singletons-base-3.1.1: A promoted and singled version of the base library
Copyright(C) 2013-2014 Richard Eisenberg Jan Stolarek
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageGHC2021

Data.List.Singletons

Description

Defines functions and datatypes relating to the singleton for '[]', including singled versions of a few of the definitions in Data.List.

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Please look up the corresponding operation in Data.List. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis
  • type family Sing :: k -> Type
  • data SList :: forall (a :: Type). [a] -> Type where
  • type family (a :: [a]) ++ (a :: [a]) :: [a] where ...
  • (%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a])
  • type family Head (a :: [a]) :: a where ...
  • sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a)
  • type family Last (a :: [a]) :: a where ...
  • sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a)
  • type family Tail (a :: [a]) :: [a] where ...
  • sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a])
  • type family Init (a :: [a]) :: [a] where ...
  • sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a])
  • type family Null (arg :: t a) :: Bool
  • sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool)
  • type family Length (arg :: t a) :: Natural
  • sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural)
  • type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ...
  • sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b])
  • type family Reverse (a :: [a]) :: [a] where ...
  • sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a])
  • type family Intersperse (a :: a) (a :: [a]) :: [a] where ...
  • sIntersperse :: forall a (t :: a) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t :: [a])
  • type family Intercalate (a :: [a]) (a :: [[a]]) :: [a] where ...
  • sIntercalate :: forall a (t :: [a]) (t :: [[a]]). Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t :: [a])
  • type family Transpose (a :: [[a]]) :: [[a]] where ...
  • sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Apply TransposeSym0 t :: [[a]])
  • type family Subsequences (a :: [a]) :: [[a]] where ...
  • sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Apply SubsequencesSym0 t :: [[a]])
  • type family Permutations (a :: [a]) :: [[a]] where ...
  • sPermutations :: forall a (t :: [a]). Sing t -> Sing (Apply PermutationsSym0 t :: [[a]])
  • type family Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
  • sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
  • type family Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
  • sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b)
  • type family Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
  • sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
  • type family Foldl1' (a :: (~>) a ((~>) a a)) (a :: [a]) :: a where ...
  • sFoldl1' :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t :: a)
  • type family Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
  • sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
  • type family Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
  • sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
  • type family Concat (a :: t [a]) :: [a] where ...
  • sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
  • type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
  • sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
  • type family And (a :: t Bool) :: Bool where ...
  • sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
  • type family Or (a :: t Bool) :: Bool where ...
  • sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
  • type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
  • type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
  • sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
  • type family Sum (arg :: t a) :: a
  • sSum :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a)
  • type family Product (arg :: t a) :: a
  • sProduct :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a)
  • type family Maximum (arg :: t a) :: a
  • sMaximum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a)
  • type family Minimum (arg :: t a) :: a
  • sMinimum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a)
  • type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b])
  • type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a])
  • type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ...
  • sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b])
  • type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
  • sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a])
  • type family MapAccumL (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ...
  • sMapAccumL :: forall t a b c (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t :: (a, t c))
  • type family MapAccumR (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ...
  • sMapAccumR :: forall a b c t (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t :: (a, t c))
  • type family Replicate (a :: Natural) (a :: a) :: [a] where ...
  • sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a])
  • type family Unfoldr (a :: (~>) b (Maybe (a, b))) (a :: b) :: [a] where ...
  • sUnfoldr :: forall b a (t :: (~>) b (Maybe (a, b))) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t :: [a])
  • type family Take (a :: Natural) (a :: [a]) :: [a] where ...
  • sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a])
  • type family Drop (a :: Natural) (a :: [a]) :: [a] where ...
  • sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a])
  • type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ...
  • sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a]))
  • type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a])
  • type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a])
  • type family DropWhileEnd (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sDropWhileEnd :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileEndSym0 t) t :: [a])
  • type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a]))
  • type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a]))
  • type family StripPrefix (a :: [a]) (a :: [a]) :: Maybe [a] where ...
  • type family Group (a :: [a]) :: [[a]] where ...
  • sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply GroupSym0 t :: [[a]])
  • type family Inits (a :: [a]) :: [[a]] where ...
  • sInits :: forall a (t :: [a]). Sing t -> Sing (Apply InitsSym0 t :: [[a]])
  • type family Tails (a :: [a]) :: [[a]] where ...
  • sTails :: forall a (t :: [a]). Sing t -> Sing (Apply TailsSym0 t :: [[a]])
  • type family IsPrefixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsPrefixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t :: Bool)
  • type family IsSuffixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsSuffixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t :: Bool)
  • type family IsInfixOf (a :: [a]) (a :: [a]) :: Bool where ...
  • sIsInfixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t :: Bool)
  • type family Elem (arg :: a) (arg :: t a) :: Bool
  • sElem :: forall a (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
  • type family NotElem (a :: a) (a :: t a) :: Bool where ...
  • sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
  • type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ...
  • sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b)
  • type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ...
  • sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a)
  • type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
  • sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a])
  • type family Partition (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
  • sPartition :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply PartitionSym0 t) t :: ([a], [a]))
  • type family (a :: [a]) !! (a :: Natural) :: a where ...
  • (%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a)
  • type family ElemIndex (a :: a) (a :: [a]) :: Maybe Natural where ...
  • sElemIndex :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndexSym0 t) t :: Maybe Natural)
  • type family ElemIndices (a :: a) (a :: [a]) :: [Natural] where ...
  • sElemIndices :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndicesSym0 t) t :: [Natural])
  • type family FindIndex (a :: (~>) a Bool) (a :: [a]) :: Maybe Natural where ...
  • sFindIndex :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndexSym0 t) t :: Maybe Natural)
  • type family FindIndices (a :: (~>) a Bool) (a :: [a]) :: [Natural] where ...
  • sFindIndices :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndicesSym0 t) t :: [Natural])
  • type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ...
  • sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)])
  • type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ...
  • sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)])
  • type family Zip4 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [(a, b, c, d)] where ...
  • type family Zip5 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [(a, b, c, d, e)] where ...
  • type family Zip6 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [(a, b, c, d, e, f)] where ...
  • type family Zip7 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [(a, b, c, d, e, f, g)] where ...
  • type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ...
  • sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c])
  • type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ...
  • sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d])
  • type family ZipWith4 (a :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [e] where ...
  • type family ZipWith5 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [f] where ...
  • type family ZipWith6 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [g] where ...
  • type family ZipWith7 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [h] where ...
  • type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ...
  • sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b]))
  • type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ...
  • sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c]))
  • type family Unzip4 (a :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ...
  • sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Apply Unzip4Sym0 t :: ([a], [b], [c], [d]))
  • type family Unzip5 (a :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ...
  • sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply Unzip5Sym0 t :: ([a], [b], [c], [d], [e]))
  • type family Unzip6 (a :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ...
  • sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Apply Unzip6Sym0 t :: ([a], [b], [c], [d], [e], [f]))
  • type family Unzip7 (a :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ...
  • sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Apply Unzip7Sym0 t :: ([a], [b], [c], [d], [e], [f], [g]))
  • type family Unlines (a :: [Symbol]) :: Symbol where ...
  • sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol)
  • type family Unwords (a :: [Symbol]) :: Symbol where ...
  • sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol)
  • type family Nub (a :: [a]) :: [a] where ...
  • sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply NubSym0 t :: [a])
  • type family Delete (a :: a) (a :: [a]) :: [a] where ...
  • sDelete :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t :: [a])
  • type family (a :: [a]) \\ (a :: [a]) :: [a] where ...
  • (%\\) :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply (\\@#@$) t) t :: [a])
  • type family Union (a :: [a]) (a :: [a]) :: [a] where ...
  • sUnion :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply UnionSym0 t) t :: [a])
  • type family Intersect (a :: [a]) (a :: [a]) :: [a] where ...
  • sIntersect :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IntersectSym0 t) t :: [a])
  • type family Insert (a :: a) (a :: [a]) :: [a] where ...
  • sInsert :: forall a (t :: a) (t :: [a]). SOrd a => Sing t -> Sing t -> Sing (Apply (Apply InsertSym0 t) t :: [a])
  • type family Sort (a :: [a]) :: [a] where ...
  • sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply SortSym0 t :: [a])
  • type family NubBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [a] where ...
  • sNubBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply NubBySym0 t) t :: [a])
  • type family DeleteBy (a :: (~>) a ((~>) a Bool)) (a :: a) (a :: [a]) :: [a] where ...
  • sDeleteBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t :: [a])
  • type family DeleteFirstsBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sDeleteFirstsBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t :: [a])
  • type family UnionBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sUnionBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UnionBySym0 t) t) t :: [a])
  • type family IntersectBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ...
  • sIntersectBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply IntersectBySym0 t) t) t :: [a])
  • type family GroupBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [[a]] where ...
  • sGroupBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply GroupBySym0 t) t :: [[a]])
  • type family SortBy (a :: (~>) a ((~>) a Ordering)) (a :: [a]) :: [a] where ...
  • sSortBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t :: [a])
  • type family InsertBy (a :: (~>) a ((~>) a Ordering)) (a :: a) (a :: [a]) :: [a] where ...
  • sInsertBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t :: [a])
  • type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a)
  • type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ...
  • sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a)
  • type family GenericLength (a :: [a]) :: i where ...
  • sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (Apply GenericLengthSym0 t :: i)
  • type family NilSym0 :: [a :: Type] where ...
  • data (:@#@$) :: (~>) a ((~>) [a] [a :: Type])
  • data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type]
  • type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ...
  • type family (a6989586621679278922 :: [a]) ++@#@$$$ (a6989586621679278923 :: [a]) :: [a] where ...
  • data (++@#@$$) (a6989586621679278922 :: [a]) :: (~>) [a] [a]
  • data (++@#@$) :: (~>) [a] ((~>) [a] [a])
  • data HeadSym0 :: (~>) [a] a
  • type family HeadSym1 (a6989586621679852326 :: [a]) :: a where ...
  • data LastSym0 :: (~>) [a] a
  • type family LastSym1 (a6989586621679852320 :: [a]) :: a where ...
  • data TailSym0 :: (~>) [a] [a]
  • type family TailSym1 (a6989586621679852316 :: [a]) :: [a] where ...
  • data InitSym0 :: (~>) [a] [a]
  • type family InitSym1 (a6989586621679852304 :: [a]) :: [a] where ...
  • data NullSym0 :: (~>) (t a) Bool
  • type family NullSym1 (a6989586621680438361 :: t a) :: Bool where ...
  • data LengthSym0 :: (~>) (t a) Natural
  • type family LengthSym1 (a6989586621680438364 :: t a) :: Natural where ...
  • data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b])
  • data MapSym1 (a6989586621679278931 :: (~>) a b) :: (~>) [a] [b]
  • type family MapSym2 (a6989586621679278931 :: (~>) a b) (a6989586621679278932 :: [a]) :: [b] where ...
  • data ReverseSym0 :: (~>) [a] [a]
  • type family ReverseSym1 (a6989586621679852289 :: [a]) :: [a] where ...
  • data IntersperseSym0 :: (~>) a ((~>) [a] [a])
  • data IntersperseSym1 (a6989586621679852282 :: a) :: (~>) [a] [a]
  • type family IntersperseSym2 (a6989586621679852282 :: a) (a6989586621679852283 :: [a]) :: [a] where ...
  • data IntercalateSym0 :: (~>) [a] ((~>) [[a]] [a])
  • data IntercalateSym1 (a6989586621679852275 :: [a]) :: (~>) [[a]] [a]
  • type family IntercalateSym2 (a6989586621679852275 :: [a]) (a6989586621679852276 :: [[a]]) :: [a] where ...
  • data TransposeSym0 :: (~>) [[a]] [[a]]
  • type family TransposeSym1 (a6989586621679851176 :: [[a]]) :: [[a]] where ...
  • data SubsequencesSym0 :: (~>) [a] [[a]]
  • type family SubsequencesSym1 (a6989586621679852270 :: [a]) :: [[a]] where ...
  • data PermutationsSym0 :: (~>) [a] [[a]]
  • type family PermutationsSym1 (a6989586621679852196 :: [a]) :: [[a]] where ...
  • data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
  • data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
  • data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b
  • type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ...
  • data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
  • data Foldl'Sym1 (a6989586621680438343 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
  • data Foldl'Sym2 (a6989586621680438343 :: (~>) b ((~>) a b)) (a6989586621680438344 :: b) :: (~>) (t a) b
  • type family Foldl'Sym3 (a6989586621680438343 :: (~>) b ((~>) a b)) (a6989586621680438344 :: b) (a6989586621680438345 :: t a) :: b where ...
  • data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
  • data Foldl1Sym1 (a6989586621680438354 :: (~>) a ((~>) a a)) :: (~>) (t a) a
  • type family Foldl1Sym2 (a6989586621680438354 :: (~>) a ((~>) a a)) (a6989586621680438355 :: t a) :: a where ...
  • data Foldl1'Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] a)
  • data Foldl1'Sym1 (a6989586621679852161 :: (~>) a ((~>) a a)) :: (~>) [a] a
  • type family Foldl1'Sym2 (a6989586621679852161 :: (~>) a ((~>) a a)) (a6989586621679852162 :: [a]) :: a where ...
  • data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
  • data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
  • data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b
  • type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ...
  • data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
  • data Foldr1Sym1 (a6989586621680438349 :: (~>) a ((~>) a a)) :: (~>) (t a) a
  • type family Foldr1Sym2 (a6989586621680438349 :: (~>) a ((~>) a a)) (a6989586621680438350 :: t a) :: a where ...
  • data ConcatSym0 :: (~>) (t [a]) [a]
  • type family ConcatSym1 (a6989586621680438203 :: t [a]) :: [a] where ...
  • data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b])
  • data ConcatMapSym1 (a6989586621680438192 :: (~>) a [b]) :: (~>) (t a) [b]
  • type family ConcatMapSym2 (a6989586621680438192 :: (~>) a [b]) (a6989586621680438193 :: t a) :: [b] where ...
  • data AndSym0 :: (~>) (t Bool) Bool
  • type family AndSym1 (a6989586621680438187 :: t Bool) :: Bool where ...
  • data OrSym0 :: (~>) (t Bool) Bool
  • type family OrSym1 (a6989586621680438181 :: t Bool) :: Bool where ...
  • data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
  • data AnySym1 (a6989586621680438173 :: (~>) a Bool) :: (~>) (t a) Bool
  • type family AnySym2 (a6989586621680438173 :: (~>) a Bool) (a6989586621680438174 :: t a) :: Bool where ...
  • data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
  • data AllSym1 (a6989586621680438164 :: (~>) a Bool) :: (~>) (t a) Bool
  • type family AllSym2 (a6989586621680438164 :: (~>) a Bool) (a6989586621680438165 :: t a) :: Bool where ...
  • data SumSym0 :: (~>) (t a) a
  • type family SumSym1 (a6989586621680438378 :: t a) :: a where ...
  • data ProductSym0 :: (~>) (t a) a
  • type family ProductSym1 (a6989586621680438381 :: t a) :: a where ...
  • data MaximumSym0 :: (~>) (t a) a
  • type family MaximumSym1 (a6989586621680438372 :: t a) :: a where ...
  • data MinimumSym0 :: (~>) (t a) a
  • type family MinimumSym1 (a6989586621680438375 :: t a) :: a where ...
  • data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b]))
  • data ScanlSym1 (a6989586621679852094 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b])
  • data ScanlSym2 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) :: (~>) [a] [b]
  • type family ScanlSym3 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) (a6989586621679852096 :: [a]) :: [b] where ...
  • data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
  • data Scanl1Sym1 (a6989586621679852085 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
  • type family Scanl1Sym2 (a6989586621679852085 :: (~>) a ((~>) a a)) (a6989586621679852086 :: [a]) :: [a] where ...
  • data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b]))
  • data ScanrSym1 (a6989586621679852067 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b])
  • data ScanrSym2 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) :: (~>) [a] [b]
  • type family ScanrSym3 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) (a6989586621679852069 :: [a]) :: [b] where ...
  • data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
  • data Scanr1Sym1 (a6989586621679852047 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
  • type family Scanr1Sym2 (a6989586621679852047 :: (~>) a ((~>) a a)) (a6989586621679852048 :: [a]) :: [a] where ...
  • data MapAccumLSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c)))
  • data MapAccumLSym1 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c))
  • data MapAccumLSym2 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) (a6989586621680804437 :: a) :: (~>) (t b) (a, t c)
  • type family MapAccumLSym3 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) (a6989586621680804437 :: a) (a6989586621680804438 :: t b) :: (a, t c) where ...
  • data MapAccumRSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c)))
  • data MapAccumRSym1 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c))
  • data MapAccumRSym2 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) (a6989586621680804427 :: a) :: (~>) (t b) (a, t c)
  • type family MapAccumRSym3 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) (a6989586621680804427 :: a) (a6989586621680804428 :: t b) :: (a, t c) where ...
  • data ReplicateSym0 :: (~>) Natural ((~>) a [a])
  • data ReplicateSym1 (a6989586621679851184 :: Natural) :: (~>) a [a]
  • type family ReplicateSym2 (a6989586621679851184 :: Natural) (a6989586621679851185 :: a) :: [a] where ...
  • data UnfoldrSym0 :: (~>) ((~>) b (Maybe (a, b))) ((~>) b [a])
  • data UnfoldrSym1 (a6989586621679851939 :: (~>) b (Maybe (a, b))) :: (~>) b [a]
  • type family UnfoldrSym2 (a6989586621679851939 :: (~>) b (Maybe (a, b))) (a6989586621679851940 :: b) :: [a] where ...
  • data TakeSym0 :: (~>) Natural ((~>) [a] [a])
  • data TakeSym1 (a6989586621679851339 :: Natural) :: (~>) [a] [a]
  • type family TakeSym2 (a6989586621679851339 :: Natural) (a6989586621679851340 :: [a]) :: [a] where ...
  • data DropSym0 :: (~>) Natural ((~>) [a] [a])
  • data DropSym1 (a6989586621679851326 :: Natural) :: (~>) [a] [a]
  • type family DropSym2 (a6989586621679851326 :: Natural) (a6989586621679851327 :: [a]) :: [a] where ...
  • data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a]))
  • data SplitAtSym1 (a6989586621679851319 :: Natural) :: (~>) [a] ([a], [a])
  • type family SplitAtSym2 (a6989586621679851319 :: Natural) (a6989586621679851320 :: [a]) :: ([a], [a]) where ...
  • data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data TakeWhileSym1 (a6989586621679851456 :: (~>) a Bool) :: (~>) [a] [a]
  • type family TakeWhileSym2 (a6989586621679851456 :: (~>) a Bool) (a6989586621679851457 :: [a]) :: [a] where ...
  • data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data DropWhileSym1 (a6989586621679851441 :: (~>) a Bool) :: (~>) [a] [a]
  • type family DropWhileSym2 (a6989586621679851441 :: (~>) a Bool) (a6989586621679851442 :: [a]) :: [a] where ...
  • data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data DropWhileEndSym1 (a6989586621679851424 :: (~>) a Bool) :: (~>) [a] [a]
  • type family DropWhileEndSym2 (a6989586621679851424 :: (~>) a Bool) (a6989586621679851425 :: [a]) :: [a] where ...
  • data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data SpanSym1 (a6989586621679851387 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family SpanSym2 (a6989586621679851387 :: (~>) a Bool) (a6989586621679851388 :: [a]) :: ([a], [a]) where ...
  • data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data BreakSym1 (a6989586621679851352 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family BreakSym2 (a6989586621679851352 :: (~>) a Bool) (a6989586621679851353 :: [a]) :: ([a], [a]) where ...
  • data StripPrefixSym0 :: (~>) [a] ((~>) [a] (Maybe [a]))
  • data StripPrefixSym1 (a6989586621680008818 :: [a]) :: (~>) [a] (Maybe [a])
  • type family StripPrefixSym2 (a6989586621680008818 :: [a]) (a6989586621680008819 :: [a]) :: Maybe [a] where ...
  • data GroupSym0 :: (~>) [a] [[a]]
  • type family GroupSym1 (a6989586621679851314 :: [a]) :: [[a]] where ...
  • data InitsSym0 :: (~>) [a] [[a]]
  • type family InitsSym1 (a6989586621679851929 :: [a]) :: [[a]] where ...
  • data TailsSym0 :: (~>) [a] [[a]]
  • type family TailsSym1 (a6989586621679851921 :: [a]) :: [[a]] where ...
  • data IsPrefixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsPrefixOfSym1 (a6989586621679851913 :: [a]) :: (~>) [a] Bool
  • type family IsPrefixOfSym2 (a6989586621679851913 :: [a]) (a6989586621679851914 :: [a]) :: Bool where ...
  • data IsSuffixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsSuffixOfSym1 (a6989586621679851906 :: [a]) :: (~>) [a] Bool
  • type family IsSuffixOfSym2 (a6989586621679851906 :: [a]) (a6989586621679851907 :: [a]) :: Bool where ...
  • data IsInfixOfSym0 :: (~>) [a] ((~>) [a] Bool)
  • data IsInfixOfSym1 (a6989586621679851899 :: [a]) :: (~>) [a] Bool
  • type family IsInfixOfSym2 (a6989586621679851899 :: [a]) (a6989586621679851900 :: [a]) :: Bool where ...
  • data ElemSym0 :: (~>) a ((~>) (t a) Bool)
  • data ElemSym1 (a6989586621680438368 :: a) :: (~>) (t a) Bool
  • type family ElemSym2 (a6989586621680438368 :: a) (a6989586621680438369 :: t a) :: Bool where ...
  • data NotElemSym0 :: (~>) a ((~>) (t a) Bool)
  • data NotElemSym1 (a6989586621680438115 :: a) :: (~>) (t a) Bool
  • type family NotElemSym2 (a6989586621680438115 :: a) (a6989586621680438116 :: t a) :: Bool where ...
  • data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b))
  • data LookupSym1 (a6989586621679851247 :: a) :: (~>) [(a, b)] (Maybe b)
  • type family LookupSym2 (a6989586621679851247 :: a) (a6989586621679851248 :: [(a, b)]) :: Maybe b where ...
  • data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a))
  • data FindSym1 (a6989586621680438097 :: (~>) a Bool) :: (~>) (t a) (Maybe a)
  • type family FindSym2 (a6989586621680438097 :: (~>) a Bool) (a6989586621680438098 :: t a) :: Maybe a where ...
  • data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
  • data FilterSym1 (a6989586621679851556 :: (~>) a Bool) :: (~>) [a] [a]
  • type family FilterSym2 (a6989586621679851556 :: (~>) a Bool) (a6989586621679851557 :: [a]) :: [a] where ...
  • data PartitionSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
  • data PartitionSym1 (a6989586621679851240 :: (~>) a Bool) :: (~>) [a] ([a], [a])
  • type family PartitionSym2 (a6989586621679851240 :: (~>) a Bool) (a6989586621679851241 :: [a]) :: ([a], [a]) where ...
  • data (!!@#@$) :: (~>) [a] ((~>) Natural a)
  • data (!!@#@$$) (a6989586621679851164 :: [a]) :: (~>) Natural a
  • type family (a6989586621679851164 :: [a]) !!@#@$$$ (a6989586621679851165 :: Natural) :: a where ...
  • data ElemIndexSym0 :: (~>) a ((~>) [a] (Maybe Natural))
  • data ElemIndexSym1 (a6989586621679851540 :: a) :: (~>) [a] (Maybe Natural)
  • type family ElemIndexSym2 (a6989586621679851540 :: a) (a6989586621679851541 :: [a]) :: Maybe Natural where ...
  • data ElemIndicesSym0 :: (~>) a ((~>) [a] [Natural])
  • data ElemIndicesSym1 (a6989586621679851531 :: a) :: (~>) [a] [Natural]
  • type family ElemIndicesSym2 (a6989586621679851531 :: a) (a6989586621679851532 :: [a]) :: [Natural] where ...
  • data FindIndexSym0 :: (~>) ((~>) a Bool) ((~>) [a] (Maybe Natural))
  • data FindIndexSym1 (a6989586621679851522 :: (~>) a Bool) :: (~>) [a] (Maybe Natural)
  • type family FindIndexSym2 (a6989586621679851522 :: (~>) a Bool) (a6989586621679851523 :: [a]) :: Maybe Natural where ...
  • data FindIndicesSym0 :: (~>) ((~>) a Bool) ((~>) [a] [Natural])
  • data FindIndicesSym1 (a6989586621679851499 :: (~>) a Bool) :: (~>) [a] [Natural]
  • type family FindIndicesSym2 (a6989586621679851499 :: (~>) a Bool) (a6989586621679851500 :: [a]) :: [Natural] where ...
  • data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)])
  • data ZipSym1 (a6989586621679851874 :: [a]) :: (~>) [b] [(a, b)]
  • type family ZipSym2 (a6989586621679851874 :: [a]) (a6989586621679851875 :: [b]) :: [(a, b)] where ...
  • data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)]))
  • data Zip3Sym1 (a6989586621679851862 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)])
  • data Zip3Sym2 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) :: (~>) [c] [(a, b, c)]
  • type family Zip3Sym3 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) (a6989586621679851864 :: [c]) :: [(a, b, c)] where ...
  • data Zip4Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)])))
  • data Zip4Sym1 (a6989586621680008807 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)]))
  • data Zip4Sym2 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) :: (~>) [c] ((~>) [d] [(a, b, c, d)])
  • data Zip4Sym3 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) (a6989586621680008809 :: [c]) :: (~>) [d] [(a, b, c, d)]
  • type family Zip4Sym4 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) (a6989586621680008809 :: [c]) (a6989586621680008810 :: [d]) :: [(a, b, c, d)] where ...
  • data Zip5Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))))
  • data Zip5Sym1 (a6989586621680008784 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])))
  • data Zip5Sym2 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))
  • data Zip5Sym3 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) :: (~>) [d] ((~>) [e] [(a, b, c, d, e)])
  • data Zip5Sym4 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) (a6989586621680008787 :: [d]) :: (~>) [e] [(a, b, c, d, e)]
  • type family Zip5Sym5 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) (a6989586621680008787 :: [d]) (a6989586621680008788 :: [e]) :: [(a, b, c, d, e)] where ...
  • data Zip6Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))))
  • data Zip6Sym1 (a6989586621680008756 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))))
  • data Zip6Sym2 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))
  • data Zip6Sym3 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))
  • data Zip6Sym4 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) :: (~>) [e] ((~>) [f] [(a, b, c, d, e, f)])
  • data Zip6Sym5 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) (a6989586621680008760 :: [e]) :: (~>) [f] [(a, b, c, d, e, f)]
  • type family Zip6Sym6 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) (a6989586621680008760 :: [e]) (a6989586621680008761 :: [f]) :: [(a, b, c, d, e, f)] where ...
  • data Zip7Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))))
  • data Zip7Sym1 (a6989586621680008723 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))))
  • data Zip7Sym2 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))
  • data Zip7Sym3 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))
  • data Zip7Sym4 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))
  • data Zip7Sym5 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) :: (~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])
  • data Zip7Sym6 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) (a6989586621680008728 :: [f]) :: (~>) [g] [(a, b, c, d, e, f, g)]
  • type family Zip7Sym7 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) (a6989586621680008728 :: [f]) (a6989586621680008729 :: [g]) :: [(a, b, c, d, e, f, g)] where ...
  • data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c]))
  • data ZipWithSym1 (a6989586621679851850 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c])
  • data ZipWithSym2 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) :: (~>) [b] [c]
  • type family ZipWithSym3 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) (a6989586621679851852 :: [b]) :: [c] where ...
  • data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d])))
  • data ZipWith3Sym1 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d]))
  • data ZipWith3Sym2 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) :: (~>) [b] ((~>) [c] [d])
  • data ZipWith3Sym3 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) :: (~>) [c] [d]
  • type family ZipWith3Sym4 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) (a6989586621679851838 :: [c]) :: [d] where ...
  • data ZipWith4Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d e)))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e]))))
  • data ZipWith4Sym1 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e])))
  • data ZipWith4Sym2 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [e]))
  • data ZipWith4Sym3 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) :: (~>) [c] ((~>) [d] [e])
  • data ZipWith4Sym4 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) (a6989586621680008690 :: [c]) :: (~>) [d] [e]
  • type family ZipWith4Sym5 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) (a6989586621680008690 :: [c]) (a6989586621680008691 :: [d]) :: [e] where ...
  • data ZipWith5Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))))
  • data ZipWith5Sym1 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))))
  • data ZipWith5Sym2 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))
  • data ZipWith5Sym3 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [f]))
  • data ZipWith5Sym4 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) :: (~>) [d] ((~>) [e] [f])
  • data ZipWith5Sym5 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) (a6989586621680008668 :: [d]) :: (~>) [e] [f]
  • type family ZipWith5Sym6 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) (a6989586621680008668 :: [d]) (a6989586621680008669 :: [e]) :: [f] where ...
  • data ZipWith6Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))))
  • data ZipWith6Sym1 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))))
  • data ZipWith6Sym2 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))
  • data ZipWith6Sym3 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))
  • data ZipWith6Sym4 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [g]))
  • data ZipWith6Sym5 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) :: (~>) [e] ((~>) [f] [g])
  • data ZipWith6Sym6 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) (a6989586621680008642 :: [e]) :: (~>) [f] [g]
  • type family ZipWith6Sym7 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) (a6989586621680008642 :: [e]) (a6989586621680008643 :: [f]) :: [g] where ...
  • data ZipWith7Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))))
  • data ZipWith7Sym1 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))))
  • data ZipWith7Sym2 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))
  • data ZipWith7Sym3 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))
  • data ZipWith7Sym4 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))
  • data ZipWith7Sym5 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [h]))
  • data ZipWith7Sym6 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) :: (~>) [f] ((~>) [g] [h])
  • data ZipWith7Sym7 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) (a6989586621680008612 :: [f]) :: (~>) [g] [h]
  • type family ZipWith7Sym8 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) (a6989586621680008612 :: [f]) (a6989586621680008613 :: [g]) :: [h] where ...
  • data UnzipSym0 :: (~>) [(a, b)] ([a], [b])
  • type family UnzipSym1 (a6989586621679851816 :: [(a, b)]) :: ([a], [b]) where ...
  • data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c])
  • type family Unzip3Sym1 (a6989586621679851798 :: [(a, b, c)]) :: ([a], [b], [c]) where ...
  • data Unzip4Sym0 :: (~>) [(a, b, c, d)] ([a], [b], [c], [d])
  • type family Unzip4Sym1 (a6989586621679851778 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ...
  • data Unzip5Sym0 :: (~>) [(a, b, c, d, e)] ([a], [b], [c], [d], [e])
  • type family Unzip5Sym1 (a6989586621679851756 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ...
  • data Unzip6Sym0 :: (~>) [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f])
  • type family Unzip6Sym1 (a6989586621679851732 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ...
  • data Unzip7Sym0 :: (~>) [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g])
  • type family Unzip7Sym1 (a6989586621679851706 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ...
  • data UnlinesSym0 :: (~>) [Symbol] Symbol
  • type family UnlinesSym1 (a6989586621679851701 :: [Symbol]) :: Symbol where ...
  • data UnwordsSym0 :: (~>) [Symbol] Symbol
  • type family UnwordsSym1 (a6989586621679851691 :: [Symbol]) :: Symbol where ...
  • data NubSym0 :: (~>) [a] [a]
  • type family NubSym1 (a6989586621679851147 :: [a]) :: [a] where ...
  • data DeleteSym0 :: (~>) a ((~>) [a] [a])
  • data DeleteSym1 (a6989586621679851685 :: a) :: (~>) [a] [a]
  • type family DeleteSym2 (a6989586621679851685 :: a) (a6989586621679851686 :: [a]) :: [a] where ...
  • data (\\@#@$) :: (~>) [a] ((~>) [a] [a])
  • data (\\@#@$$) (a6989586621679851674 :: [a]) :: (~>) [a] [a]
  • type family (a6989586621679851674 :: [a]) \\@#@$$$ (a6989586621679851675 :: [a]) :: [a] where ...
  • data UnionSym0 :: (~>) [a] ((~>) [a] [a])
  • data UnionSym1 (a6989586621679851101 :: [a]) :: (~>) [a] [a]
  • type family UnionSym2 (a6989586621679851101 :: [a]) (a6989586621679851102 :: [a]) :: [a] where ...
  • data IntersectSym0 :: (~>) [a] ((~>) [a] [a])
  • data IntersectSym1 (a6989586621679851492 :: [a]) :: (~>) [a] [a]
  • type family IntersectSym2 (a6989586621679851492 :: [a]) (a6989586621679851493 :: [a]) :: [a] where ...
  • data InsertSym0 :: (~>) a ((~>) [a] [a])
  • data InsertSym1 (a6989586621679851294 :: a) :: (~>) [a] [a]
  • type family InsertSym2 (a6989586621679851294 :: a) (a6989586621679851295 :: [a]) :: [a] where ...
  • data SortSym0 :: (~>) [a] [a]
  • type family SortSym1 (a6989586621679851289 :: [a]) :: [a] where ...
  • data NubBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [a])
  • data NubBySym1 (a6989586621679851129 :: (~>) a ((~>) a Bool)) :: (~>) [a] [a]
  • type family NubBySym2 (a6989586621679851129 :: (~>) a ((~>) a Bool)) (a6989586621679851130 :: [a]) :: [a] where ...
  • data DeleteBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) a ((~>) [a] [a]))
  • data DeleteBySym1 (a6989586621679851655 :: (~>) a ((~>) a Bool)) :: (~>) a ((~>) [a] [a])
  • data DeleteBySym2 (a6989586621679851655 :: (~>) a ((~>) a Bool)) (a6989586621679851656 :: a) :: (~>) [a] [a]
  • type family DeleteBySym3 (a6989586621679851655 :: (~>) a ((~>) a Bool)) (a6989586621679851656 :: a) (a6989586621679851657 :: [a]) :: [a] where ...
  • data DeleteFirstsBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data DeleteFirstsBySym1 (a6989586621679851645 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data DeleteFirstsBySym2 (a6989586621679851645 :: (~>) a ((~>) a Bool)) (a6989586621679851646 :: [a]) :: (~>) [a] [a]
  • type family DeleteFirstsBySym3 (a6989586621679851645 :: (~>) a ((~>) a Bool)) (a6989586621679851646 :: [a]) (a6989586621679851647 :: [a]) :: [a] where ...
  • data UnionBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data UnionBySym1 (a6989586621679851109 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data UnionBySym2 (a6989586621679851109 :: (~>) a ((~>) a Bool)) (a6989586621679851110 :: [a]) :: (~>) [a] [a]
  • type family UnionBySym3 (a6989586621679851109 :: (~>) a ((~>) a Bool)) (a6989586621679851110 :: [a]) (a6989586621679851111 :: [a]) :: [a] where ...
  • data IntersectBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a]))
  • data IntersectBySym1 (a6989586621679851470 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a])
  • data IntersectBySym2 (a6989586621679851470 :: (~>) a ((~>) a Bool)) (a6989586621679851471 :: [a]) :: (~>) [a] [a]
  • type family IntersectBySym3 (a6989586621679851470 :: (~>) a ((~>) a Bool)) (a6989586621679851471 :: [a]) (a6989586621679851472 :: [a]) :: [a] where ...
  • data GroupBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [[a]])
  • data GroupBySym1 (a6989586621679851262 :: (~>) a ((~>) a Bool)) :: (~>) [a] [[a]]
  • type family GroupBySym2 (a6989586621679851262 :: (~>) a ((~>) a Bool)) (a6989586621679851263 :: [a]) :: [[a]] where ...
  • data SortBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) [a] [a])
  • data SortBySym1 (a6989586621679851633 :: (~>) a ((~>) a Ordering)) :: (~>) [a] [a]
  • type family SortBySym2 (a6989586621679851633 :: (~>) a ((~>) a Ordering)) (a6989586621679851634 :: [a]) :: [a] where ...
  • data InsertBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) a ((~>) [a] [a]))
  • data InsertBySym1 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) :: (~>) a ((~>) [a] [a])
  • data InsertBySym2 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) (a6989586621679851614 :: a) :: (~>) [a] [a]
  • type family InsertBySym3 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) (a6989586621679851614 :: a) (a6989586621679851615 :: [a]) :: [a] where ...
  • data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
  • data MaximumBySym1 (a6989586621680438144 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
  • type family MaximumBySym2 (a6989586621680438144 :: (~>) a ((~>) a Ordering)) (a6989586621680438145 :: t a) :: a where ...
  • data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a)
  • data MinimumBySym1 (a6989586621680438124 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a
  • type family MinimumBySym2 (a6989586621680438124 :: (~>) a ((~>) a Ordering)) (a6989586621680438125 :: t a) :: a where ...
  • data GenericLengthSym0 :: (~>) [a] i
  • type family GenericLengthSym1 (a6989586621679851092 :: [a]) :: i where ...

