singletons-base-3.1.1: A promoted and singled version of the base library
Copyright(C) 2013 Richard Eisenberg
LicenseBSD-style (see LICENSE)
MaintainerRyan Scott
Stabilityexperimental
Portabilitynon-portable
Safe HaskellSafe-Inferred
LanguageGHC2021

Prelude.Singletons

Description

Mimics the Haskell Prelude, but with singleton types. Includes the basic singleton definitions. Note: This is currently very incomplete!

Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.

Synopsis

Basic singleton definitions

Promoted and singled types, classes, and related functions

Basic data types

data SBool :: Bool -> Type where Source #

Constructors

SFalse :: SBool ('False :: Bool) 
STrue :: SBool ('True :: Bool) 

Instances

Instances details
TestCoercion SBool Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). SBool a -> SBool b -> Maybe (Coercion a b) #

TestEquality SBool Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a :: k) (b :: k). SBool a -> SBool b -> Maybe (a :~: b) #

Show (SBool z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SBool z -> ShowS #

show :: SBool z -> String #

showList :: [SBool z] -> ShowS #

type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #

Type-level If. If True a b ==> a; If False a b ==> b

Equations

If 'True (tru :: k) (fls :: k) = tru 
If 'False (tru :: k) (fls :: k) = fls 

sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c) Source #

Conditional over singletons

type family (a :: Bool) && (b :: Bool) :: Bool where ... infixr 3 #

Type-level "and"

Equations

'False && a = 'False 
'True && a = a 
a && 'False = 'False 
a && 'True = a 
a && a = a 

(%&&) :: Sing a -> Sing b -> Sing (a && b) infixr 3 Source #

Conjunction of singletons

type family (a :: Bool) || (b :: Bool) :: Bool where ... infixr 2 #

Type-level "or"

Equations

'False || a = a 
'True || a = 'True 
a || 'False = a 
a || 'True = 'True 
a || a = a 

(%||) :: Sing a -> Sing b -> Sing (a || b) infixr 2 Source #

Disjunction of singletons

type family Not (a :: Bool) = (res :: Bool) | res -> a where ... #

Type-level "not". An injective type family since 4.10.0.0.

Since: base-4.7.0.0

Equations

Not 'False = 'True 
Not 'True = 'False 

sNot :: Sing a -> Sing (Not a) Source #

Negation of a singleton

type family Otherwise :: Bool where ... Source #

Equations

Otherwise = TrueSym0 

data SMaybe :: forall (a :: Type). Maybe a -> Type where Source #

Constructors

SNothing :: forall (a :: Type). SMaybe ('Nothing :: Maybe (a :: Type)) 
SJust :: forall (a :: Type) (n :: a). (Sing n) -> SMaybe ('Just n :: Maybe (a :: Type)) 

Instances

Instances details
SDecide a => TestCoercion (SMaybe :: Maybe a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SMaybe a0 -> SMaybe b -> Maybe (Coercion a0 b) #

SDecide a => TestEquality (SMaybe :: Maybe a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SMaybe a0 -> SMaybe b -> Maybe (a0 :~: b) #

ShowSing a => Show (SMaybe z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SMaybe z -> ShowS #

show :: SMaybe z -> String #

showList :: [SMaybe z] -> ShowS #

maybe_ is a reimplementation of the maybe function with a different name to avoid clashing with the Maybe data type when promoted.

maybe_ :: b -> (a -> b) -> Maybe a -> b Source #

type family Maybe_ (a :: b) (a :: (~>) a b) (a :: Maybe a) :: b where ... Source #

Equations

Maybe_ n _ 'Nothing = n 
Maybe_ _ f ('Just x) = Apply f x 

sMaybe_ :: forall b a (t :: b) (t :: (~>) a b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Maybe_Sym0 t) t) t :: b) Source #

data SEither :: forall (a :: Type) (b :: Type). Either a b -> Type where Source #

Constructors

SLeft :: forall (a :: Type) (b :: Type) (n :: a). (Sing n) -> SEither ('Left n :: Either (a :: Type) (b :: Type)) 
SRight :: forall (a :: Type) (b :: Type) (n :: b). (Sing n) -> SEither ('Right n :: Either (a :: Type) (b :: Type)) 

Instances

Instances details
(SDecide a, SDecide b) => TestCoercion (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b) => TestEquality (SEither :: Either a b -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). SEither a0 -> SEither b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b) => Show (SEither z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SEither z -> ShowS #

show :: SEither z -> String #

showList :: [SEither z] -> ShowS #

either_ is a reimplementation of the either function with a different name to avoid clashing with the Either data type when promoted.

