariant (Betwixt (Flip m) (Betwixt (Flip m) (Flip m))) (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) u, Covariant (Betwixt (Betwixt (Flip m) (Flip m)) (Flip m)) (Flip m) t) => Flip m a b -> Flip m (t (u (v a))) (t (u (v b))) Source # | |
Morphable ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # | |
Morphable ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # | |
Morphable ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # | |
Invariant (Flip Store r) Source # | |
Invariant (Flip (Lens available) tgt) Source # | |
Invariant (Flip State r) Source # | |
Substructure ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # | |
Interpreted ((->) :: Type -> Type -> Type) (Flip v a) Source # | |
Defined in Pandora.Paradigm.Controlflow.Effect.Interpreted Methods run :: Flip v a a0 -> Primary (Flip v a) a0 Source # unite :: Primary (Flip v a) a0 -> Flip v a a0 Source # (!) :: Flip v a a0 -> Primary (Flip v a) a0 Source # (||=) :: (Semigroupoid (->), Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> Flip v a a0 -> u b Source # (=||) :: (Semigroupoid (->), Interpreted (->) u) => (Flip v a a0 -> u b) -> Primary (Flip v a) a0 -> Primary u b Source # (<$||=) :: (Semigroupoid (->), Covariant (->) (->) j, Interpreted (->) u) => (Primary (Flip v a) a0 -> Primary u b) -> (j := Flip v a a0) -> (j := u b) Source # (=||$>) :: (Covariant (->) (->) j, Interpreted (->) u) => (Flip v a a0 -> u b) -> (j := Primary (Flip v a) a0) -> (j := Primary u b) Source # | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) ((<--) a) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Constant :: Type -> Type -> Type) b) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Constant Methods (<-|-) :: (a -> b0) -> Flip Constant b a -> Flip Constant b b0 Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u a) -> Flip Constant b (u b0) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Constant b)) => (a -> b0) -> Flip Constant b (u (v a)) -> Flip Constant b (u (v b0)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:+:) a) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Sum Methods (<-|-) :: (a0 -> b) -> Flip (:+:) a a0 -> Flip (:+:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u a0) -> Flip (:+:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:+:) a)) => (a0 -> b) -> Flip (:+:) a (u (v a0)) -> Flip (:+:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:*:) a) Source # | |
Defined in Pandora.Paradigm.Primary.Algebraic.Product Methods (<-|-) :: (a0 -> b) -> Flip (:*:) a a0 -> Flip (:*:) a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u a0) -> Flip (:*:) a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip (:*:) a)) => (a0 -> b) -> Flip (:*:) a (u (v a0)) -> Flip (:*:) a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Validation a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Validation Methods (<-|-) :: (a0 -> b) -> Flip Validation a a0 -> Flip Validation a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u a0) -> Flip Validation a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Validation a)) => (a0 -> b) -> Flip Validation a (u (v a0)) -> Flip Validation a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (Tagged :: Type -> Type -> Type) a) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Tagged Methods (<-|-) :: (a0 -> b) -> Flip Tagged a a0 -> Flip Tagged a b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u a0) -> Flip Tagged a (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Tagged a)) => (a0 -> b) -> Flip Tagged a (u (v a0)) -> Flip Tagged a (u (v b)) Source # | |
Covariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Conclusion e) Source # | |
Defined in Pandora.Paradigm.Primary.Functor.Conclusion Methods (<-|-) :: (a -> b) -> Flip Conclusion e a -> Flip Conclusion e b Source # (<-|-|-) :: (Covariant (->) (Betwixt (->) (->)) u, Covariant (Betwixt (->) (->)) (->) (Flip Conclusion e)) => (a -> b) -> Flip Conclusion e (u a) -> Flip Conclusion e (u b) Source # (<-|-|-|-) :: (Covariant (->) (Betwixt (->) (Betwixt (->) (->))) v, Covariant (Betwixt (->) (Betwixt (->) (->))) (Betwixt (Betwixt (->) (->)) (->)) u, Covariant (Betwixt (Betwixt (->) (->)) (->)) (->) (Flip Conclusion e)) => (a -> b) -> Flip Conclusion e (u (v a)) -> Flip Conclusion e (u (v b)) Source # | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Provision a) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Provision | |
Contravariant ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip Imprint a) Source # | |
Defined in Pandora.Paradigm.Inventory.Some.Imprint | |
Adjoint ((->) :: Type -> Type -> Type) ((->) :: Type -> Type -> Type) (Flip (:*:) s) ((->) s :: Type -> Type) Source # | |
type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe Source # | |
Defined in Pandora.Paradigm.Primary type Morphing ('Into (Flip Conclusion e) :: Morph (Type -> Type)) Maybe = ((->) e :: Type -> Type) <:.> Flip Conclusion e | |
type Morphing ('Into ('Here Maybe :: Wedge (Type -> Type) a1) :: Morph (Wedge (Type -> Type) a1)) (Flip Wedge a2) Source # | |
type Morphing ('Into ('That Maybe :: These (Type -> Type) a1) :: Morph (These (Type -> Type) a1)) (Flip These a2) Source # | |
type Primary (Flip v a) e Source # | |
type Available ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # | |
type Substance ('Left :: a1 -> Wye a1) (Flip (:*:) a2) Source # | |