The singleton for lists

type family Sing :: k -> Type #

Instances

Instances details
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAll
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SAny
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SVoid
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SNat
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple0
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SBool
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SChar
type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SIdentity :: Identity a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Monoid.Singletons

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Ord.Singletons

type Sing = SDown :: Down a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SFirst :: First a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SLast :: Last a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMax :: Max a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SMin :: Min a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SDual :: Dual a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SProduct :: Product a -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sing = SSum :: Sum a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SNonEmpty :: NonEmpty a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SMaybe :: Maybe a -> Type
type Sing Source #

A choice of singleton for the kind TYPE rep (for some RuntimeRep rep), an instantiation of which is the famous kind Type.

Conceivably, one could generalize this instance to `Sing @k` for any kind k, and remove all other Sing instances. We don't adopt this design, however, since it is far more convenient in practice to work with explicit singleton values than TypeReps (for instance, TypeReps are more difficult to pattern match on, and require extra runtime checks).

We cannot produce explicit singleton values for everything in TYPE rep, however, since it is an open kind, so we reach for TypeRep in this one particular case.

Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

type Sing = TypeRep :: TYPE rep -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SList :: [a] -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = SEither :: Either a b -> Type
type Sing Source # 
Instance details

Defined in Data.Proxy.Singletons

type Sing = SProxy :: Proxy t -> Type
type Sing Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sing = SArg :: Arg a b -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SWrappedSing :: WrappedSing a -> Type
type Sing 
Instance details

Defined in Data.Singletons

type Sing = SLambda :: (k1 ~> k2) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple2 :: (a, b) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sing = SConst :: Const a b -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple3 :: (a, b, c) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sing = SProduct :: Product f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sing = SSum :: Sum f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple4 :: (a, b, c, d) -> Type
type Sing Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sing = SCompose :: Compose f g a -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple5 :: (a, b, c, d, e) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple6 :: (a, b, c, d, e, f) -> Type
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Sing = STuple7 :: (a, b, c, d, e, f, g) -> Type

data SList :: forall (a :: Type). [a] -> Type where Source #

Constructors

SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) 
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

Basic functions

type family (a :: [a]) ++ (a :: [a]) :: [a] where ... infixr 5 Source #

Equations

'[] ++ ys = ys 
('(:) x xs) ++ ys = Apply (Apply (:@#@$) x) (Apply (Apply (++@#@$) xs) ys) 

(%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a]) infixr 5 Source #

type family Head (a :: [a]) :: a where ... Source #

Equations

Head ('(:) a _) = a 
Head '[] = Apply ErrorSym0 "Data.Singletons.List.head: empty list" 

sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a) Source #

type family Last (a :: [a]) :: a where ... Source #

Equations

Last '[] = Apply ErrorSym0 "Data.Singletons.List.last: empty list" 
Last '[x] = x 
Last ('(:) _ ('(:) x xs)) = Apply LastSym0 (Apply (Apply (:@#@$) x) xs) 

sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a) Source #

type family Tail (a :: [a]) :: [a] where ... Source #

Equations

Tail ('(:) _ t) = t 
Tail '[] = Apply ErrorSym0 "Data.Singletons.List.tail: empty list" 

sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a]) Source #

type family Init (a :: [a]) :: [a] where ... Source #

Equations

Init '[] = Apply ErrorSym0 "Data.Singletons.List.init: empty list" 
Init ('(:) x xs) = Apply (Apply (Let6989586621679852307Init'Sym2 x xs) x) xs 

sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a]) Source #

type family Null (arg :: t a) :: Bool Source #

Instances

Instances details
type Null (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Null (a2 :: Identity a1)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Last a)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Last a)
type Null (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Max a)
type Null (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Min a)
type Null (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Dual a1)
type Null (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Product a1)
type Null (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Sum a1)
type Null (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: NonEmpty a)
type Null (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Maybe a)
type Null (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: [a1])
type Null (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a3 :: Either a1 a2)
type Null (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Proxy a1)
type Null (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Arg a1 a2)
type Null (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: (a1, a2))
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Null (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Null (arg :: Product f g a)
type Null (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Null (arg :: Sum f g a)
type Null (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Null (arg :: Compose f g a)

sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

type family Length (arg :: t a) :: Natural Source #

Instances

Instances details
type Length (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Length (a2 :: Identity a1)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Last a)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Last a)
type Length (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Max a)
type Length (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Min a)
type Length (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Dual a1)
type Length (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Product a1)
type Length (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Sum a1)
type Length (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: NonEmpty a)
type Length (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Maybe a)
type Length (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: [a1])
type Length (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a3 :: Either a1 a2)
type Length (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Proxy a1)
type Length (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Arg a1 a2)
type Length (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: (a1, a2))
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Length (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Length (arg :: Product f g a)
type Length (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Length (arg :: Sum f g a)
type Length (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Length (arg :: Compose f g a)

sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #

List transformations

type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ... Source #

Equations

Map _ '[] = NilSym0 
Map f ('(:) x xs) = Apply (Apply (:@#@$) (Apply f x)) (Apply (Apply MapSym0 f) xs) 

sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b]) Source #

type family Reverse (a :: [a]) :: [a] where ... Source #

Equations

Reverse l = Apply (Apply (Let6989586621679852291RevSym1 l) l) NilSym0 

sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a]) Source #

type family Intersperse (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Intersperse _ '[] = NilSym0 
Intersperse sep ('(:) x xs) = Apply (Apply (:@#@$) x) (Apply (Apply PrependToAllSym0 sep) xs) 

sIntersperse :: forall a (t :: a) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply IntersperseSym0 t) t :: [a]) Source #

type family Intercalate (a :: [a]) (a :: [[a]]) :: [a] where ... Source #

Equations

Intercalate xs xss = Apply ConcatSym0 (Apply (Apply IntersperseSym0 xs) xss) 

sIntercalate :: forall a (t :: [a]) (t :: [[a]]). Sing t -> Sing t -> Sing (Apply (Apply IntercalateSym0 t) t :: [a]) Source #

type family Transpose (a :: [[a]]) :: [[a]] where ... Source #

Equations

Transpose '[] = NilSym0 
Transpose ('(:) '[] xss) = Apply TransposeSym0 xss 
Transpose ('(:) ('(:) x xs) xss) = Apply (Apply (:@#@$) (Apply (Apply (:@#@$) x) (Apply (Apply MapSym0 HeadSym0) xss))) (Apply TransposeSym0 (Apply (Apply (:@#@$) xs) (Apply (Apply MapSym0 TailSym0) xss))) 

sTranspose :: forall a (t :: [[a]]). Sing t -> Sing (Apply TransposeSym0 t :: [[a]]) Source #

type family Subsequences (a :: [a]) :: [[a]] where ... Source #

Equations

Subsequences xs = Apply (Apply (:@#@$) NilSym0) (Apply NonEmptySubsequencesSym0 xs) 

sSubsequences :: forall a (t :: [a]). Sing t -> Sing (Apply SubsequencesSym0 t :: [[a]]) Source #

type family Permutations (a :: [a]) :: [[a]] where ... Source #

Equations

Permutations xs0 = Apply (Apply (:@#@$) xs0) (Apply (Apply (Let6989586621679852198PermsSym1 xs0) xs0) NilSym0) 

sPermutations :: forall a (t :: [a]). Sing t -> Sing (Apply PermutationsSym0 t :: [[a]]) Source #

Reducing lists (folds)

type family Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

type family Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: First a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Last a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: First a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Last a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Max a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Min a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: NonEmpty a)
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Maybe a)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (a2 :: k2 ~> (a1 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a ~> b)) (arg2 :: b) (arg3 :: Proxy a)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: Either a2 a1)
type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl' (arg :: b ~> (a1 ~> b)) (arg1 :: b) (arg2 :: Arg a2 a1)
type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl' (arg1 :: b ~> (a1 ~> b)) (arg2 :: b) (arg3 :: (a2, a1))
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Const m a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl' (arg :: b ~> (a ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #

type family Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

Instances

Instances details
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldl1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldl1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldl1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

type family Foldl1' (a :: (~>) a ((~>) a a)) (a :: [a]) :: a where ... Source #

Equations

Foldl1' f ('(:) x xs) = Apply (Apply (Apply Foldl'Sym0 f) x) xs 
Foldl1' _ '[] = Apply ErrorSym0 "Data.Singletons.List.foldl1': empty list" 

sFoldl1' :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Foldl1'Sym0 t) t :: a) Source #

type family Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

Instances

Instances details
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Identity a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: First a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Last a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Max a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Min a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Dual a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Product a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Sum a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: NonEmpty a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Maybe a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: [a1])
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Either a2 a1)
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Proxy a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: Arg a2 a1)
type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr (a3 :: a1 ~> (k2 ~> k2)) (a4 :: k2) (a5 :: (a2, a1))
type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr (a2 :: a1 ~> (k2 ~> k2)) (a3 :: k2) (a4 :: Const m a1)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Product f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Sum f g a)
type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr (arg :: a ~> (b ~> b)) (arg1 :: b) (arg2 :: Compose f g a)

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

type family Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

Instances

Instances details
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: First a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Last a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: First a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Last a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Max a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Min a)
type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a ~> (a ~> a)) (arg2 :: Maybe a)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Identity k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Dual k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Product k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Sum k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: NonEmpty k2)
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: [k2])
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: Either a2 a1)
type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Foldr1 (arg :: a1 ~> (a1 ~> a1)) (arg1 :: Arg a2 a1)
type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (arg1 :: a1 ~> (a1 ~> a1)) (arg2 :: (a2, a1))
type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Foldr1 (a1 :: k2 ~> (k2 ~> k2)) (a2 :: Proxy k2)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Const m a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Product f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Sum f g a)
type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Foldr1 (arg :: a ~> (a ~> a)) (arg1 :: Compose f g a)

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

Special folds

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680438205Sym0 xs)) NilSym0) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680438196Sym0 f) xs)) NilSym0) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And a_6989586621680438183 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680438183 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or a_6989586621680438177 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680438177 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p a_6989586621680438168 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) Any_Sym0) p))) a_6989586621680438168 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p a_6989586621680438159 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) All_Sym0) p))) a_6989586621680438159 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family Sum (arg :: t a) :: a Source #

Instances

Instances details
type Sum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Sum (a :: Identity k2)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Last a)
type Sum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: First a)
type Sum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Last a)
type Sum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Max a)
type Sum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Min a)
type Sum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Dual k2)
type Sum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Product k2)
type Sum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Sum k2)
type Sum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: NonEmpty a)
type Sum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Maybe a)
type Sum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: [k2])
type Sum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: Either a1 a2)
type Sum (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (a :: Proxy k2)
type Sum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Sum (arg :: Arg a1 a2)
type Sum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Sum (arg :: (a1, a2))
type Sum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Sum (arg :: Const m a)
type Sum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Sum (arg :: Product f g a)
type Sum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Sum (arg :: Sum f g a)
type Sum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Sum (arg :: Compose f g a)

sSum :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

type family Product (arg :: t a) :: a Source #

Instances

Instances details
type Product (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Product (a :: Identity k2)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Last a)
type Product (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: First a)
type Product (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Last a)
type Product (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Max a)
type Product (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Min a)
type Product (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Dual k2)
type Product (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Product k2)
type Product (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Sum k2)
type Product (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: NonEmpty a)
type Product (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Maybe a)
type Product (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: [k2])
type Product (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: Either a1 a2)
type Product (a :: Proxy k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (a :: Proxy k2)
type Product (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Product (arg :: Arg a1 a2)
type Product (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Product (arg :: (a1, a2))
type Product (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Product (arg :: Const m a)
type Product (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Product (arg :: Product f g a)
type Product (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Product (arg :: Sum f g a)
type Product (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Product (arg :: Compose f g a)

sProduct :: forall a (t :: t a). (SFoldable t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

type family Maximum (arg :: t a) :: a Source #

Instances

Instances details
type Maximum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Maximum (a :: Identity k2)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: First a)
type Maximum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Last a)
type Maximum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Max a)
type Maximum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Min a)
type Maximum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Dual k2)
type Maximum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Product k2)
type Maximum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: Sum k2)
type Maximum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: NonEmpty a)
type Maximum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Maybe a)
type Maximum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (a :: [k2])
type Maximum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Either a1 a2)
type Maximum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: Proxy a)
type Maximum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Maximum (arg :: Arg a1 a2)
type Maximum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Maximum (arg :: (a1, a2))
type Maximum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Maximum (arg :: Const m a)
type Maximum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Maximum (arg :: Product f g a)
type Maximum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Maximum (arg :: Sum f g a)
type Maximum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Maximum (arg :: Compose f g a)

sMaximum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

type family Minimum (arg :: t a) :: a Source #

Instances

Instances details
type Minimum (a :: Identity k2) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Minimum (a :: Identity k2)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: First a)
type Minimum (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Last a)
type Minimum (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Max a)
type Minimum (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Min a)
type Minimum (a :: Dual k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Dual k2)
type Minimum (a :: Product k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Product k2)
type Minimum (a :: Sum k2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: Sum k2)
type Minimum (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: NonEmpty a)
type Minimum (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Maybe a)
type Minimum (a :: [k2]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (a :: [k2])
type Minimum (arg :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Either a1 a2)
type Minimum (arg :: Proxy a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: Proxy a)
type Minimum (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Minimum (arg :: Arg a1 a2)
type Minimum (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Minimum (arg :: (a1, a2))
type Minimum (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Minimum (arg :: Const m a)
type Minimum (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Minimum (arg :: Product f g a)
type Minimum (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Minimum (arg :: Sum f g a)
type Minimum (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Minimum (arg :: Compose f g a)

sMinimum :: forall a (t :: t a). (SFoldable t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

Building lists

Scans

type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanl f q ls = Apply (Apply (:@#@$) q) (Case_6989586621679852100 f q ls ls) 

sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b]) Source #

type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanl1 f ('(:) x xs) = Apply (Apply (Apply ScanlSym0 f) x) xs 
Scanl1 _ '[] = NilSym0 

sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a]) Source #

type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanr _ q0 '[] = Apply (Apply (:@#@$) q0) NilSym0 
Scanr f q0 ('(:) x xs) = Case_6989586621679852077 f q0 x xs (Let6989586621679852075Scrutinee_6989586621679848020Sym4 f q0 x xs) 

sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b]) Source #

type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanr1 _ '[] = NilSym0 
Scanr1 _ '[x] = Apply (Apply (:@#@$) x) NilSym0 
Scanr1 f ('(:) x ('(:) wild_6989586621679848032 wild_6989586621679848034)) = Case_6989586621679852058 f x wild_6989586621679848032 wild_6989586621679848034 (Let6989586621679852056Scrutinee_6989586621679848026Sym4 f x wild_6989586621679848032 wild_6989586621679848034) 

sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a]) Source #

Accumulating maps

type family MapAccumL (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ... Source #

Equations

MapAccumL f s t = Apply (Apply RunStateLSym0 (Apply (Apply TraverseSym0 (Apply (Apply (.@#@$) StateLSym0) (Apply FlipSym0 f))) t)) s 

sMapAccumL :: forall t a b c (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumLSym0 t) t) t :: (a, t c)) Source #

type family MapAccumR (a :: (~>) a ((~>) b (a, c))) (a :: a) (a :: t b) :: (a, t c) where ... Source #

Equations

MapAccumR f s t = Apply (Apply RunStateRSym0 (Apply (Apply TraverseSym0 (Apply (Apply (.@#@$) StateRSym0) (Apply FlipSym0 f))) t)) s 

sMapAccumR :: forall a b c t (t :: (~>) a ((~>) b (a, c))) (t :: a) (t :: t b). STraversable t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply MapAccumRSym0 t) t) t :: (a, t c)) Source #

Cyclical lists

type family Replicate (a :: Natural) (a :: a) :: [a] where ... Source #

Equations

Replicate n x = Case_6989586621679851190 n x (Let6989586621679851188Scrutinee_6989586621679848128Sym2 n x) 

sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a]) Source #

Unfolding

type family Unfoldr (a :: (~>) b (Maybe (a, b))) (a :: b) :: [a] where ... Source #

Equations

Unfoldr f b = Case_6989586621679851945 f b (Let6989586621679851943Scrutinee_6989586621679848036Sym2 f b) 

sUnfoldr :: forall b a (t :: (~>) b (Maybe (a, b))) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply UnfoldrSym0 t) t :: [a]) Source #

Sublists

Extracting sublists

type family Take (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Take _ '[] = NilSym0 
Take n ('(:) x xs) = Case_6989586621679851346 n x xs (Let6989586621679851344Scrutinee_6989586621679848112Sym3 n x xs) 

sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a]) Source #

type family Drop (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Drop _ '[] = NilSym0 
Drop n ('(:) x xs) = Case_6989586621679851333 n x xs (Let6989586621679851331Scrutinee_6989586621679848114Sym3 n x xs) 

sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a]) Source #

type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAt n xs = Apply (Apply Tuple2Sym0 (Apply (Apply TakeSym0 n) xs)) (Apply (Apply DropSym0 n) xs) 

sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a])) Source #

type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

TakeWhile _ '[] = NilSym0 
TakeWhile p ('(:) x xs) = Case_6989586621679851463 p x xs (Let6989586621679851461Scrutinee_6989586621679848102Sym3 p x xs) 

sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a]) Source #

type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

DropWhile _ '[] = NilSym0 
DropWhile p ('(:) x xs') = Case_6989586621679851450 p x xs' (Let6989586621679851448Scrutinee_6989586621679848104Sym3 p x xs') 

sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a]) Source #

type family DropWhileEnd (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

DropWhileEnd p a_6989586621679851419 = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621679851428Sym0 p) a_6989586621679851419)) NilSym0) a_6989586621679851419 

sDropWhileEnd :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileEndSym0 t) t :: [a]) Source #

type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Span _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851389XsSym0) Let6989586621679851389XsSym0 
Span p ('(:) x xs') = Case_6989586621679851398 p x xs' (Let6989586621679851396Scrutinee_6989586621679848108Sym3 p x xs') 

sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a])) Source #

type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Break _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851354XsSym0) Let6989586621679851354XsSym0 
Break p ('(:) x xs') = Case_6989586621679851363 p x xs' (Let6989586621679851361Scrutinee_6989586621679848110Sym3 p x xs') 

sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a])) Source #

type family StripPrefix (a :: [a]) (a :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefix '[] ys = Apply JustSym0 ys 
StripPrefix arg_6989586621680007509 arg_6989586621680007511 = Case_6989586621680008823 arg_6989586621680007509 arg_6989586621680007511 (Apply (Apply Tuple2Sym0 arg_6989586621680007509) arg_6989586621680007511) 

type family Group (a :: [a]) :: [[a]] where ... Source #

Equations

Group xs = Apply (Apply GroupBySym0 (==@#@$)) xs 

sGroup :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply GroupSym0 t :: [[a]]) Source #

type family Inits (a :: [a]) :: [[a]] where ... Source #

Equations

Inits xs = Apply (Apply (:@#@$) NilSym0) (Case_6989586621679851931 xs xs) 

sInits :: forall a (t :: [a]). Sing t -> Sing (Apply InitsSym0 t :: [[a]]) Source #

type family Tails (a :: [a]) :: [[a]] where ... Source #

Equations

Tails xs = Apply (Apply (:@#@$) xs) (Case_6989586621679851923 xs xs) 

sTails :: forall a (t :: [a]). Sing t -> Sing (Apply TailsSym0 t :: [[a]]) Source #

Predicates

type family IsPrefixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsPrefixOf '[] '[] = TrueSym0 
IsPrefixOf '[] ('(:) _ _) = TrueSym0 
IsPrefixOf ('(:) _ _) '[] = FalseSym0 
IsPrefixOf ('(:) x xs) ('(:) y ys) = Apply (Apply (&&@#@$) (Apply (Apply (==@#@$) x) y)) (Apply (Apply IsPrefixOfSym0 xs) ys) 

sIsPrefixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsPrefixOfSym0 t) t :: Bool) Source #

type family IsSuffixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsSuffixOf x y = Apply (Apply IsPrefixOfSym0 (Apply ReverseSym0 x)) (Apply ReverseSym0 y) 

sIsSuffixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsSuffixOfSym0 t) t :: Bool) Source #

type family IsInfixOf (a :: [a]) (a :: [a]) :: Bool where ... Source #

Equations

IsInfixOf needle haystack = Apply (Apply AnySym0 (Apply IsPrefixOfSym0 needle)) (Apply TailsSym0 haystack) 

sIsInfixOf :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IsInfixOfSym0 t) t :: Bool) Source #

Searching lists

Searching by equality

type family Elem (arg :: a) (arg :: t a) :: Bool Source #

Instances

Instances details
type Elem (arg1 :: a) (arg2 :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: First a)
type Elem (arg1 :: a) (arg2 :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Last a)
type Elem (arg :: a) (arg1 :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: First a)
type Elem (arg :: a) (arg1 :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Last a)
type Elem (arg :: a) (arg1 :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Max a)
type Elem (arg :: a) (arg1 :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a) (arg1 :: Min a)
type Elem (arg1 :: a) (arg2 :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: NonEmpty a)
type Elem (arg1 :: a) (arg2 :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a) (arg2 :: Maybe a)
type Elem (a1 :: k1) (a2 :: Identity k1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Elem (a1 :: k1) (a2 :: Identity k1)
type Elem (a1 :: k1) (a2 :: Dual k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Dual k1)
type Elem (a1 :: k1) (a2 :: Product k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Product k1)
type Elem (a1 :: k1) (a2 :: Sum k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Sum k1)
type Elem (a1 :: k1) (a2 :: [k1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: [k1])
type Elem (arg1 :: a1) (arg2 :: Either a2 a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: Either a2 a1)
type Elem (arg :: a1) (arg1 :: Arg a2 a1) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Elem (arg :: a1) (arg1 :: Arg a2 a1)
type Elem (arg1 :: a1) (arg2 :: (a2, a1)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (arg1 :: a1) (arg2 :: (a2, a1))
type Elem (a1 :: k1) (a2 :: Proxy k1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Elem (a1 :: k1) (a2 :: Proxy k1)
type Elem (arg :: a) (arg1 :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Elem (arg :: a) (arg1 :: Const m a)
type Elem (arg :: a) (arg1 :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Elem (arg :: a) (arg1 :: Product f g a)
type Elem (arg :: a) (arg1 :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Elem (arg :: a) (arg1 :: Sum f g a)
type Elem (arg :: a) (arg1 :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Elem (arg :: a) (arg1 :: Compose f g a)

sElem :: forall a (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680438110 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680438110 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ... Source #

Equations

Lookup _key '[] = NothingSym0 
Lookup key ('(:) '(x, y) xys) = Case_6989586621679851256 key x y xys (Let6989586621679851254Scrutinee_6989586621679848124Sym4 key x y xys) 

sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b) Source #

Searching with a predicate

type family Find (a :: (~>) a Bool) (a :: t a) :: Maybe a where ... Source #

Equations

Find p a_6989586621680438092 = Apply (Apply (Apply (.@#@$) GetFirstSym0) (Apply FoldMapSym0 (Apply (Apply Lambda_6989586621680438101Sym0 p) a_6989586621680438092))) a_6989586621680438092 

sFind :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply FindSym0 t) t :: Maybe a) Source #

type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

Filter _p '[] = NilSym0 
Filter p ('(:) x xs) = Case_6989586621679851564 p x xs (Let6989586621679851562Scrutinee_6989586621679848090Sym3 p x xs) 

sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a]) Source #

type family Partition (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Partition p xs = Apply (Apply (Apply FoldrSym0 (Apply SelectSym0 p)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs 

sPartition :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply PartitionSym0 t) t :: ([a], [a])) Source #

Indexing lists

type family (a :: [a]) !! (a :: Natural) :: a where ... infixl 9 Source #

Equations

'[] !! _ = Apply ErrorSym0 "Data.Singletons.List.!!: index too large" 
('(:) x xs) !! n = Case_6989586621679851171 x xs n (Let6989586621679851169Scrutinee_6989586621679848130Sym3 x xs n) 

(%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a) infixl 9 Source #

type family ElemIndex (a :: a) (a :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndex x a_6989586621679851535 = Apply (Apply FindIndexSym0 (Apply (==@#@$) x)) a_6989586621679851535 

sElemIndex :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndexSym0 t) t :: Maybe Natural) Source #

type family ElemIndices (a :: a) (a :: [a]) :: [Natural] where ... Source #

Equations

ElemIndices x a_6989586621679851526 = Apply (Apply FindIndicesSym0 (Apply (==@#@$) x)) a_6989586621679851526 

sElemIndices :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemIndicesSym0 t) t :: [Natural]) Source #

type family FindIndex (a :: (~>) a Bool) (a :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndex p a_6989586621679851517 = Apply (Apply (Apply (.@#@$) ListToMaybeSym0) (Apply FindIndicesSym0 p)) a_6989586621679851517 

sFindIndex :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndexSym0 t) t :: Maybe Natural) Source #

type family FindIndices (a :: (~>) a Bool) (a :: [a]) :: [Natural] where ... Source #

Equations

FindIndices p xs = Apply (Apply MapSym0 SndSym0) (Apply (Apply FilterSym0 (Apply (Apply Lambda_6989586621679851509Sym0 p) xs)) (Apply (Apply ZipSym0 xs) (Apply (Apply (Let6989586621679851503BuildListSym2 p xs) (FromInteger 0)) xs))) 

sFindIndices :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FindIndicesSym0 t) t :: [Natural]) Source #

Zipping and unzipping lists

type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ... Source #

Equations

Zip ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply Tuple2Sym0 x) y)) (Apply (Apply ZipSym0 xs) ys) 
Zip '[] '[] = NilSym0 
Zip ('(:) _ _) '[] = NilSym0 
Zip '[] ('(:) _ _) = NilSym0 

sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)]) Source #

type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3 ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) 
Zip3 '[] '[] '[] = NilSym0 
Zip3 '[] '[] ('(:) _ _) = NilSym0 
Zip3 '[] ('(:) _ _) '[] = NilSym0 
Zip3 '[] ('(:) _ _) ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) '[] '[] = NilSym0 
Zip3 ('(:) _ _) '[] ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)]) Source #

type family Zip4 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4 a_6989586621680008794 a_6989586621680008796 a_6989586621680008798 a_6989586621680008800 = Apply (Apply (Apply (Apply (Apply ZipWith4Sym0 Tuple4Sym0) a_6989586621680008794) a_6989586621680008796) a_6989586621680008798) a_6989586621680008800 

type family Zip5 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5 a_6989586621680008768 a_6989586621680008770 a_6989586621680008772 a_6989586621680008774 a_6989586621680008776 = Apply (Apply (Apply (Apply (Apply (Apply ZipWith5Sym0 Tuple5Sym0) a_6989586621680008768) a_6989586621680008770) a_6989586621680008772) a_6989586621680008774) a_6989586621680008776 

type family Zip6 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6 a_6989586621680008737 a_6989586621680008739 a_6989586621680008741 a_6989586621680008743 a_6989586621680008745 a_6989586621680008747 = Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith6Sym0 Tuple6Sym0) a_6989586621680008737) a_6989586621680008739) a_6989586621680008741) a_6989586621680008743) a_6989586621680008745) a_6989586621680008747 

type family Zip7 (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7 a_6989586621680008701 a_6989586621680008703 a_6989586621680008705 a_6989586621680008707 a_6989586621680008709 a_6989586621680008711 a_6989586621680008713 = Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith7Sym0 Tuple7Sym0) a_6989586621680008701) a_6989586621680008703) a_6989586621680008705) a_6989586621680008707) a_6989586621680008709) a_6989586621680008711) a_6989586621680008713 

type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ... Source #

Equations

ZipWith f ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply f x) y)) (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 
ZipWith _ '[] '[] = NilSym0 
ZipWith _ ('(:) _ _) '[] = NilSym0 
ZipWith _ '[] ('(:) _ _) = NilSym0 

sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c]) Source #

type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ... Source #

Equations

ZipWith3 z ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) 
ZipWith3 _ '[] '[] '[] = NilSym0 
ZipWith3 _ '[] '[] ('(:) _ _) = NilSym0 
ZipWith3 _ '[] ('(:) _ _) '[] = NilSym0 
ZipWith3 _ '[] ('(:) _ _) ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) '[] '[] = NilSym0 
ZipWith3 _ ('(:) _ _) '[] ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d]) Source #

type family ZipWith4 (a :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) :: [e] where ... Source #

Equations

ZipWith4 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply z a) b) c) d)) (Apply (Apply (Apply (Apply (Apply ZipWith4Sym0 z) as) bs) cs) ds) 
ZipWith4 _ _ _ _ _ = NilSym0 

type family ZipWith5 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) :: [f] where ... Source #

Equations

ZipWith5 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e)) (Apply (Apply (Apply (Apply (Apply (Apply ZipWith5Sym0 z) as) bs) cs) ds) es) 
ZipWith5 _ _ _ _ _ _ = NilSym0 

type family ZipWith6 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) :: [g] where ... Source #

Equations

ZipWith6 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) ('(:) f fs) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e) f)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith6Sym0 z) as) bs) cs) ds) es) fs) 
ZipWith6 _ _ _ _ _ _ _ = NilSym0 

type family ZipWith7 (a :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a :: [a]) (a :: [b]) (a :: [c]) (a :: [d]) (a :: [e]) (a :: [f]) (a :: [g]) :: [h] where ... Source #

Equations

ZipWith7 z ('(:) a as) ('(:) b bs) ('(:) c cs) ('(:) d ds) ('(:) e es) ('(:) f fs) ('(:) g gs) = Apply (Apply (:@#@$) (Apply (Apply (Apply (Apply (Apply (Apply (Apply z a) b) c) d) e) f) g)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply (Apply ZipWith7Sym0 z) as) bs) cs) ds) es) fs) gs) 
ZipWith7 _ _ _ _ _ _ _ _ = NilSym0 

type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

Unzip xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851818Sym0 xs)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs 

sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b])) Source #

type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851800Sym0 xs)) (Apply (Apply (Apply Tuple3Sym0 NilSym0) NilSym0) NilSym0)) xs 

sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c])) Source #

type family Unzip4 (a :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851780Sym0 xs)) (Apply (Apply (Apply (Apply Tuple4Sym0 NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip4 :: forall a b c d (t :: [(a, b, c, d)]). Sing t -> Sing (Apply Unzip4Sym0 t :: ([a], [b], [c], [d])) Source #

type family Unzip5 (a :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851758Sym0 xs)) (Apply (Apply (Apply (Apply (Apply Tuple5Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip5 :: forall a b c d e (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply Unzip5Sym0 t :: ([a], [b], [c], [d], [e])) Source #

type family Unzip6 (a :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851734Sym0 xs)) (Apply (Apply (Apply (Apply (Apply (Apply Tuple6Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip6 :: forall a b c d e f (t :: [(a, b, c, d, e, f)]). Sing t -> Sing (Apply Unzip6Sym0 t :: ([a], [b], [c], [d], [e], [f])) Source #

type family Unzip7 (a :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851708Sym0 xs)) (Apply (Apply (Apply (Apply (Apply (Apply (Apply Tuple7Sym0 NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0) NilSym0)) xs 

sUnzip7 :: forall a b c d e f g (t :: [(a, b, c, d, e, f, g)]). Sing t -> Sing (Apply Unzip7Sym0 t :: ([a], [b], [c], [d], [e], [f], [g])) Source #

Special lists

Functions on Symbols

type family Unlines (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unlines '[] = "" 
Unlines ('(:) l ls) = Apply (Apply (<>@#@$) l) (Apply (Apply (<>@#@$) "\n") (Apply UnlinesSym0 ls)) 

sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol) Source #

type family Unwords (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unwords '[] = "" 
Unwords ('(:) w ws) = Apply (Apply (<>@#@$) w) (Apply (Let6989586621679851694GoSym2 w ws) ws) 

sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol) Source #

"Set" operations

type family Nub (a :: [a]) :: [a] where ... Source #

Equations

Nub l = Apply (Apply (Let6989586621679851149Nub'Sym1 l) l) NilSym0 

sNub :: forall a (t :: [a]). SEq a => Sing t -> Sing (Apply NubSym0 t :: [a]) Source #

type family Delete (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Delete a_6989586621679851678 a_6989586621679851680 = Apply (Apply (Apply DeleteBySym0 (==@#@$)) a_6989586621679851678) a_6989586621679851680 

sDelete :: forall a (t :: a) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply DeleteSym0 t) t :: [a]) Source #

type family (a :: [a]) \\ (a :: [a]) :: [a] where ... infix 5 Source #

Equations

a_6989586621679851667 \\ a_6989586621679851669 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 DeleteSym0)) a_6989586621679851667) a_6989586621679851669 

(%\\) :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply (\\@#@$) t) t :: [a]) infix 5 Source #

type family Union (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

Union a_6989586621679851094 a_6989586621679851096 = Apply (Apply (Apply UnionBySym0 (==@#@$)) a_6989586621679851094) a_6989586621679851096 

sUnion :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply UnionSym0 t) t :: [a]) Source #

type family Intersect (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

Intersect a_6989586621679851485 a_6989586621679851487 = Apply (Apply (Apply IntersectBySym0 (==@#@$)) a_6989586621679851485) a_6989586621679851487 

sIntersect :: forall a (t :: [a]) (t :: [a]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply IntersectSym0 t) t :: [a]) Source #

Ordered lists

type family Insert (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

Insert e ls = Apply (Apply (Apply InsertBySym0 CompareSym0) e) ls 

sInsert :: forall a (t :: a) (t :: [a]). SOrd a => Sing t -> Sing t -> Sing (Apply (Apply InsertSym0 t) t :: [a]) Source #

type family Sort (a :: [a]) :: [a] where ... Source #

Equations

Sort a_6989586621679851285 = Apply (Apply SortBySym0 CompareSym0) a_6989586621679851285 

sSort :: forall a (t :: [a]). SOrd a => Sing t -> Sing (Apply SortSym0 t :: [a]) Source #

Generalized functions

The "By" operations

User-supplied equality (replacing an Eq context)

The predicate is assumed to define an equivalence.

type family NubBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [a] where ... Source #

Equations

NubBy eq l = Apply (Apply (Let6989586621679851133NubBy'Sym2 eq l) l) NilSym0 

sNubBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply NubBySym0 t) t :: [a]) Source #

type family DeleteBy (a :: (~>) a ((~>) a Bool)) (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

DeleteBy _ _ '[] = NilSym0 
DeleteBy eq x ('(:) y ys) = Case_6989586621679851664 eq x y ys (Let6989586621679851662Scrutinee_6989586621679848074Sym4 eq x y ys) 

sDeleteBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteBySym0 t) t) t :: [a]) Source #

type family DeleteFirstsBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBy eq a_6989586621679851637 a_6989586621679851639 = Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) a_6989586621679851637) a_6989586621679851639 

sDeleteFirstsBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply DeleteFirstsBySym0 t) t) t :: [a]) Source #

type family UnionBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

UnionBy eq xs ys = Apply (Apply (++@#@$) xs) (Apply (Apply (Apply FoldlSym0 (Apply FlipSym0 (Apply DeleteBySym0 eq))) (Apply (Apply NubBySym0 eq) ys)) xs) 

sUnionBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UnionBySym0 t) t) t :: [a]) Source #

type family IntersectBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) (a :: [a]) :: [a] where ... Source #

Equations

IntersectBy _ '[] '[] = NilSym0 
IntersectBy _ '[] ('(:) _ _) = NilSym0 
IntersectBy _ ('(:) _ _) '[] = NilSym0 
IntersectBy eq ('(:) wild_6989586621679848094 wild_6989586621679848096) ('(:) wild_6989586621679848098 wild_6989586621679848100) = Apply (Apply (>>=@#@$) (Let6989586621679851478XsSym5 eq wild_6989586621679848094 wild_6989586621679848096 wild_6989586621679848098 wild_6989586621679848100)) (Apply (Apply (Apply (Apply (Apply Lambda_6989586621679851481Sym0 eq) wild_6989586621679848094) wild_6989586621679848096) wild_6989586621679848098) wild_6989586621679848100) 

sIntersectBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply IntersectBySym0 t) t) t :: [a]) Source #

type family GroupBy (a :: (~>) a ((~>) a Bool)) (a :: [a]) :: [[a]] where ... Source #

Equations

GroupBy _ '[] = NilSym0 
GroupBy eq ('(:) x xs) = Apply (Apply (:@#@$) (Apply (Apply (:@#@$) x) (Let6989586621679851267YsSym3 eq x xs))) (Apply (Apply GroupBySym0 eq) (Let6989586621679851267ZsSym3 eq x xs)) 

sGroupBy :: forall a (t :: (~>) a ((~>) a Bool)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply GroupBySym0 t) t :: [[a]]) Source #

User-supplied comparison (replacing an Ord context)

The function is assumed to define a total ordering.

type family SortBy (a :: (~>) a ((~>) a Ordering)) (a :: [a]) :: [a] where ... Source #

Equations

SortBy cmp a_6989586621679851628 = Apply (Apply (Apply FoldrSym0 (Apply InsertBySym0 cmp)) NilSym0) a_6989586621679851628 

sSortBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SortBySym0 t) t :: [a]) Source #

type family InsertBy (a :: (~>) a ((~>) a Ordering)) (a :: a) (a :: [a]) :: [a] where ... Source #

Equations

InsertBy _ x '[] = Apply (Apply (:@#@$) x) NilSym0 
InsertBy cmp x ('(:) y ys') = Case_6989586621679851625 cmp x y ys' (Let6989586621679851623Scrutinee_6989586621679848076Sym4 cmp x y ys') 

sInsertBy :: forall a (t :: (~>) a ((~>) a Ordering)) (t :: a) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply InsertBySym0 t) t) t :: [a]) Source #

type family MaximumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MaximumBy cmp a_6989586621680438139 = Apply (Apply Foldl1Sym0 (Let6989586621680438148Max'Sym2 cmp a_6989586621680438139)) a_6989586621680438139 

sMaximumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MaximumBySym0 t) t :: a) Source #

type family MinimumBy (a :: (~>) a ((~>) a Ordering)) (a :: t a) :: a where ... Source #

Equations

MinimumBy cmp a_6989586621680438119 = Apply (Apply Foldl1Sym0 (Let6989586621680438128Min'Sym2 cmp a_6989586621680438119)) a_6989586621680438119 

sMinimumBy :: forall a t (t :: (~>) a ((~>) a Ordering)) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply MinimumBySym0 t) t :: a) Source #

The "generic" operations

The prefix `generic' indicates an overloaded function that is a generalized version of a Prelude function.

type family GenericLength (a :: [a]) :: i where ... Source #

Equations

GenericLength '[] = FromInteger 0 
GenericLength ('(:) _ xs) = Apply (Apply (+@#@$) (FromInteger 1)) (Apply GenericLengthSym0 xs) 

sGenericLength :: forall a i (t :: [a]). SNum i => Sing t -> Sing (Apply GenericLengthSym0 t :: i) Source #

Defunctionalization symbols

type family NilSym0 :: [a :: Type] where ... Source #

Equations

NilSym0 = '[] 

data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #

Instances

Instances details
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (:@#@$)

SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) = (:@#@$$) a6989586621679040366

data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #

Instances

Instances details
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((:@#@$$) x)

SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$$) d)

SuppressUnusedWarnings ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) = a6989586621679040366 ': a6989586621679040367

type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ... infixr 5 Source #

Equations

a6989586621679040366 :@#@$$$ a6989586621679040367 = '(:) a6989586621679040366 a6989586621679040367 

type family (a6989586621679278922 :: [a]) ++@#@$$$ (a6989586621679278923 :: [a]) :: [a] where ... infixr 5 Source #

Equations

a6989586621679278922 ++@#@$$$ a6989586621679278923 = (++) a6989586621679278922 a6989586621679278923 

data (++@#@$$) (a6989586621679278922 :: [a]) :: (~>) [a] [a] infixr 5 Source #

Instances

Instances details
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((++@#@$$) x)

SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$$) d)

SuppressUnusedWarnings ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) (a6989586621679278923 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) (a6989586621679278923 :: [a]) = a6989586621679278922 ++ a6989586621679278923

data (++@#@$) :: (~>) [a] ((~>) [a] [a]) infixr 5 Source #

Instances

Instances details
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (++@#@$)

SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679278922 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679278922 :: [a]) = (++@#@$$) a6989586621679278922

data HeadSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing HeadSym0

SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679852326 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679852326 :: [a]) = Head a6989586621679852326

type family HeadSym1 (a6989586621679852326 :: [a]) :: a where ... Source #

Equations

HeadSym1 a6989586621679852326 = Head a6989586621679852326 

data LastSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LastSym0

SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679852320 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679852320 :: [a]) = Last a6989586621679852320

type family LastSym1 (a6989586621679852320 :: [a]) :: a where ... Source #

Equations

LastSym1 a6989586621679852320 = Last a6989586621679852320 

data TailSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TailSym0

SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679852316 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679852316 :: [a]) = Tail a6989586621679852316

type family TailSym1 (a6989586621679852316 :: [a]) :: [a] where ... Source #

Equations

TailSym1 a6989586621679852316 = Tail a6989586621679852316 

data InitSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InitSym0

SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679852304 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679852304 :: [a]) = Init a6989586621679852304

type family InitSym1 (a6989586621679852304 :: [a]) :: [a] where ... Source #

Equations

InitSym1 a6989586621679852304 = Init a6989586621679852304 

data NullSym0 :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing NullSym0

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680438361 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680438361 :: t a) = Null a6989586621680438361

type family NullSym1 (a6989586621680438361 :: t a) :: Bool where ... Source #

Equations

NullSym1 a6989586621680438361 = Null a6989586621680438361 

data LengthSym0 :: (~>) (t a) Natural Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing LengthSym0

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) = Length a6989586621680438364

type family LengthSym1 (a6989586621680438364 :: t a) :: Natural where ... Source #

Equations

LengthSym1 a6989586621680438364 = Length a6989586621680438364 

data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b]) Source #

Instances

Instances details
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing MapSym0

SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679278931 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679278931 :: a ~> b) = MapSym1 a6989586621679278931

data MapSym1 (a6989586621679278931 :: (~>) a b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapSym1 x)

SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym1 d)

SuppressUnusedWarnings (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) (a6989586621679278932 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) (a6989586621679278932 :: [a]) = Map a6989586621679278931 a6989586621679278932

type family MapSym2 (a6989586621679278931 :: (~>) a b) (a6989586621679278932 :: [a]) :: [b] where ... Source #

Equations

MapSym2 a6989586621679278931 a6989586621679278932 = Map a6989586621679278931 a6989586621679278932 

data ReverseSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) = Reverse a6989586621679852289

type family ReverseSym1 (a6989586621679852289 :: [a]) :: [a] where ... Source #

Equations

ReverseSym1 a6989586621679852289 = Reverse a6989586621679852289 

data IntersperseSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679852282 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679852282 :: a) = IntersperseSym1 a6989586621679852282

data IntersperseSym1 (a6989586621679852282 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (IntersperseSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersperseSym1 x)

SingI d => SingI (IntersperseSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersperseSym1 d)

SuppressUnusedWarnings (IntersperseSym1 a6989586621679852282 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679852282 :: TyFun [a] [a] -> Type) (a6989586621679852283 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersperseSym1 a6989586621679852282 :: TyFun [a] [a] -> Type) (a6989586621679852283 :: [a]) = Intersperse a6989586621679852282 a6989586621679852283

type family IntersperseSym2 (a6989586621679852282 :: a) (a6989586621679852283 :: [a]) :: [a] where ... Source #

Equations

IntersperseSym2 a6989586621679852282 a6989586621679852283 = Intersperse a6989586621679852282 a6989586621679852283 

data IntercalateSym0 :: (~>) [a] ((~>) [[a]] [a]) Source #

Instances

Instances details
SingI (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679852275 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym0 :: TyFun [a] ([[a]] ~> [a]) -> Type) (a6989586621679852275 :: [a]) = IntercalateSym1 a6989586621679852275

data IntercalateSym1 (a6989586621679852275 :: [a]) :: (~>) [[a]] [a] Source #

Instances

Instances details
SingI1 (IntercalateSym1 :: [a] -> TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntercalateSym1 x)

SingI d => SingI (IntercalateSym1 d :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntercalateSym1 d)

SuppressUnusedWarnings (IntercalateSym1 a6989586621679852275 :: TyFun [[a]] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679852275 :: TyFun [[a]] [a] -> Type) (a6989586621679852276 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntercalateSym1 a6989586621679852275 :: TyFun [[a]] [a] -> Type) (a6989586621679852276 :: [[a]]) = Intercalate a6989586621679852275 a6989586621679852276

type family IntercalateSym2 (a6989586621679852275 :: [a]) (a6989586621679852276 :: [[a]]) :: [a] where ... Source #

Equations

IntercalateSym2 a6989586621679852275 a6989586621679852276 = Intercalate a6989586621679852275 a6989586621679852276 

data TransposeSym0 :: (~>) [[a]] [[a]] Source #

Instances

Instances details
SingI (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679851176 :: [[a]]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TransposeSym0 :: TyFun [[a]] [[a]] -> Type) (a6989586621679851176 :: [[a]]) = Transpose a6989586621679851176

type family TransposeSym1 (a6989586621679851176 :: [[a]]) :: [[a]] where ... Source #

Equations

TransposeSym1 a6989586621679851176 = Transpose a6989586621679851176 

data SubsequencesSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679852270 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SubsequencesSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679852270 :: [a]) = Subsequences a6989586621679852270

type family SubsequencesSym1 (a6989586621679852270 :: [a]) :: [[a]] where ... Source #

Equations

SubsequencesSym1 a6989586621679852270 = Subsequences a6989586621679852270 

data PermutationsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (PermutationsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679852196 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PermutationsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679852196 :: [a]) = Permutations a6989586621679852196

type family PermutationsSym1 (a6989586621679852196 :: [a]) :: [[a]] where ... Source #

Equations

PermutationsSym1 a6989586621679852196 = Permutations a6989586621679852196 

data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldlSym0

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) = FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym1 x)

(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym1 d)

SuppressUnusedWarnings (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) = FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type

data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym2 d x)

SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldlSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym2 d1 d2)

SuppressUnusedWarnings (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) = Foldl a6989586621680438336 a6989586621680438337 a6989586621680438338

type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ... Source #

Equations

FoldlSym3 a6989586621680438336 a6989586621680438337 a6989586621680438338 = Foldl a6989586621680438336 a6989586621680438337 a6989586621680438338 

data Foldl'Sym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldl'Sym0

SuppressUnusedWarnings (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438343 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438343 :: b ~> (a ~> b)) = Foldl'Sym1 a6989586621680438343 :: TyFun b (t a ~> b) -> Type

data Foldl'Sym1 (a6989586621680438343 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl'Sym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl'Sym1 x)

(SFoldable t, SingI d) => SingI (Foldl'Sym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym1 d)

SuppressUnusedWarnings (Foldl'Sym1 a6989586621680438343 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680438343 :: TyFun b (t a ~> b) -> Type) (a6989586621680438344 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym1 a6989586621680438343 :: TyFun b (t a ~> b) -> Type) (a6989586621680438344 :: b) = Foldl'Sym2 a6989586621680438343 a6989586621680438344 :: TyFun (t a) b -> Type

data Foldl'Sym2 (a6989586621680438343 :: (~>) b ((~>) a b)) (a6989586621680438344 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (Foldl'Sym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl'Sym2 d x)

SFoldable t => SingI2 (Foldl'Sym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Foldl'Sym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (Foldl'Sym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl'Sym2 d1 d2)

SuppressUnusedWarnings (Foldl'Sym2 a6989586621680438343 a6989586621680438344 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680438343 a6989586621680438344 :: TyFun (t a) b -> Type) (a6989586621680438345 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl'Sym2 a6989586621680438343 a6989586621680438344 :: TyFun (t a) b -> Type) (a6989586621680438345 :: t a) = Foldl' a6989586621680438343 a6989586621680438344 a6989586621680438345

type family Foldl'Sym3 (a6989586621680438343 :: (~>) b ((~>) a b)) (a6989586621680438344 :: b) (a6989586621680438345 :: t a) :: b where ... Source #

Equations

Foldl'Sym3 a6989586621680438343 a6989586621680438344 a6989586621680438345 = Foldl' a6989586621680438343 a6989586621680438344 a6989586621680438345 

data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldl1Sym0

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type

data Foldl1Sym1 (a6989586621680438354 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym1 d)

SuppressUnusedWarnings (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) = Foldl1 a6989586621680438354 a6989586621680438355

type family Foldl1Sym2 (a6989586621680438354 :: (~>) a ((~>) a a)) (a6989586621680438355 :: t a) :: a where ... Source #

Equations

Foldl1Sym2 a6989586621680438354 a6989586621680438355 = Foldl1 a6989586621680438354 a6989586621680438355 

data Foldl1'Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] a) Source #

Instances

Instances details
SingI (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679852161 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> a) -> Type) (a6989586621679852161 :: a ~> (a ~> a)) = Foldl1'Sym1 a6989586621679852161

data Foldl1'Sym1 (a6989586621679852161 :: (~>) a ((~>) a a)) :: (~>) [a] a Source #

Instances

Instances details
SingI d => SingI (Foldl1'Sym1 d :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Foldl1'Sym1 d)

SuppressUnusedWarnings (Foldl1'Sym1 a6989586621679852161 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Foldl1'Sym1 :: (a ~> (a ~> a)) -> TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1'Sym1 x)

type Apply (Foldl1'Sym1 a6989586621679852161 :: TyFun [a] a -> Type) (a6989586621679852162 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Foldl1'Sym1 a6989586621679852161 :: TyFun [a] a -> Type) (a6989586621679852162 :: [a]) = Foldl1' a6989586621679852161 a6989586621679852162

type family Foldl1'Sym2 (a6989586621679852161 :: (~>) a ((~>) a a)) (a6989586621679852162 :: [a]) :: a where ... Source #

Equations

Foldl1'Sym2 a6989586621679852161 a6989586621679852162 = Foldl1' a6989586621679852161 a6989586621679852162 

data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldrSym0

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) = FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym1 x)

(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym1 d)

SuppressUnusedWarnings (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) = FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type

data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym2 d x)

SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldrSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym2 d1 d2)

SuppressUnusedWarnings (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) = Foldr a6989586621680438322 a6989586621680438323 a6989586621680438324

type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ... Source #

Equations

FoldrSym3 a6989586621680438322 a6989586621680438323 a6989586621680438324 = Foldr a6989586621680438322 a6989586621680438323 a6989586621680438324 

data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldr1Sym0

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type

data Foldr1Sym1 (a6989586621680438349 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldr1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym1 d)

SuppressUnusedWarnings (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) = Foldr1 a6989586621680438349 a6989586621680438350

type family Foldr1Sym2 (a6989586621680438349 :: (~>) a ((~>) a a)) (a6989586621680438350 :: t a) :: a where ... Source #

Equations

Foldr1Sym2 a6989586621680438349 a6989586621680438350 = Foldr1 a6989586621680438349 a6989586621680438350 

data ConcatSym0 :: (~>) (t [a]) [a] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ConcatSym0

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) = Concat a6989586621680438203

type family ConcatSym1 (a6989586621680438203 :: t [a]) :: [a] where ... Source #

Equations

ConcatSym1 a6989586621680438203 = Concat a6989586621680438203 

data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) = ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 (a6989586621680438192 :: (~>) a [b]) :: (~>) (t a) [b] Source #

Instances

Instances details
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConcatMapSym1 x)

(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym1 d)

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) = ConcatMap a6989586621680438192 a6989586621680438193

type family ConcatMapSym2 (a6989586621680438192 :: (~>) a [b]) (a6989586621680438193 :: t a) :: [b] where ... Source #

Equations

ConcatMapSym2 a6989586621680438192 a6989586621680438193 = ConcatMap a6989586621680438192 a6989586621680438193 

data AndSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AndSym0

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438187 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438187 :: t Bool) = And a6989586621680438187

type family AndSym1 (a6989586621680438187 :: t Bool) :: Bool where ... Source #

Equations

AndSym1 a6989586621680438187 = And a6989586621680438187 

data OrSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing OrSym0

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438181 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438181 :: t Bool) = Or a6989586621680438181

type family OrSym1 (a6989586621680438181 :: t Bool) :: Bool where ... Source #

Equations

OrSym1 a6989586621680438181 = Or a6989586621680438181 

data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AnySym0

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438173 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438173 :: a ~> Bool) = AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type

data AnySym1 (a6989586621680438173 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AnySym1 x)

(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym1 d)

SuppressUnusedWarnings (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) (a6989586621680438174 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) (a6989586621680438174 :: t a) = Any a6989586621680438173 a6989586621680438174

type family AnySym2 (a6989586621680438173 :: (~>) a Bool) (a6989586621680438174 :: t a) :: Bool where ... Source #

Equations

AnySym2 a6989586621680438173 a6989586621680438174 = Any a6989586621680438173 a6989586621680438174 

data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AllSym0

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438164 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438164 :: a ~> Bool) = AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type

data AllSym1 (a6989586621680438164 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AllSym1 x)

(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym1 d)

SuppressUnusedWarnings (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) (a6989586621680438165 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) (a6989586621680438165 :: t a) = All a6989586621680438164 a6989586621680438165

type family AllSym2 (a6989586621680438164 :: (~>) a Bool) (a6989586621680438165 :: t a) :: Bool where ... Source #

Equations

AllSym2 a6989586621680438164 a6989586621680438165 = All a6989586621680438164 a6989586621680438165 

data SumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing SumSym0

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680438378 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680438378 :: t a) = Sum a6989586621680438378

type family SumSym1 (a6989586621680438378 :: t a) :: a where ... Source #

Equations

SumSym1 a6989586621680438378 = Sum a6989586621680438378 

data ProductSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) = Product a6989586621680438381

type family ProductSym1 (a6989586621680438381 :: t a) :: a where ... Source #

Equations

ProductSym1 a6989586621680438381 = Product a6989586621680438381 

data MaximumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) = Maximum a6989586621680438372

type family MaximumSym1 (a6989586621680438372 :: t a) :: a where ... Source #

Equations

MaximumSym1 a6989586621680438372 = Maximum a6989586621680438372 

data MinimumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) = Minimum a6989586621680438375

type family MinimumSym1 (a6989586621680438375 :: t a) :: a where ... Source #

Equations

MinimumSym1 a6989586621680438375 = Minimum a6989586621680438375 

data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanlSym0

SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852094 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852094 :: b ~> (a ~> b)) = ScanlSym1 a6989586621679852094

data ScanlSym1 (a6989586621679852094 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym1 x)

SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym1 d)

SuppressUnusedWarnings (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852095 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852095 :: b) = ScanlSym2 a6989586621679852094 a6989586621679852095

data ScanlSym2 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym2 d x)

SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanlSym2 x y)

(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym2 d1 d2)

SuppressUnusedWarnings (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) (a6989586621679852096 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) (a6989586621679852096 :: [a]) = Scanl a6989586621679852094 a6989586621679852095 a6989586621679852096

type family ScanlSym3 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) (a6989586621679852096 :: [a]) :: [b] where ... Source #

Equations

ScanlSym3 a6989586621679852094 a6989586621679852095 a6989586621679852096 = Scanl a6989586621679852094 a6989586621679852095 a6989586621679852096 

data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanl1Sym0

SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679852085

data Scanl1Sym1 (a6989586621679852085 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym1 d)

SuppressUnusedWarnings (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanl1Sym1 x)

type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) = Scanl1 a6989586621679852085 a6989586621679852086

type family Scanl1Sym2 (a6989586621679852085 :: (~>) a ((~>) a a)) (a6989586621679852086 :: [a]) :: [a] where ... Source #

Equations

Scanl1Sym2 a6989586621679852085 a6989586621679852086 = Scanl1 a6989586621679852085 a6989586621679852086 

data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanrSym0

SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852067 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852067 :: a ~> (b ~> b)) = ScanrSym1 a6989586621679852067

data ScanrSym1 (a6989586621679852067 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym1 x)

SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym1 d)

SuppressUnusedWarnings (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852068 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852068 :: b) = ScanrSym2 a6989586621679852067 a6989586621679852068

data ScanrSym2 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym2 d x)

SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanrSym2 x y)

(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym2 d1 d2)

SuppressUnusedWarnings (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) (a6989586621679852069 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) (a6989586621679852069 :: [a]) = Scanr a6989586621679852067 a6989586621679852068 a6989586621679852069

type family ScanrSym3 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) (a6989586621679852069 :: [a]) :: [b] where ... Source #

Equations

ScanrSym3 a6989586621679852067 a6989586621679852068 a6989586621679852069 = Scanr a6989586621679852067 a6989586621679852068 a6989586621679852069 

data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanr1Sym0

SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679852047

data Scanr1Sym1 (a6989586621679852047 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym1 d)

SuppressUnusedWarnings (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanr1Sym1 x)

type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) = Scanr1 a6989586621679852047 a6989586621679852048

type family Scanr1Sym2 (a6989586621679852047 :: (~>) a ((~>) a a)) (a6989586621679852048 :: [a]) :: [a] where ... Source #

Equations

Scanr1Sym2 a6989586621679852047 a6989586621679852048 = Scanr1 a6989586621679852047 a6989586621679852048 

data MapAccumLSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680804436 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680804436 :: a ~> (b ~> (a, c))) = MapAccumLSym1 a6989586621680804436 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumLSym1 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c)) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumLSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumLSym1 x)

(STraversable t, SingI d) => SingI (MapAccumLSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym1 d)

SuppressUnusedWarnings (MapAccumLSym1 a6989586621680804436 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680804436 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680804437 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym1 a6989586621680804436 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680804437 :: a) = MapAccumLSym2 a6989586621680804436 a6989586621680804437 :: TyFun (t b) (a, t c) -> Type

data MapAccumLSym2 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) (a6989586621680804437 :: a) :: (~>) (t b) (a, t c) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumLSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumLSym2 d x)

STraversable t => SingI2 (MapAccumLSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (MapAccumLSym2 x y)

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumLSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumLSym2 d1 d2)

SuppressUnusedWarnings (MapAccumLSym2 a6989586621680804436 a6989586621680804437 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680804436 a6989586621680804437 :: TyFun (t b) (a, t c) -> Type) (a6989586621680804438 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumLSym2 a6989586621680804436 a6989586621680804437 :: TyFun (t b) (a, t c) -> Type) (a6989586621680804438 :: t b) = MapAccumL a6989586621680804436 a6989586621680804437 a6989586621680804438

type family MapAccumLSym3 (a6989586621680804436 :: (~>) a ((~>) b (a, c))) (a6989586621680804437 :: a) (a6989586621680804438 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumLSym3 a6989586621680804436 a6989586621680804437 a6989586621680804438 = MapAccumL a6989586621680804436 a6989586621680804437 a6989586621680804438 

data MapAccumRSym0 :: (~>) ((~>) a ((~>) b (a, c))) ((~>) a ((~>) (t b) (a, t c))) Source #

Instances

Instances details
STraversable t => SingI (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680804426 :: a ~> (b ~> (a, c))) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym0 :: TyFun (a ~> (b ~> (a, c))) (a ~> (t b ~> (a, t c))) -> Type) (a6989586621680804426 :: a ~> (b ~> (a, c))) = MapAccumRSym1 a6989586621680804426 :: TyFun a (t b ~> (a, t c)) -> Type

data MapAccumRSym1 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) :: (~>) a ((~>) (t b) (a, t c)) Source #

Instances

Instances details
STraversable t => SingI1 (MapAccumRSym1 :: (a ~> (b ~> (a, c))) -> TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumRSym1 x)

(STraversable t, SingI d) => SingI (MapAccumRSym1 d :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym1 d)

SuppressUnusedWarnings (MapAccumRSym1 a6989586621680804426 :: TyFun a (t b ~> (a, t c)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680804426 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680804427 :: a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym1 a6989586621680804426 :: TyFun a (t b ~> (a, t c)) -> Type) (a6989586621680804427 :: a) = MapAccumRSym2 a6989586621680804426 a6989586621680804427 :: TyFun (t b) (a, t c) -> Type

data MapAccumRSym2 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) (a6989586621680804427 :: a) :: (~>) (t b) (a, t c) Source #

Instances

Instances details
(STraversable t, SingI d) => SingI1 (MapAccumRSym2 d :: a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapAccumRSym2 d x)

STraversable t => SingI2 (MapAccumRSym2 :: (a ~> (b ~> (a, c))) -> a -> TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (MapAccumRSym2 x y)

(STraversable t, SingI d1, SingI d2) => SingI (MapAccumRSym2 d1 d2 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapAccumRSym2 d1 d2)

SuppressUnusedWarnings (MapAccumRSym2 a6989586621680804426 a6989586621680804427 :: TyFun (t b) (a, t c) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680804426 a6989586621680804427 :: TyFun (t b) (a, t c) -> Type) (a6989586621680804428 :: t b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapAccumRSym2 a6989586621680804426 a6989586621680804427 :: TyFun (t b) (a, t c) -> Type) (a6989586621680804428 :: t b) = MapAccumR a6989586621680804426 a6989586621680804427 a6989586621680804428

type family MapAccumRSym3 (a6989586621680804426 :: (~>) a ((~>) b (a, c))) (a6989586621680804427 :: a) (a6989586621680804428 :: t b) :: (a, t c) where ... Source #

Equations

MapAccumRSym3 a6989586621680804426 a6989586621680804427 a6989586621680804428 = MapAccumR a6989586621680804426 a6989586621680804427 a6989586621680804428 

data ReplicateSym0 :: (~>) Natural ((~>) a [a]) Source #

Instances

Instances details
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) = ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type

data ReplicateSym1 (a6989586621679851184 :: Natural) :: (~>) a [a] Source #

Instances

Instances details
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateSym1 x)

SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym1 d)

SuppressUnusedWarnings (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) = Replicate a6989586621679851184 a6989586621679851185

type family ReplicateSym2 (a6989586621679851184 :: Natural) (a6989586621679851185 :: a) :: [a] where ... Source #

Equations

ReplicateSym2 a6989586621679851184 a6989586621679851185 = Replicate a6989586621679851184 a6989586621679851185 

data UnfoldrSym0 :: (~>) ((~>) b (Maybe (a, b))) ((~>) b [a]) Source #

Instances

Instances details
SingI (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679851939 :: b ~> Maybe (a, b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym0 :: TyFun (b ~> Maybe (a, b)) (b ~> [a]) -> Type) (a6989586621679851939 :: b ~> Maybe (a, b)) = UnfoldrSym1 a6989586621679851939

data UnfoldrSym1 (a6989586621679851939 :: (~>) b (Maybe (a, b))) :: (~>) b [a] Source #

Instances

Instances details
SingI1 (UnfoldrSym1 :: (b ~> Maybe (a, b)) -> TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnfoldrSym1 x)

SingI d => SingI (UnfoldrSym1 d :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnfoldrSym1 d)

SuppressUnusedWarnings (UnfoldrSym1 a6989586621679851939 :: TyFun b [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679851939 :: TyFun b [a] -> Type) (a6989586621679851940 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnfoldrSym1 a6989586621679851939 :: TyFun b [a] -> Type) (a6989586621679851940 :: b) = Unfoldr a6989586621679851939 a6989586621679851940

type family UnfoldrSym2 (a6989586621679851939 :: (~>) b (Maybe (a, b))) (a6989586621679851940 :: b) :: [a] where ... Source #

Equations

UnfoldrSym2 a6989586621679851939 a6989586621679851940 = Unfoldr a6989586621679851939 a6989586621679851940 

data TakeSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TakeSym0

SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851339 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851339 :: Natural) = TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type

data TakeSym1 (a6989586621679851339 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeSym1 x)

SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym1 d)

SuppressUnusedWarnings (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) (a6989586621679851340 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) (a6989586621679851340 :: [a]) = Take a6989586621679851339 a6989586621679851340

type family TakeSym2 (a6989586621679851339 :: Natural) (a6989586621679851340 :: [a]) :: [a] where ... Source #

Equations

TakeSym2 a6989586621679851339 a6989586621679851340 = Take a6989586621679851339 a6989586621679851340 

data DropSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing DropSym0

SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851326 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851326 :: Natural) = DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type

data DropSym1 (a6989586621679851326 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropSym1 x)

SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym1 d)

SuppressUnusedWarnings (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) (a6989586621679851327 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) (a6989586621679851327 :: [a]) = Drop a6989586621679851326 a6989586621679851327

type family DropSym2 (a6989586621679851326 :: Natural) (a6989586621679851327 :: [a]) :: [a] where ... Source #

Equations

DropSym2 a6989586621679851326 a6989586621679851327 = Drop a6989586621679851326 a6989586621679851327 

data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) = SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type

data SplitAtSym1 (a6989586621679851319 :: Natural) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SplitAtSym1 x)

SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym1 d)

SuppressUnusedWarnings (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) = SplitAt a6989586621679851319 a6989586621679851320

type family SplitAtSym2 (a6989586621679851319 :: Natural) (a6989586621679851320 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAtSym2 a6989586621679851319 a6989586621679851320 = SplitAt a6989586621679851319 a6989586621679851320 

data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) = TakeWhileSym1 a6989586621679851456

data TakeWhileSym1 (a6989586621679851456 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym1 d)

SuppressUnusedWarnings (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeWhileSym1 x)

type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) = TakeWhile a6989586621679851456 a6989586621679851457

type family TakeWhileSym2 (a6989586621679851456 :: (~>) a Bool) (a6989586621679851457 :: [a]) :: [a] where ... Source #

Equations

TakeWhileSym2 a6989586621679851456 a6989586621679851457 = TakeWhile a6989586621679851456 a6989586621679851457 

data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) = DropWhileSym1 a6989586621679851441

data DropWhileSym1 (a6989586621679851441 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym1 d)

SuppressUnusedWarnings (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileSym1 x)

type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) = DropWhile a6989586621679851441 a6989586621679851442

type family DropWhileSym2 (a6989586621679851441 :: (~>) a Bool) (a6989586621679851442 :: [a]) :: [a] where ... Source #

Equations

DropWhileSym2 a6989586621679851441 a6989586621679851442 = DropWhile a6989586621679851441 a6989586621679851442 

data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) = DropWhileEndSym1 a6989586621679851424

data DropWhileEndSym1 (a6989586621679851424 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym1 d)

SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileEndSym1 x)

type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) = DropWhileEnd a6989586621679851424 a6989586621679851425

type family DropWhileEndSym2 (a6989586621679851424 :: (~>) a Bool) (a6989586621679851425 :: [a]) :: [a] where ... Source #

Equations

DropWhileEndSym2 a6989586621679851424 a6989586621679851425 = DropWhileEnd a6989586621679851424 a6989586621679851425 

data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SpanSym0

SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851387 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851387 :: a ~> Bool) = SpanSym1 a6989586621679851387

data SpanSym1 (a6989586621679851387 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym1 d)

SuppressUnusedWarnings (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SpanSym1 x)

type Apply (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851388 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851388 :: [a]) = Span a6989586621679851387 a6989586621679851388

type family SpanSym2 (a6989586621679851387 :: (~>) a Bool) (a6989586621679851388 :: [a]) :: ([a], [a]) where ... Source #

Equations

SpanSym2 a6989586621679851387 a6989586621679851388 = Span a6989586621679851387 a6989586621679851388 

data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing BreakSym0

SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851352 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851352 :: a ~> Bool) = BreakSym1 a6989586621679851352

data BreakSym1 (a6989586621679851352 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym1 d)

SuppressUnusedWarnings (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (BreakSym1 x)

type Apply (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851353 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851353 :: [a]) = Break a6989586621679851352 a6989586621679851353

type family BreakSym2 (a6989586621679851352 :: (~>) a Bool) (a6989586621679851353 :: [a]) :: ([a], [a]) where ... Source #

Equations

BreakSym2 a6989586621679851352 a6989586621679851353 = Break a6989586621679851352 a6989586621679851353 

data StripPrefixSym0 :: (~>) [a] ((~>) [a] (Maybe [a])) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621680008818 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym0 :: TyFun [a] ([a] ~> Maybe [a]) -> Type) (a6989586621680008818 :: [a]) = StripPrefixSym1 a6989586621680008818

data StripPrefixSym1 (a6989586621680008818 :: [a]) :: (~>) [a] (Maybe [a]) Source #

Instances

Instances details
SuppressUnusedWarnings (StripPrefixSym1 a6989586621680008818 :: TyFun [a] (Maybe [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621680008818 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621680008819 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (StripPrefixSym1 a6989586621680008818 :: TyFun [a] (Maybe [a]) -> Type) (a6989586621680008819 :: [a]) = StripPrefix a6989586621680008818 a6989586621680008819

type family StripPrefixSym2 (a6989586621680008818 :: [a]) (a6989586621680008819 :: [a]) :: Maybe [a] where ... Source #

Equations

StripPrefixSym2 a6989586621680008818 a6989586621680008819 = StripPrefix a6989586621680008818 a6989586621680008819 

data GroupSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SEq a => SingI (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing GroupSym0

SuppressUnusedWarnings (GroupSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851314 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851314 :: [a]) = Group a6989586621679851314

type family GroupSym1 (a6989586621679851314 :: [a]) :: [[a]] where ... Source #

Equations

GroupSym1 a6989586621679851314 = Group a6989586621679851314 

data InitsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InitsSym0

SuppressUnusedWarnings (InitsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851929 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851929 :: [a]) = Inits a6989586621679851929

type family InitsSym1 (a6989586621679851929 :: [a]) :: [[a]] where ... Source #

Equations

InitsSym1 a6989586621679851929 = Inits a6989586621679851929 

data TailsSym0 :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TailsSym0

SuppressUnusedWarnings (TailsSym0 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851921 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailsSym0 :: TyFun [a] [[a]] -> Type) (a6989586621679851921 :: [a]) = Tails a6989586621679851921

type family TailsSym1 (a6989586621679851921 :: [a]) :: [[a]] where ... Source #

Equations

TailsSym1 a6989586621679851921 = Tails a6989586621679851921 

data IsPrefixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851913 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851913 :: [a]) = IsPrefixOfSym1 a6989586621679851913

data IsPrefixOfSym1 (a6989586621679851913 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsPrefixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsPrefixOfSym1 x)

(SEq a, SingI d) => SingI (IsPrefixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsPrefixOfSym1 d)

SuppressUnusedWarnings (IsPrefixOfSym1 a6989586621679851913 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679851913 :: TyFun [a] Bool -> Type) (a6989586621679851914 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsPrefixOfSym1 a6989586621679851913 :: TyFun [a] Bool -> Type) (a6989586621679851914 :: [a]) = IsPrefixOf a6989586621679851913 a6989586621679851914

type family IsPrefixOfSym2 (a6989586621679851913 :: [a]) (a6989586621679851914 :: [a]) :: Bool where ... Source #

Equations

IsPrefixOfSym2 a6989586621679851913 a6989586621679851914 = IsPrefixOf a6989586621679851913 a6989586621679851914 

data IsSuffixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851906 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851906 :: [a]) = IsSuffixOfSym1 a6989586621679851906

data IsSuffixOfSym1 (a6989586621679851906 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsSuffixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsSuffixOfSym1 x)

(SEq a, SingI d) => SingI (IsSuffixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsSuffixOfSym1 d)

SuppressUnusedWarnings (IsSuffixOfSym1 a6989586621679851906 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679851906 :: TyFun [a] Bool -> Type) (a6989586621679851907 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsSuffixOfSym1 a6989586621679851906 :: TyFun [a] Bool -> Type) (a6989586621679851907 :: [a]) = IsSuffixOf a6989586621679851906 a6989586621679851907

type family IsSuffixOfSym2 (a6989586621679851906 :: [a]) (a6989586621679851907 :: [a]) :: Bool where ... Source #

Equations

IsSuffixOfSym2 a6989586621679851906 a6989586621679851907 = IsSuffixOf a6989586621679851906 a6989586621679851907 

data IsInfixOfSym0 :: (~>) [a] ((~>) [a] Bool) Source #

Instances

Instances details
SEq a => SingI (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851899 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym0 :: TyFun [a] ([a] ~> Bool) -> Type) (a6989586621679851899 :: [a]) = IsInfixOfSym1 a6989586621679851899

data IsInfixOfSym1 (a6989586621679851899 :: [a]) :: (~>) [a] Bool Source #

Instances

Instances details
SEq a => SingI1 (IsInfixOfSym1 :: [a] -> TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IsInfixOfSym1 x)

(SEq a, SingI d) => SingI (IsInfixOfSym1 d :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IsInfixOfSym1 d)

SuppressUnusedWarnings (IsInfixOfSym1 a6989586621679851899 :: TyFun [a] Bool -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679851899 :: TyFun [a] Bool -> Type) (a6989586621679851900 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IsInfixOfSym1 a6989586621679851899 :: TyFun [a] Bool -> Type) (a6989586621679851900 :: [a]) = IsInfixOf a6989586621679851899 a6989586621679851900

type family IsInfixOfSym2 (a6989586621679851899 :: [a]) (a6989586621679851900 :: [a]) :: Bool where ... Source #

Equations

IsInfixOfSym2 a6989586621679851899 a6989586621679851900 = IsInfixOf a6989586621679851899 a6989586621679851900 

data ElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ElemSym0

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438368 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438368 :: a) = ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type

data ElemSym1 (a6989586621680438368 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym1 d)

SuppressUnusedWarnings (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) (a6989586621680438369 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) (a6989586621680438369 :: t a) = Elem a6989586621680438368 a6989586621680438369

type family ElemSym2 (a6989586621680438368 :: a) (a6989586621680438369 :: t a) :: Bool where ... Source #

Equations

ElemSym2 a6989586621680438368 a6989586621680438369 = Elem a6989586621680438368 a6989586621680438369 

data NotElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) = NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type

data NotElemSym1 (a6989586621680438115 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (NotElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym1 d)

SuppressUnusedWarnings (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) = NotElem a6989586621680438115 a6989586621680438116

type family NotElemSym2 (a6989586621680438115 :: a) (a6989586621680438116 :: t a) :: Bool where ... Source #

Equations

NotElemSym2 a6989586621680438115 a6989586621680438116 = NotElem a6989586621680438115 a6989586621680438116 

data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b)) Source #

Instances

Instances details
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LookupSym0

SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) = LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type

data LookupSym1 (a6989586621679851247 :: a) :: (~>) [(a, b)] (Maybe b) Source #

Instances

Instances details
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LookupSym1 x)

(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym1 d)

SuppressUnusedWarnings (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) = Lookup a6989586621679851247 a6989586621679851248

type family LookupSym2 (a6989586621679851247 :: a) (a6989586621679851248 :: [(a, b)]) :: Maybe b where ... Source #

Equations

LookupSym2 a6989586621679851247 a6989586621679851248 = Lookup a6989586621679851247 a6989586621679851248 

data FindSym0 :: (~>) ((~>) a Bool) ((~>) (t a) (Maybe a)) Source #

Instances

Instances details
SFoldable t => SingI (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FindSym0

SuppressUnusedWarnings (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680438097 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym0 :: TyFun (a ~> Bool) (t a ~> Maybe a) -> Type) (a6989586621680438097 :: a ~> Bool) = FindSym1 a6989586621680438097 :: TyFun (t a) (Maybe a) -> Type

data FindSym1 (a6989586621680438097 :: (~>) a Bool) :: (~>) (t a) (Maybe a) Source #

Instances

Instances details
SFoldable t => SingI1 (FindSym1 :: (a ~> Bool) -> TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindSym1 x)

(SFoldable t, SingI d) => SingI (FindSym1 d :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FindSym1 d)

SuppressUnusedWarnings (FindSym1 a6989586621680438097 :: TyFun (t a) (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680438097 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680438098 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FindSym1 a6989586621680438097 :: TyFun (t a) (Maybe a) -> Type) (a6989586621680438098 :: t a) = Find a6989586621680438097 a6989586621680438098

type family FindSym2 (a6989586621680438097 :: (~>) a Bool) (a6989586621680438098 :: t a) :: Maybe a where ... Source #

Equations

FindSym2 a6989586621680438097 a6989586621680438098 = Find a6989586621680438097 a6989586621680438098 

data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing FilterSym0

SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) = FilterSym1 a6989586621679851556

data FilterSym1 (a6989586621679851556 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym1 d)

SuppressUnusedWarnings (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FilterSym1 x)

type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) = Filter a6989586621679851556 a6989586621679851557

type family FilterSym2 (a6989586621679851556 :: (~>) a Bool) (a6989586621679851557 :: [a]) :: [a] where ... Source #

Equations

FilterSym2 a6989586621679851556 a6989586621679851557 = Filter a6989586621679851556 a6989586621679851557 

data PartitionSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851240 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851240 :: a ~> Bool) = PartitionSym1 a6989586621679851240

data PartitionSym1 (a6989586621679851240 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (PartitionSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (PartitionSym1 d)

SuppressUnusedWarnings (PartitionSym1 a6989586621679851240 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (PartitionSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (PartitionSym1 x)

type Apply (PartitionSym1 a6989586621679851240 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851241 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (PartitionSym1 a6989586621679851240 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851241 :: [a]) = Partition a6989586621679851240 a6989586621679851241

type family PartitionSym2 (a6989586621679851240 :: (~>) a Bool) (a6989586621679851241 :: [a]) :: ([a], [a]) where ... Source #

Equations

PartitionSym2 a6989586621679851240 a6989586621679851241 = Partition a6989586621679851240 a6989586621679851241 

data (!!@#@$) :: (~>) [a] ((~>) Natural a) infixl 9 Source #

Instances

Instances details
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (!!@#@$)

SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679851164 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679851164 :: [a]) = (!!@#@$$) a6989586621679851164

data (!!@#@$$) (a6989586621679851164 :: [a]) :: (~>) Natural a infixl 9 Source #

Instances

Instances details
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((!!@#@$$) x)

SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$$) d)

SuppressUnusedWarnings ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) (a6989586621679851165 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) (a6989586621679851165 :: Natural) = a6989586621679851164 !! a6989586621679851165

type family (a6989586621679851164 :: [a]) !!@#@$$$ (a6989586621679851165 :: Natural) :: a where ... infixl 9 Source #

Equations

a6989586621679851164 !!@#@$$$ a6989586621679851165 = (!!) a6989586621679851164 a6989586621679851165 

data ElemIndexSym0 :: (~>) a ((~>) [a] (Maybe Natural)) Source #

Instances

Instances details
SEq a => SingI (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679851540 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym0 :: TyFun a ([a] ~> Maybe Natural) -> Type) (a6989586621679851540 :: a) = ElemIndexSym1 a6989586621679851540

data ElemIndexSym1 (a6989586621679851540 :: a) :: (~>) [a] (Maybe Natural) Source #

Instances

Instances details
SEq a => SingI1 (ElemIndexSym1 :: a -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemIndexSym1 x)

(SEq a, SingI d) => SingI (ElemIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndexSym1 d)

SuppressUnusedWarnings (ElemIndexSym1 a6989586621679851540 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679851540 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679851541 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndexSym1 a6989586621679851540 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679851541 :: [a]) = ElemIndex a6989586621679851540 a6989586621679851541

type family ElemIndexSym2 (a6989586621679851540 :: a) (a6989586621679851541 :: [a]) :: Maybe Natural where ... Source #

Equations

ElemIndexSym2 a6989586621679851540 a6989586621679851541 = ElemIndex a6989586621679851540 a6989586621679851541 

data ElemIndicesSym0 :: (~>) a ((~>) [a] [Natural]) Source #

Instances

Instances details
SEq a => SingI (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679851531 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym0 :: TyFun a ([a] ~> [Natural]) -> Type) (a6989586621679851531 :: a) = ElemIndicesSym1 a6989586621679851531

data ElemIndicesSym1 (a6989586621679851531 :: a) :: (~>) [a] [Natural] Source #

Instances

Instances details
SEq a => SingI1 (ElemIndicesSym1 :: a -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemIndicesSym1 x)

(SEq a, SingI d) => SingI (ElemIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ElemIndicesSym1 d)

SuppressUnusedWarnings (ElemIndicesSym1 a6989586621679851531 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679851531 :: TyFun [a] [Natural] -> Type) (a6989586621679851532 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ElemIndicesSym1 a6989586621679851531 :: TyFun [a] [Natural] -> Type) (a6989586621679851532 :: [a]) = ElemIndices a6989586621679851531 a6989586621679851532

type family ElemIndicesSym2 (a6989586621679851531 :: a) (a6989586621679851532 :: [a]) :: [Natural] where ... Source #

Equations

ElemIndicesSym2 a6989586621679851531 a6989586621679851532 = ElemIndices a6989586621679851531 a6989586621679851532 

data FindIndexSym0 :: (~>) ((~>) a Bool) ((~>) [a] (Maybe Natural)) Source #

Instances

Instances details
SingI (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679851522 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym0 :: TyFun (a ~> Bool) ([a] ~> Maybe Natural) -> Type) (a6989586621679851522 :: a ~> Bool) = FindIndexSym1 a6989586621679851522

data FindIndexSym1 (a6989586621679851522 :: (~>) a Bool) :: (~>) [a] (Maybe Natural) Source #

Instances

Instances details
SingI d => SingI (FindIndexSym1 d :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndexSym1 d)

SuppressUnusedWarnings (FindIndexSym1 a6989586621679851522 :: TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndexSym1 :: (a ~> Bool) -> TyFun [a] (Maybe Natural) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindIndexSym1 x)

type Apply (FindIndexSym1 a6989586621679851522 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679851523 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndexSym1 a6989586621679851522 :: TyFun [a] (Maybe Natural) -> Type) (a6989586621679851523 :: [a]) = FindIndex a6989586621679851522 a6989586621679851523

type family FindIndexSym2 (a6989586621679851522 :: (~>) a Bool) (a6989586621679851523 :: [a]) :: Maybe Natural where ... Source #

Equations

FindIndexSym2 a6989586621679851522 a6989586621679851523 = FindIndex a6989586621679851522 a6989586621679851523 

data FindIndicesSym0 :: (~>) ((~>) a Bool) ((~>) [a] [Natural]) Source #

Instances

Instances details
SingI (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679851499 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym0 :: TyFun (a ~> Bool) ([a] ~> [Natural]) -> Type) (a6989586621679851499 :: a ~> Bool) = FindIndicesSym1 a6989586621679851499

data FindIndicesSym1 (a6989586621679851499 :: (~>) a Bool) :: (~>) [a] [Natural] Source #

Instances

Instances details
SingI d => SingI (FindIndicesSym1 d :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FindIndicesSym1 d)

SuppressUnusedWarnings (FindIndicesSym1 a6989586621679851499 :: TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FindIndicesSym1 :: (a ~> Bool) -> TyFun [a] [Natural] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FindIndicesSym1 x)

type Apply (FindIndicesSym1 a6989586621679851499 :: TyFun [a] [Natural] -> Type) (a6989586621679851500 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FindIndicesSym1 a6989586621679851499 :: TyFun [a] [Natural] -> Type) (a6989586621679851500 :: [a]) = FindIndices a6989586621679851499 a6989586621679851500

type family FindIndicesSym2 (a6989586621679851499 :: (~>) a Bool) (a6989586621679851500 :: [a]) :: [Natural] where ... Source #

Equations

FindIndicesSym2 a6989586621679851499 a6989586621679851500 = FindIndices a6989586621679851499 a6989586621679851500 

data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)]) Source #

Instances

Instances details
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ZipSym0

SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679851874 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679851874 :: [a]) = ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type

data ZipSym1 (a6989586621679851874 :: [a]) :: (~>) [b] [(a, b)] Source #

Instances

Instances details
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipSym1 x)

SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym1 d)

SuppressUnusedWarnings (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) (a6989586621679851875 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) (a6989586621679851875 :: [b]) = Zip a6989586621679851874 a6989586621679851875

type family ZipSym2 (a6989586621679851874 :: [a]) (a6989586621679851875 :: [b]) :: [(a, b)] where ... Source #

Equations

ZipSym2 a6989586621679851874 a6989586621679851875 = Zip a6989586621679851874 a6989586621679851875 

data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)])) Source #

Instances

Instances details
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Zip3Sym0

SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679851862 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679851862 :: [a]) = Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type

data Zip3Sym1 (a6989586621679851862 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)]) Source #

Instances

Instances details
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym1 x)

SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym1 d)

SuppressUnusedWarnings (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679851863 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679851863 :: [b]) = Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type

data Zip3Sym2 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) :: (~>) [c] [(a, b, c)] Source #

Instances

Instances details
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Zip3Sym2 x y)

SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym2 d x)

(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym2 d1 d2)

SuppressUnusedWarnings (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679851864 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679851864 :: [c]) = Zip3 a6989586621679851862 a6989586621679851863 a6989586621679851864

type family Zip3Sym3 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) (a6989586621679851864 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3Sym3 a6989586621679851862 a6989586621679851863 a6989586621679851864 = Zip3 a6989586621679851862 a6989586621679851863 a6989586621679851864 

data Zip4Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621680008807 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [(a, b, c, d)]))) -> Type) (a6989586621680008807 :: [a]) = Zip4Sym1 a6989586621680008807 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type

data Zip4Sym1 (a6989586621680008807 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [(a, b, c, d)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym1 a6989586621680008807 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621680008807 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621680008808 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym1 a6989586621680008807 :: TyFun [b] ([c] ~> ([d] ~> [(a, b, c, d)])) -> Type) (a6989586621680008808 :: [b]) = Zip4Sym2 a6989586621680008807 a6989586621680008808 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type

data Zip4Sym2 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) :: (~>) [c] ((~>) [d] [(a, b, c, d)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym2 a6989586621680008807 a6989586621680008808 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621680008807 a6989586621680008808 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621680008809 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym2 a6989586621680008807 a6989586621680008808 :: TyFun [c] ([d] ~> [(a, b, c, d)]) -> Type) (a6989586621680008809 :: [c]) = Zip4Sym3 a6989586621680008807 a6989586621680008808 a6989586621680008809 :: TyFun [d] [(a, b, c, d)] -> Type

data Zip4Sym3 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) (a6989586621680008809 :: [c]) :: (~>) [d] [(a, b, c, d)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip4Sym3 a6989586621680008807 a6989586621680008808 a6989586621680008809 :: TyFun [d] [(a, b, c, d)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621680008807 a6989586621680008808 a6989586621680008809 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621680008810 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip4Sym3 a6989586621680008807 a6989586621680008808 a6989586621680008809 :: TyFun [d] [(a, b, c, d)] -> Type) (a6989586621680008810 :: [d]) = Zip4 a6989586621680008807 a6989586621680008808 a6989586621680008809 a6989586621680008810

type family Zip4Sym4 (a6989586621680008807 :: [a]) (a6989586621680008808 :: [b]) (a6989586621680008809 :: [c]) (a6989586621680008810 :: [d]) :: [(a, b, c, d)] where ... Source #

Equations

Zip4Sym4 a6989586621680008807 a6989586621680008808 a6989586621680008809 a6989586621680008810 = Zip4 a6989586621680008807 a6989586621680008808 a6989586621680008809 a6989586621680008810 

data Zip5Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621680008784 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)])))) -> Type) (a6989586621680008784 :: [a]) = Zip5Sym1 a6989586621680008784 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type

data Zip5Sym1 (a6989586621680008784 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym1 a6989586621680008784 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621680008784 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621680008785 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym1 a6989586621680008784 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [(a, b, c, d, e)]))) -> Type) (a6989586621680008785 :: [b]) = Zip5Sym2 a6989586621680008784 a6989586621680008785 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type

data Zip5Sym2 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [(a, b, c, d, e)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym2 a6989586621680008784 a6989586621680008785 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621680008784 a6989586621680008785 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621680008786 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym2 a6989586621680008784 a6989586621680008785 :: TyFun [c] ([d] ~> ([e] ~> [(a, b, c, d, e)])) -> Type) (a6989586621680008786 :: [c]) = Zip5Sym3 a6989586621680008784 a6989586621680008785 a6989586621680008786 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type

data Zip5Sym3 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) :: (~>) [d] ((~>) [e] [(a, b, c, d, e)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym3 a6989586621680008784 a6989586621680008785 a6989586621680008786 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621680008784 a6989586621680008785 a6989586621680008786 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621680008787 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym3 a6989586621680008784 a6989586621680008785 a6989586621680008786 :: TyFun [d] ([e] ~> [(a, b, c, d, e)]) -> Type) (a6989586621680008787 :: [d]) = Zip5Sym4 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 :: TyFun [e] [(a, b, c, d, e)] -> Type

data Zip5Sym4 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) (a6989586621680008787 :: [d]) :: (~>) [e] [(a, b, c, d, e)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip5Sym4 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 :: TyFun [e] [(a, b, c, d, e)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621680008788 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip5Sym4 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 :: TyFun [e] [(a, b, c, d, e)] -> Type) (a6989586621680008788 :: [e]) = Zip5 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 a6989586621680008788

type family Zip5Sym5 (a6989586621680008784 :: [a]) (a6989586621680008785 :: [b]) (a6989586621680008786 :: [c]) (a6989586621680008787 :: [d]) (a6989586621680008788 :: [e]) :: [(a, b, c, d, e)] where ... Source #

Equations

Zip5Sym5 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 a6989586621680008788 = Zip5 a6989586621680008784 a6989586621680008785 a6989586621680008786 a6989586621680008787 a6989586621680008788 

data Zip6Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621680008756 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))))) -> Type) (a6989586621680008756 :: [a]) = Zip6Sym1 a6989586621680008756 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type

data Zip6Sym1 (a6989586621680008756 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym1 a6989586621680008756 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621680008756 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621680008757 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym1 a6989586621680008756 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)])))) -> Type) (a6989586621680008757 :: [b]) = Zip6Sym2 a6989586621680008756 a6989586621680008757 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type

data Zip6Sym2 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym2 a6989586621680008756 a6989586621680008757 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621680008756 a6989586621680008757 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621680008758 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym2 a6989586621680008756 a6989586621680008757 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [(a, b, c, d, e, f)]))) -> Type) (a6989586621680008758 :: [c]) = Zip6Sym3 a6989586621680008756 a6989586621680008757 a6989586621680008758 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type

data Zip6Sym3 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [(a, b, c, d, e, f)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym3 a6989586621680008756 a6989586621680008757 a6989586621680008758 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621680008756 a6989586621680008757 a6989586621680008758 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621680008759 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym3 a6989586621680008756 a6989586621680008757 a6989586621680008758 :: TyFun [d] ([e] ~> ([f] ~> [(a, b, c, d, e, f)])) -> Type) (a6989586621680008759 :: [d]) = Zip6Sym4 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type

data Zip6Sym4 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) :: (~>) [e] ((~>) [f] [(a, b, c, d, e, f)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym4 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621680008760 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym4 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 :: TyFun [e] ([f] ~> [(a, b, c, d, e, f)]) -> Type) (a6989586621680008760 :: [e]) = Zip6Sym5 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 :: TyFun [f] [(a, b, c, d, e, f)] -> Type

data Zip6Sym5 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) (a6989586621680008760 :: [e]) :: (~>) [f] [(a, b, c, d, e, f)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip6Sym5 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621680008761 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip6Sym5 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 :: TyFun [f] [(a, b, c, d, e, f)] -> Type) (a6989586621680008761 :: [f]) = Zip6 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 a6989586621680008761

type family Zip6Sym6 (a6989586621680008756 :: [a]) (a6989586621680008757 :: [b]) (a6989586621680008758 :: [c]) (a6989586621680008759 :: [d]) (a6989586621680008760 :: [e]) (a6989586621680008761 :: [f]) :: [(a, b, c, d, e, f)] where ... Source #

Equations

Zip6Sym6 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 a6989586621680008761 = Zip6 a6989586621680008756 a6989586621680008757 a6989586621680008758 a6989586621680008759 a6989586621680008760 a6989586621680008761 

data Zip7Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621680008723 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym0 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))))) -> Type) (a6989586621680008723 :: [a]) = Zip7Sym1 a6989586621680008723 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type

data Zip7Sym1 (a6989586621680008723 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym1 a6989586621680008723 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621680008723 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621680008724 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym1 a6989586621680008723 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))))) -> Type) (a6989586621680008724 :: [b]) = Zip7Sym2 a6989586621680008723 a6989586621680008724 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type

data Zip7Sym2 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym2 a6989586621680008723 a6989586621680008724 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621680008723 a6989586621680008724 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621680008725 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym2 a6989586621680008723 a6989586621680008724 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])))) -> Type) (a6989586621680008725 :: [c]) = Zip7Sym3 a6989586621680008723 a6989586621680008724 a6989586621680008725 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type

data Zip7Sym3 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]))) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym3 a6989586621680008723 a6989586621680008724 a6989586621680008725 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621680008723 a6989586621680008724 a6989586621680008725 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621680008726 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym3 a6989586621680008723 a6989586621680008724 a6989586621680008725 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)]))) -> Type) (a6989586621680008726 :: [d]) = Zip7Sym4 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type

data Zip7Sym4 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)])) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym4 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621680008727 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym4 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 :: TyFun [e] ([f] ~> ([g] ~> [(a, b, c, d, e, f, g)])) -> Type) (a6989586621680008727 :: [e]) = Zip7Sym5 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type

data Zip7Sym5 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) :: (~>) [f] ((~>) [g] [(a, b, c, d, e, f, g)]) Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym5 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621680008728 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym5 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 :: TyFun [f] ([g] ~> [(a, b, c, d, e, f, g)]) -> Type) (a6989586621680008728 :: [f]) = Zip7Sym6 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type

data Zip7Sym6 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) (a6989586621680008728 :: [f]) :: (~>) [g] [(a, b, c, d, e, f, g)] Source #

Instances

Instances details
SuppressUnusedWarnings (Zip7Sym6 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621680008729 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip7Sym6 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 :: TyFun [g] [(a, b, c, d, e, f, g)] -> Type) (a6989586621680008729 :: [g]) = Zip7 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 a6989586621680008729

type family Zip7Sym7 (a6989586621680008723 :: [a]) (a6989586621680008724 :: [b]) (a6989586621680008725 :: [c]) (a6989586621680008726 :: [d]) (a6989586621680008727 :: [e]) (a6989586621680008728 :: [f]) (a6989586621680008729 :: [g]) :: [(a, b, c, d, e, f, g)] where ... Source #

Equations

Zip7Sym7 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 a6989586621680008729 = Zip7 a6989586621680008723 a6989586621680008724 a6989586621680008725 a6989586621680008726 a6989586621680008727 a6989586621680008728 a6989586621680008729 

data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c])) Source #

Instances

Instances details
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679851850

data ZipWithSym1 (a6989586621679851850 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c]) Source #

Instances

Instances details
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym1 x)

SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym1 d)

SuppressUnusedWarnings (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) = ZipWithSym2 a6989586621679851850 a6989586621679851851

data ZipWithSym2 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) :: (~>) [b] [c] Source #

Instances

Instances details
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym2 d x)

SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithSym2 x y)

(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym2 d1 d2)

SuppressUnusedWarnings (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852

type family ZipWithSym3 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) (a6989586621679851852 :: [b]) :: [c] where ... Source #

Equations

ZipWithSym3 a6989586621679851850 a6989586621679851851 a6989586621679851852 = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852 

data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d]))) Source #

Instances

Instances details
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679851835

data ZipWith3Sym1 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d])) Source #

Instances

Instances details
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym1 x)

SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym1 d2)

SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) = ZipWith3Sym2 a6989586621679851835 a6989586621679851836

data ZipWith3Sym2 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) :: (~>) [b] ((~>) [c] [d]) Source #

Instances

Instances details
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym2 d2 x)

SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y)

(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym2 d2 d3)

SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) = ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837

data ZipWith3Sym3 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) :: (~>) [c] [d] Source #

Instances

Instances details
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y)

(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym3 d2 d3 x)

(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym3 d2 d3 d4)

SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) = ZipWith3 a6989586621679851835 a6989586621679851836 a6989586621679851837 a6989586621679851838

type family ZipWith3Sym4 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) (a6989586621679851838 :: [c]) :: [d] where ... Source #

Equations

ZipWith3Sym4 a6989586621679851835 a6989586621679851836 a6989586621679851837 a6989586621679851838 = ZipWith3 a6989586621679851835 a6989586621679851836 a6989586621679851837 a6989586621679851838 

data ZipWith4Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d e)))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621680008687 :: a ~> (b ~> (c ~> (d ~> e)))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> e)))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> [e])))) -> Type) (a6989586621680008687 :: a ~> (b ~> (c ~> (d ~> e)))) = ZipWith4Sym1 a6989586621680008687

data ZipWith4Sym1 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] [e]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym1 a6989586621680008687 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621680008687 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621680008688 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym1 a6989586621680008687 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> [e]))) -> Type) (a6989586621680008688 :: [a]) = ZipWith4Sym2 a6989586621680008687 a6989586621680008688

data ZipWith4Sym2 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] [e])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym2 a6989586621680008687 a6989586621680008688 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621680008687 a6989586621680008688 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621680008689 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym2 a6989586621680008687 a6989586621680008688 :: TyFun [b] ([c] ~> ([d] ~> [e])) -> Type) (a6989586621680008689 :: [b]) = ZipWith4Sym3 a6989586621680008687 a6989586621680008688 a6989586621680008689

data ZipWith4Sym3 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) :: (~>) [c] ((~>) [d] [e]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym3 a6989586621680008687 a6989586621680008688 a6989586621680008689 :: TyFun [c] ([d] ~> [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621680008687 a6989586621680008688 a6989586621680008689 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621680008690 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym3 a6989586621680008687 a6989586621680008688 a6989586621680008689 :: TyFun [c] ([d] ~> [e]) -> Type) (a6989586621680008690 :: [c]) = ZipWith4Sym4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690

data ZipWith4Sym4 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) (a6989586621680008690 :: [c]) :: (~>) [d] [e] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith4Sym4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 :: TyFun [d] [e] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 :: TyFun [d] [e] -> Type) (a6989586621680008691 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith4Sym4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 :: TyFun [d] [e] -> Type) (a6989586621680008691 :: [d]) = ZipWith4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 a6989586621680008691

type family ZipWith4Sym5 (a6989586621680008687 :: (~>) a ((~>) b ((~>) c ((~>) d e)))) (a6989586621680008688 :: [a]) (a6989586621680008689 :: [b]) (a6989586621680008690 :: [c]) (a6989586621680008691 :: [d]) :: [e] where ... Source #

Equations

ZipWith4Sym5 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 a6989586621680008691 = ZipWith4 a6989586621680008687 a6989586621680008688 a6989586621680008689 a6989586621680008690 a6989586621680008691 

data ZipWith5Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621680008664 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> f))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f]))))) -> Type) (a6989586621680008664 :: a ~> (b ~> (c ~> (d ~> (e ~> f))))) = ZipWith5Sym1 a6989586621680008664

data ZipWith5Sym1 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym1 a6989586621680008664 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621680008664 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621680008665 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym1 a6989586621680008664 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> [f])))) -> Type) (a6989586621680008665 :: [a]) = ZipWith5Sym2 a6989586621680008664 a6989586621680008665

data ZipWith5Sym2 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] [f]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym2 a6989586621680008664 a6989586621680008665 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621680008664 a6989586621680008665 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621680008666 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym2 a6989586621680008664 a6989586621680008665 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> [f]))) -> Type) (a6989586621680008666 :: [b]) = ZipWith5Sym3 a6989586621680008664 a6989586621680008665 a6989586621680008666

data ZipWith5Sym3 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] [f])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym3 a6989586621680008664 a6989586621680008665 a6989586621680008666 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621680008664 a6989586621680008665 a6989586621680008666 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621680008667 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym3 a6989586621680008664 a6989586621680008665 a6989586621680008666 :: TyFun [c] ([d] ~> ([e] ~> [f])) -> Type) (a6989586621680008667 :: [c]) = ZipWith5Sym4 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667

data ZipWith5Sym4 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) :: (~>) [d] ((~>) [e] [f]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym4 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 :: TyFun [d] ([e] ~> [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621680008668 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym4 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 :: TyFun [d] ([e] ~> [f]) -> Type) (a6989586621680008668 :: [d]) = ZipWith5Sym5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668

data ZipWith5Sym5 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) (a6989586621680008668 :: [d]) :: (~>) [e] [f] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith5Sym5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 :: TyFun [e] [f] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 :: TyFun [e] [f] -> Type) (a6989586621680008669 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith5Sym5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 :: TyFun [e] [f] -> Type) (a6989586621680008669 :: [e]) = ZipWith5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 a6989586621680008669

type family ZipWith5Sym6 (a6989586621680008664 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e f))))) (a6989586621680008665 :: [a]) (a6989586621680008666 :: [b]) (a6989586621680008667 :: [c]) (a6989586621680008668 :: [d]) (a6989586621680008669 :: [e]) :: [f] where ... Source #

Equations

ZipWith5Sym6 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 a6989586621680008669 = ZipWith5 a6989586621680008664 a6989586621680008665 a6989586621680008666 a6989586621680008667 a6989586621680008668 a6989586621680008669 

data ZipWith6Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621680008637 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))))) -> Type) (a6989586621680008637 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> g)))))) = ZipWith6Sym1 a6989586621680008637

data ZipWith6Sym1 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym1 a6989586621680008637 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621680008637 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621680008638 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym1 a6989586621680008637 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g]))))) -> Type) (a6989586621680008638 :: [a]) = ZipWith6Sym2 a6989586621680008637 a6989586621680008638

data ZipWith6Sym2 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym2 a6989586621680008637 a6989586621680008638 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621680008637 a6989586621680008638 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621680008639 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym2 a6989586621680008637 a6989586621680008638 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> [g])))) -> Type) (a6989586621680008639 :: [b]) = ZipWith6Sym3 a6989586621680008637 a6989586621680008638 a6989586621680008639

data ZipWith6Sym3 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] [g]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym3 a6989586621680008637 a6989586621680008638 a6989586621680008639 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621680008637 a6989586621680008638 a6989586621680008639 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621680008640 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym3 a6989586621680008637 a6989586621680008638 a6989586621680008639 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> [g]))) -> Type) (a6989586621680008640 :: [c]) = ZipWith6Sym4 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640

data ZipWith6Sym4 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] [g])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym4 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621680008641 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym4 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 :: TyFun [d] ([e] ~> ([f] ~> [g])) -> Type) (a6989586621680008641 :: [d]) = ZipWith6Sym5 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641

data ZipWith6Sym5 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) :: (~>) [e] ((~>) [f] [g]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym5 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 :: TyFun [e] ([f] ~> [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621680008642 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym5 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 :: TyFun [e] ([f] ~> [g]) -> Type) (a6989586621680008642 :: [e]) = ZipWith6Sym6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642

data ZipWith6Sym6 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) (a6989586621680008642 :: [e]) :: (~>) [f] [g] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith6Sym6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 :: TyFun [f] [g] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 :: TyFun [f] [g] -> Type) (a6989586621680008643 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith6Sym6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 :: TyFun [f] [g] -> Type) (a6989586621680008643 :: [f]) = ZipWith6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 a6989586621680008643

type family ZipWith6Sym7 (a6989586621680008637 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f g)))))) (a6989586621680008638 :: [a]) (a6989586621680008639 :: [b]) (a6989586621680008640 :: [c]) (a6989586621680008641 :: [d]) (a6989586621680008642 :: [e]) (a6989586621680008643 :: [f]) :: [g] where ... Source #

Equations

ZipWith6Sym7 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 a6989586621680008643 = ZipWith6 a6989586621680008637 a6989586621680008638 a6989586621680008639 a6989586621680008640 a6989586621680008641 a6989586621680008642 a6989586621680008643 

data ZipWith7Sym0 :: (~>) ((~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) ((~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621680008606 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym0 :: TyFun (a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) ([a] ~> ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))))) -> Type) (a6989586621680008606 :: a ~> (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> h))))))) = ZipWith7Sym1 a6989586621680008606

data ZipWith7Sym1 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) :: (~>) [a] ((~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym1 a6989586621680008606 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621680008606 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621680008607 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym1 a6989586621680008606 :: TyFun [a] ([b] ~> ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))))) -> Type) (a6989586621680008607 :: [a]) = ZipWith7Sym2 a6989586621680008606 a6989586621680008607

data ZipWith7Sym2 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) :: (~>) [b] ((~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym2 a6989586621680008606 a6989586621680008607 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621680008606 a6989586621680008607 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621680008608 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym2 a6989586621680008606 a6989586621680008607 :: TyFun [b] ([c] ~> ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h]))))) -> Type) (a6989586621680008608 :: [b]) = ZipWith7Sym3 a6989586621680008606 a6989586621680008607 a6989586621680008608

data ZipWith7Sym3 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) :: (~>) [c] ((~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h])))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym3 a6989586621680008606 a6989586621680008607 a6989586621680008608 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621680008606 a6989586621680008607 a6989586621680008608 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621680008609 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym3 a6989586621680008606 a6989586621680008607 a6989586621680008608 :: TyFun [c] ([d] ~> ([e] ~> ([f] ~> ([g] ~> [h])))) -> Type) (a6989586621680008609 :: [c]) = ZipWith7Sym4 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609

data ZipWith7Sym4 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) :: (~>) [d] ((~>) [e] ((~>) [f] ((~>) [g] [h]))) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym4 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621680008610 :: [d]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym4 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 :: TyFun [d] ([e] ~> ([f] ~> ([g] ~> [h]))) -> Type) (a6989586621680008610 :: [d]) = ZipWith7Sym5 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610

data ZipWith7Sym5 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) :: (~>) [e] ((~>) [f] ((~>) [g] [h])) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym5 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621680008611 :: [e]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym5 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 :: TyFun [e] ([f] ~> ([g] ~> [h])) -> Type) (a6989586621680008611 :: [e]) = ZipWith7Sym6 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611

data ZipWith7Sym6 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) :: (~>) [f] ((~>) [g] [h]) Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym6 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 :: TyFun [f] ([g] ~> [h]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621680008612 :: [f]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym6 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 :: TyFun [f] ([g] ~> [h]) -> Type) (a6989586621680008612 :: [f]) = ZipWith7Sym7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612

data ZipWith7Sym7 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) (a6989586621680008612 :: [f]) :: (~>) [g] [h] Source #

Instances

Instances details
SuppressUnusedWarnings (ZipWith7Sym7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 :: TyFun [g] [h] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 :: TyFun [g] [h] -> Type) (a6989586621680008613 :: [g]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith7Sym7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 :: TyFun [g] [h] -> Type) (a6989586621680008613 :: [g]) = ZipWith7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 a6989586621680008613

type family ZipWith7Sym8 (a6989586621680008606 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g h))))))) (a6989586621680008607 :: [a]) (a6989586621680008608 :: [b]) (a6989586621680008609 :: [c]) (a6989586621680008610 :: [d]) (a6989586621680008611 :: [e]) (a6989586621680008612 :: [f]) (a6989586621680008613 :: [g]) :: [h] where ... Source #

Equations

ZipWith7Sym8 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 a6989586621680008613 = ZipWith7 a6989586621680008606 a6989586621680008607 a6989586621680008608 a6989586621680008609 a6989586621680008610 a6989586621680008611 a6989586621680008612 a6989586621680008613 

data UnzipSym0 :: (~>) [(a, b)] ([a], [b]) Source #

Instances

Instances details
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing UnzipSym0

SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679851816 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679851816 :: [(a, b)]) = Unzip a6989586621679851816

type family UnzipSym1 (a6989586621679851816 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

UnzipSym1 a6989586621679851816 = Unzip a6989586621679851816 

data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c]) Source #

Instances

Instances details
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip3Sym0

SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) = Unzip3 a6989586621679851798

type family Unzip3Sym1 (a6989586621679851798 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3Sym1 a6989586621679851798 = Unzip3 a6989586621679851798 

data Unzip4Sym0 :: (~>) [(a, b, c, d)] ([a], [b], [c], [d]) Source #

Instances

Instances details
SingI (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip4Sym0

SuppressUnusedWarnings (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679851778 :: [(a, b, c, d)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip4Sym0 :: TyFun [(a, b, c, d)] ([a], [b], [c], [d]) -> Type) (a6989586621679851778 :: [(a, b, c, d)]) = Unzip4 a6989586621679851778

type family Unzip4Sym1 (a6989586621679851778 :: [(a, b, c, d)]) :: ([a], [b], [c], [d]) where ... Source #

Equations

Unzip4Sym1 a6989586621679851778 = Unzip4 a6989586621679851778 

data Unzip5Sym0 :: (~>) [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) Source #

Instances

Instances details
SingI (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip5Sym0

SuppressUnusedWarnings (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679851756 :: [(a, b, c, d, e)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip5Sym0 :: TyFun [(a, b, c, d, e)] ([a], [b], [c], [d], [e]) -> Type) (a6989586621679851756 :: [(a, b, c, d, e)]) = Unzip5 a6989586621679851756

type family Unzip5Sym1 (a6989586621679851756 :: [(a, b, c, d, e)]) :: ([a], [b], [c], [d], [e]) where ... Source #

Equations

Unzip5Sym1 a6989586621679851756 = Unzip5 a6989586621679851756 

data Unzip6Sym0 :: (~>) [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) Source #

Instances

Instances details
SingI (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip6Sym0

SuppressUnusedWarnings (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679851732 :: [(a, b, c, d, e, f)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip6Sym0 :: TyFun [(a, b, c, d, e, f)] ([a], [b], [c], [d], [e], [f]) -> Type) (a6989586621679851732 :: [(a, b, c, d, e, f)]) = Unzip6 a6989586621679851732

type family Unzip6Sym1 (a6989586621679851732 :: [(a, b, c, d, e, f)]) :: ([a], [b], [c], [d], [e], [f]) where ... Source #

Equations

Unzip6Sym1 a6989586621679851732 = Unzip6 a6989586621679851732 

data Unzip7Sym0 :: (~>) [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) Source #

Instances

Instances details
SingI (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip7Sym0

SuppressUnusedWarnings (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679851706 :: [(a, b, c, d, e, f, g)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip7Sym0 :: TyFun [(a, b, c, d, e, f, g)] ([a], [b], [c], [d], [e], [f], [g]) -> Type) (a6989586621679851706 :: [(a, b, c, d, e, f, g)]) = Unzip7 a6989586621679851706

type family Unzip7Sym1 (a6989586621679851706 :: [(a, b, c, d, e, f, g)]) :: ([a], [b], [c], [d], [e], [f], [g]) where ... Source #

Equations

Unzip7Sym1 a6989586621679851706 = Unzip7 a6989586621679851706 

data UnlinesSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) = Unlines a6989586621679851701

type family UnlinesSym1 (a6989586621679851701 :: [Symbol]) :: Symbol where ... Source #

Equations

UnlinesSym1 a6989586621679851701 = Unlines a6989586621679851701 

data UnwordsSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) = Unwords a6989586621679851691

type family UnwordsSym1 (a6989586621679851691 :: [Symbol]) :: Symbol where ... Source #

Equations

UnwordsSym1 a6989586621679851691 = Unwords a6989586621679851691 

data NubSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing NubSym0

SuppressUnusedWarnings (NubSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679851147 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubSym0 :: TyFun [a] [a] -> Type) (a6989586621679851147 :: [a]) = Nub a6989586621679851147

type family NubSym1 (a6989586621679851147 :: [a]) :: [a] where ... Source #

Equations

NubSym1 a6989586621679851147 = Nub a6989586621679851147 

data DeleteSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing DeleteSym0

SuppressUnusedWarnings (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851685 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851685 :: a) = DeleteSym1 a6989586621679851685

data DeleteSym1 (a6989586621679851685 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (DeleteSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteSym1 x)

(SEq a, SingI d) => SingI (DeleteSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteSym1 d)

SuppressUnusedWarnings (DeleteSym1 a6989586621679851685 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679851685 :: TyFun [a] [a] -> Type) (a6989586621679851686 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteSym1 a6989586621679851685 :: TyFun [a] [a] -> Type) (a6989586621679851686 :: [a]) = Delete a6989586621679851685 a6989586621679851686

type family DeleteSym2 (a6989586621679851685 :: a) (a6989586621679851686 :: [a]) :: [a] where ... Source #

Equations

DeleteSym2 a6989586621679851685 a6989586621679851686 = Delete a6989586621679851685 a6989586621679851686 

data (\\@#@$) :: (~>) [a] ((~>) [a] [a]) infix 5 Source #

Instances

Instances details
SEq a => SingI ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (\\@#@$)

SuppressUnusedWarnings ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851674 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851674 :: [a]) = (\\@#@$$) a6989586621679851674

data (\\@#@$$) (a6989586621679851674 :: [a]) :: (~>) [a] [a] infix 5 Source #

Instances

Instances details
SEq a => SingI1 ((\\@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((\\@#@$$) x)

(SEq a, SingI d) => SingI ((\\@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((\\@#@$$) d)

SuppressUnusedWarnings ((\\@#@$$) a6989586621679851674 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679851674 :: TyFun [a] [a] -> Type) (a6989586621679851675 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((\\@#@$$) a6989586621679851674 :: TyFun [a] [a] -> Type) (a6989586621679851675 :: [a]) = a6989586621679851674 \\ a6989586621679851675

type family (a6989586621679851674 :: [a]) \\@#@$$$ (a6989586621679851675 :: [a]) :: [a] where ... infix 5 Source #

Equations

a6989586621679851674 \\@#@$$$ a6989586621679851675 = (\\) a6989586621679851674 a6989586621679851675 

data UnionSym0 :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing UnionSym0

SuppressUnusedWarnings (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851101 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851101 :: [a]) = UnionSym1 a6989586621679851101

data UnionSym1 (a6989586621679851101 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (UnionSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionSym1 x)

(SEq a, SingI d) => SingI (UnionSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionSym1 d)

SuppressUnusedWarnings (UnionSym1 a6989586621679851101 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679851101 :: TyFun [a] [a] -> Type) (a6989586621679851102 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionSym1 a6989586621679851101 :: TyFun [a] [a] -> Type) (a6989586621679851102 :: [a]) = Union a6989586621679851101 a6989586621679851102

type family UnionSym2 (a6989586621679851101 :: [a]) (a6989586621679851102 :: [a]) :: [a] where ... Source #

Equations

UnionSym2 a6989586621679851101 a6989586621679851102 = Union a6989586621679851101 a6989586621679851102 

data IntersectSym0 :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SEq a => SingI (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851492 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym0 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851492 :: [a]) = IntersectSym1 a6989586621679851492

data IntersectSym1 (a6989586621679851492 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SEq a => SingI1 (IntersectSym1 :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectSym1 x)

(SEq a, SingI d) => SingI (IntersectSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectSym1 d)

SuppressUnusedWarnings (IntersectSym1 a6989586621679851492 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679851492 :: TyFun [a] [a] -> Type) (a6989586621679851493 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectSym1 a6989586621679851492 :: TyFun [a] [a] -> Type) (a6989586621679851493 :: [a]) = Intersect a6989586621679851492 a6989586621679851493

type family IntersectSym2 (a6989586621679851492 :: [a]) (a6989586621679851493 :: [a]) :: [a] where ... Source #

Equations

IntersectSym2 a6989586621679851492 a6989586621679851493 = Intersect a6989586621679851492 a6989586621679851493 

data InsertSym0 :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SOrd a => SingI (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InsertSym0

SuppressUnusedWarnings (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851294 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym0 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851294 :: a) = InsertSym1 a6989586621679851294

data InsertSym1 (a6989586621679851294 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SOrd a => SingI1 (InsertSym1 :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertSym1 x)

(SOrd a, SingI d) => SingI (InsertSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertSym1 d)

SuppressUnusedWarnings (InsertSym1 a6989586621679851294 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679851294 :: TyFun [a] [a] -> Type) (a6989586621679851295 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertSym1 a6989586621679851294 :: TyFun [a] [a] -> Type) (a6989586621679851295 :: [a]) = Insert a6989586621679851294 a6989586621679851295

type family InsertSym2 (a6989586621679851294 :: a) (a6989586621679851295 :: [a]) :: [a] where ... Source #

Equations

InsertSym2 a6989586621679851294 a6989586621679851295 = Insert a6989586621679851294 a6989586621679851295 

data SortSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SOrd a => SingI (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SortSym0

SuppressUnusedWarnings (SortSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679851289 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortSym0 :: TyFun [a] [a] -> Type) (a6989586621679851289 :: [a]) = Sort a6989586621679851289

type family SortSym1 (a6989586621679851289 :: [a]) :: [a] where ... Source #

Equations

SortSym1 a6989586621679851289 = Sort a6989586621679851289 

data NubBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing NubBySym0

SuppressUnusedWarnings (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679851129 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [a]) -> Type) (a6989586621679851129 :: a ~> (a ~> Bool)) = NubBySym1 a6989586621679851129

data NubBySym1 (a6989586621679851129 :: (~>) a ((~>) a Bool)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (NubBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (NubBySym1 d)

SuppressUnusedWarnings (NubBySym1 a6989586621679851129 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (NubBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (NubBySym1 x)

type Apply (NubBySym1 a6989586621679851129 :: TyFun [a] [a] -> Type) (a6989586621679851130 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (NubBySym1 a6989586621679851129 :: TyFun [a] [a] -> Type) (a6989586621679851130 :: [a]) = NubBy a6989586621679851129 a6989586621679851130

type family NubBySym2 (a6989586621679851129 :: (~>) a ((~>) a Bool)) (a6989586621679851130 :: [a]) :: [a] where ... Source #

Equations

NubBySym2 a6989586621679851129 a6989586621679851130 = NubBy a6989586621679851129 a6989586621679851130 

data DeleteBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) a ((~>) [a] [a])) Source #

Instances

Instances details
SingI (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679851655 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym0 :: TyFun (a ~> (a ~> Bool)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679851655 :: a ~> (a ~> Bool)) = DeleteBySym1 a6989586621679851655

data DeleteBySym1 (a6989586621679851655 :: (~>) a ((~>) a Bool)) :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DeleteBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym1 d)

SuppressUnusedWarnings (DeleteBySym1 a6989586621679851655 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteBySym1 :: (a ~> (a ~> Bool)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteBySym1 x)

type Apply (DeleteBySym1 a6989586621679851655 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851656 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym1 a6989586621679851655 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851656 :: a) = DeleteBySym2 a6989586621679851655 a6989586621679851656

data DeleteBySym2 (a6989586621679851655 :: (~>) a ((~>) a Bool)) (a6989586621679851656 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (DeleteBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteBySym2 d x)

SingI2 (DeleteBySym2 :: (a ~> (a ~> Bool)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (DeleteBySym2 x y)

(SingI d1, SingI d2) => SingI (DeleteBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteBySym2 d1 d2)

SuppressUnusedWarnings (DeleteBySym2 a6989586621679851655 a6989586621679851656 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679851655 a6989586621679851656 :: TyFun [a] [a] -> Type) (a6989586621679851657 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteBySym2 a6989586621679851655 a6989586621679851656 :: TyFun [a] [a] -> Type) (a6989586621679851657 :: [a]) = DeleteBy a6989586621679851655 a6989586621679851656 a6989586621679851657

type family DeleteBySym3 (a6989586621679851655 :: (~>) a ((~>) a Bool)) (a6989586621679851656 :: a) (a6989586621679851657 :: [a]) :: [a] where ... Source #

Equations

DeleteBySym3 a6989586621679851655 a6989586621679851656 a6989586621679851657 = DeleteBy a6989586621679851655 a6989586621679851656 a6989586621679851657 

data DeleteFirstsBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851645 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851645 :: a ~> (a ~> Bool)) = DeleteFirstsBySym1 a6989586621679851645

data DeleteFirstsBySym1 (a6989586621679851645 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (DeleteFirstsBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DeleteFirstsBySym1 a6989586621679851645 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DeleteFirstsBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteFirstsBySym1 x)

type Apply (DeleteFirstsBySym1 a6989586621679851645 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851646 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym1 a6989586621679851645 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851646 :: [a]) = DeleteFirstsBySym2 a6989586621679851645 a6989586621679851646

data DeleteFirstsBySym2 (a6989586621679851645 :: (~>) a ((~>) a Bool)) (a6989586621679851646 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (DeleteFirstsBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DeleteFirstsBySym2 d x)

SingI2 (DeleteFirstsBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (DeleteFirstsBySym2 x y)

(SingI d1, SingI d2) => SingI (DeleteFirstsBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DeleteFirstsBySym2 d1 d2)

SuppressUnusedWarnings (DeleteFirstsBySym2 a6989586621679851645 a6989586621679851646 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679851645 a6989586621679851646 :: TyFun [a] [a] -> Type) (a6989586621679851647 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DeleteFirstsBySym2 a6989586621679851645 a6989586621679851646 :: TyFun [a] [a] -> Type) (a6989586621679851647 :: [a]) = DeleteFirstsBy a6989586621679851645 a6989586621679851646 a6989586621679851647

type family DeleteFirstsBySym3 (a6989586621679851645 :: (~>) a ((~>) a Bool)) (a6989586621679851646 :: [a]) (a6989586621679851647 :: [a]) :: [a] where ... Source #

Equations

DeleteFirstsBySym3 a6989586621679851645 a6989586621679851646 a6989586621679851647 = DeleteFirstsBy a6989586621679851645 a6989586621679851646 a6989586621679851647 

data UnionBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851109 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851109 :: a ~> (a ~> Bool)) = UnionBySym1 a6989586621679851109

data UnionBySym1 (a6989586621679851109 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (UnionBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym1 d)

SuppressUnusedWarnings (UnionBySym1 a6989586621679851109 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (UnionBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionBySym1 x)

type Apply (UnionBySym1 a6989586621679851109 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851110 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym1 a6989586621679851109 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851110 :: [a]) = UnionBySym2 a6989586621679851109 a6989586621679851110

data UnionBySym2 (a6989586621679851109 :: (~>) a ((~>) a Bool)) (a6989586621679851110 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (UnionBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UnionBySym2 d x)

SingI2 (UnionBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (UnionBySym2 x y)

(SingI d1, SingI d2) => SingI (UnionBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (UnionBySym2 d1 d2)

SuppressUnusedWarnings (UnionBySym2 a6989586621679851109 a6989586621679851110 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679851109 a6989586621679851110 :: TyFun [a] [a] -> Type) (a6989586621679851111 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnionBySym2 a6989586621679851109 a6989586621679851110 :: TyFun [a] [a] -> Type) (a6989586621679851111 :: [a]) = UnionBy a6989586621679851109 a6989586621679851110 a6989586621679851111

type family UnionBySym3 (a6989586621679851109 :: (~>) a ((~>) a Bool)) (a6989586621679851110 :: [a]) (a6989586621679851111 :: [a]) :: [a] where ... Source #

Equations

UnionBySym3 a6989586621679851109 a6989586621679851110 a6989586621679851111 = UnionBy a6989586621679851109 a6989586621679851110 a6989586621679851111 

data IntersectBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] ((~>) [a] [a])) Source #

Instances

Instances details
SingI (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851470 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> ([a] ~> [a])) -> Type) (a6989586621679851470 :: a ~> (a ~> Bool)) = IntersectBySym1 a6989586621679851470

data IntersectBySym1 (a6989586621679851470 :: (~>) a ((~>) a Bool)) :: (~>) [a] ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (IntersectBySym1 d :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym1 d)

SuppressUnusedWarnings (IntersectBySym1 a6989586621679851470 :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (IntersectBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectBySym1 x)

type Apply (IntersectBySym1 a6989586621679851470 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851471 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym1 a6989586621679851470 :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679851471 :: [a]) = IntersectBySym2 a6989586621679851470 a6989586621679851471

data IntersectBySym2 (a6989586621679851470 :: (~>) a ((~>) a Bool)) (a6989586621679851471 :: [a]) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (IntersectBySym2 d :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IntersectBySym2 d x)

SingI2 (IntersectBySym2 :: (a ~> (a ~> Bool)) -> [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (IntersectBySym2 x y)

(SingI d1, SingI d2) => SingI (IntersectBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (IntersectBySym2 d1 d2)

SuppressUnusedWarnings (IntersectBySym2 a6989586621679851470 a6989586621679851471 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679851470 a6989586621679851471 :: TyFun [a] [a] -> Type) (a6989586621679851472 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (IntersectBySym2 a6989586621679851470 a6989586621679851471 :: TyFun [a] [a] -> Type) (a6989586621679851472 :: [a]) = IntersectBy a6989586621679851470 a6989586621679851471 a6989586621679851472

type family IntersectBySym3 (a6989586621679851470 :: (~>) a ((~>) a Bool)) (a6989586621679851471 :: [a]) (a6989586621679851472 :: [a]) :: [a] where ... Source #

Equations

IntersectBySym3 a6989586621679851470 a6989586621679851471 a6989586621679851472 = IntersectBy a6989586621679851470 a6989586621679851471 a6989586621679851472 

data GroupBySym0 :: (~>) ((~>) a ((~>) a Bool)) ((~>) [a] [[a]]) Source #

Instances

Instances details
SingI (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679851262 :: a ~> (a ~> Bool)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym0 :: TyFun (a ~> (a ~> Bool)) ([a] ~> [[a]]) -> Type) (a6989586621679851262 :: a ~> (a ~> Bool)) = GroupBySym1 a6989586621679851262

data GroupBySym1 (a6989586621679851262 :: (~>) a ((~>) a Bool)) :: (~>) [a] [[a]] Source #

Instances

Instances details
SingI d => SingI (GroupBySym1 d :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (GroupBySym1 d)

SuppressUnusedWarnings (GroupBySym1 a6989586621679851262 :: TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (GroupBySym1 :: (a ~> (a ~> Bool)) -> TyFun [a] [[a]] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (GroupBySym1 x)

type Apply (GroupBySym1 a6989586621679851262 :: TyFun [a] [[a]] -> Type) (a6989586621679851263 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GroupBySym1 a6989586621679851262 :: TyFun [a] [[a]] -> Type) (a6989586621679851263 :: [a]) = GroupBy a6989586621679851262 a6989586621679851263

type family GroupBySym2 (a6989586621679851262 :: (~>) a ((~>) a Bool)) (a6989586621679851263 :: [a]) :: [[a]] where ... Source #

Equations

GroupBySym2 a6989586621679851262 a6989586621679851263 = GroupBy a6989586621679851262 a6989586621679851263 

data SortBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SortBySym0

SuppressUnusedWarnings (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679851633 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym0 :: TyFun (a ~> (a ~> Ordering)) ([a] ~> [a]) -> Type) (a6989586621679851633 :: a ~> (a ~> Ordering)) = SortBySym1 a6989586621679851633

data SortBySym1 (a6989586621679851633 :: (~>) a ((~>) a Ordering)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (SortBySym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SortBySym1 d)

SuppressUnusedWarnings (SortBySym1 a6989586621679851633 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SortBySym1 :: (a ~> (a ~> Ordering)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SortBySym1 x)

type Apply (SortBySym1 a6989586621679851633 :: TyFun [a] [a] -> Type) (a6989586621679851634 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SortBySym1 a6989586621679851633 :: TyFun [a] [a] -> Type) (a6989586621679851634 :: [a]) = SortBy a6989586621679851633 a6989586621679851634

type family SortBySym2 (a6989586621679851633 :: (~>) a ((~>) a Ordering)) (a6989586621679851634 :: [a]) :: [a] where ... Source #

Equations

SortBySym2 a6989586621679851633 a6989586621679851634 = SortBy a6989586621679851633 a6989586621679851634 

data InsertBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) a ((~>) [a] [a])) Source #

Instances

Instances details
SingI (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679851613 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym0 :: TyFun (a ~> (a ~> Ordering)) (a ~> ([a] ~> [a])) -> Type) (a6989586621679851613 :: a ~> (a ~> Ordering)) = InsertBySym1 a6989586621679851613

data InsertBySym1 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) :: (~>) a ((~>) [a] [a]) Source #

Instances

Instances details
SingI d => SingI (InsertBySym1 d :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym1 d)

SuppressUnusedWarnings (InsertBySym1 a6989586621679851613 :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (InsertBySym1 :: (a ~> (a ~> Ordering)) -> TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertBySym1 x)

type Apply (InsertBySym1 a6989586621679851613 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851614 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym1 a6989586621679851613 :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679851614 :: a) = InsertBySym2 a6989586621679851613 a6989586621679851614

data InsertBySym2 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) (a6989586621679851614 :: a) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI1 (InsertBySym2 d :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (InsertBySym2 d x)

SingI2 (InsertBySym2 :: (a ~> (a ~> Ordering)) -> a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (InsertBySym2 x y)

(SingI d1, SingI d2) => SingI (InsertBySym2 d1 d2 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (InsertBySym2 d1 d2)

SuppressUnusedWarnings (InsertBySym2 a6989586621679851613 a6989586621679851614 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679851613 a6989586621679851614 :: TyFun [a] [a] -> Type) (a6989586621679851615 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InsertBySym2 a6989586621679851613 a6989586621679851614 :: TyFun [a] [a] -> Type) (a6989586621679851615 :: [a]) = InsertBy a6989586621679851613 a6989586621679851614 a6989586621679851615

type family InsertBySym3 (a6989586621679851613 :: (~>) a ((~>) a Ordering)) (a6989586621679851614 :: a) (a6989586621679851615 :: [a]) :: [a] where ... Source #

Equations

InsertBySym3 a6989586621679851613 a6989586621679851614 a6989586621679851615 = InsertBy a6989586621679851613 a6989586621679851614 a6989586621679851615 

data MaximumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680438144 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680438144 :: a ~> (a ~> Ordering)) = MaximumBySym1 a6989586621680438144 :: TyFun (t a) a -> Type

data MaximumBySym1 (a6989586621680438144 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (MaximumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MaximumBySym1 x)

(SFoldable t, SingI d) => SingI (MaximumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MaximumBySym1 d)

SuppressUnusedWarnings (MaximumBySym1 a6989586621680438144 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680438144 :: TyFun (t a) a -> Type) (a6989586621680438145 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumBySym1 a6989586621680438144 :: TyFun (t a) a -> Type) (a6989586621680438145 :: t a) = MaximumBy a6989586621680438144 a6989586621680438145

type family MaximumBySym2 (a6989586621680438144 :: (~>) a ((~>) a Ordering)) (a6989586621680438145 :: t a) :: a where ... Source #

Equations

MaximumBySym2 a6989586621680438144 a6989586621680438145 = MaximumBy a6989586621680438144 a6989586621680438145 

data MinimumBySym0 :: (~>) ((~>) a ((~>) a Ordering)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680438124 :: a ~> (a ~> Ordering)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym0 :: TyFun (a ~> (a ~> Ordering)) (t a ~> a) -> Type) (a6989586621680438124 :: a ~> (a ~> Ordering)) = MinimumBySym1 a6989586621680438124 :: TyFun (t a) a -> Type

data MinimumBySym1 (a6989586621680438124 :: (~>) a ((~>) a Ordering)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (MinimumBySym1 :: (a ~> (a ~> Ordering)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MinimumBySym1 x)

(SFoldable t, SingI d) => SingI (MinimumBySym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MinimumBySym1 d)

SuppressUnusedWarnings (MinimumBySym1 a6989586621680438124 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680438124 :: TyFun (t a) a -> Type) (a6989586621680438125 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumBySym1 a6989586621680438124 :: TyFun (t a) a -> Type) (a6989586621680438125 :: t a) = MinimumBy a6989586621680438124 a6989586621680438125

type family MinimumBySym2 (a6989586621680438124 :: (~>) a ((~>) a Ordering)) (a6989586621680438125 :: t a) :: a where ... Source #

Equations

MinimumBySym2 a6989586621680438124 a6989586621680438125 = MinimumBy a6989586621680438124 a6989586621680438125 

data GenericLengthSym0 :: (~>) [a] i Source #

Instances

Instances details
SNum i => SingI (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (GenericLengthSym0 :: TyFun [a] i -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679851092 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (GenericLengthSym0 :: TyFun [a] k2 -> Type) (a6989586621679851092 :: [a]) = GenericLength a6989586621679851092 :: k2

type family GenericLengthSym1 (a6989586621679851092 :: [a]) :: i where ... Source #

Equations

GenericLengthSym1 a6989586621679851092 = GenericLength a6989586621679851092