either_ :: (a -> c) -> (b -> c) -> Either a b -> c Source #

type family Either_ (a :: (~>) a c) (a :: (~>) b c) (a :: Either a b) :: c where ... Source #

Equations

Either_ f _ ('Left x) = Apply f x 
Either_ _ g ('Right y) = Apply g y 

sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #

data SOrdering :: Ordering -> Type where Source #

Constructors

SLT :: SOrdering ('LT :: Ordering) 
SEQ :: SOrdering ('EQ :: Ordering) 
SGT :: SOrdering ('GT :: Ordering) 

Instances

Instances details
TestCoercion SOrdering Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). SOrdering a -> SOrdering b -> Maybe (Coercion a b) #

TestEquality SOrdering Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a :: k) (b :: k). SOrdering a -> SOrdering b -> Maybe (a :~: b) #

Show (SOrdering z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

data SChar (c :: Char) Source #

Instances

Instances details
Show (SChar c) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

showsPrec :: Int -> SChar c -> ShowS #

show :: SChar c -> String #

showList :: [SChar c] -> ShowS #

data Symbol #

(Kind) This is the kind of type-level symbols. Declared here because class IP needs it

Instances

Instances details
IsString Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons

Methods

fromString :: String -> Symbol #

Monoid Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons

Semigroup Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SingKind Symbol

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Associated Types

type DemoteRep Symbol

Methods

fromSing :: forall (a :: Symbol). Sing a -> DemoteRep Symbol

Show Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons

Eq Symbol Source #

This bogus instance is helpful for people who want to define functions over Symbols that will only be used at the type level or as singletons.

Instance details

Defined in GHC.TypeLits.Singletons

Methods

(==) :: Symbol -> Symbol -> Bool #

(/=) :: Symbol -> Symbol -> Bool #

Ord Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SingKind PErrorMessage 
Instance details

Defined in Data.Singletons.Base.TypeError

Associated Types

type Demote PErrorMessage = (r :: Type)

Methods

fromSing :: forall (a :: PErrorMessage). Sing a -> Demote PErrorMessage

toSing :: Demote PErrorMessage -> SomeSing PErrorMessage

SingKind Symbol 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Demote Symbol = (r :: Type)

Methods

fromSing :: forall (a :: Symbol). Sing a -> Demote Symbol

toSing :: Demote Symbol -> SomeSing Symbol

SDecide Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

(%~) :: forall (a :: Symbol) (b :: Symbol). Sing a -> Sing b -> Decision (a :~: b) #

PEq Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

SEq Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

(%==) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

PMonoid Symbol Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

SMonoid Symbol Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Symbol]). Sing t -> Sing (Apply MconcatSym0 t) Source #

POrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

SOrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

PSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

SSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty Symbol). Sing t -> Sing (Apply SconcatSym0 t) Source #

PIsString Symbol Source # 
Instance details

Defined in Data.String.Singletons

Associated Types

type FromString arg :: a Source #

SIsString Symbol Source # 
Instance details

Defined in Data.String.Singletons

Methods

sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source #

PShow Symbol Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

SShow Symbol Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Symbol) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Symbol). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Symbol]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

KnownSymbol a => SingI (a :: Symbol)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

sing :: Sing a

KnownSymbol n => SingI (n :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sing :: Sing n

SingI2 ('(:$$:) :: ErrorMessage' Symbol -> ErrorMessage' Symbol -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x ':$$: y)

SingI2 ('(:<>:) :: ErrorMessage' Symbol -> ErrorMessage' Symbol -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x ':<>: y)

SingI1 ('Text :: Symbol -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ('Text x)

SingI e1 => SingI1 ('(:$$:) e1 :: ErrorMessage' Symbol -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (e1 ':$$: x)

SingI e1 => SingI1 ('(:<>:) e1 :: ErrorMessage' Symbol -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (e1 ':<>: x)

SingI1 ('ShowType :: t -> ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ('ShowType x)

SShow a => SingI2 (ShowsPrecSym2 :: Natural -> a -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowsPrecSym2 x y)

SingI t => SingI ('Text t :: ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing ('Text t)

SingI1 ShowParenSym1 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym1 x)

SingI1 ShowCharSym1 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowCharSym1 x)

SingI1 ConsSymbolSym1 
Instance details

Defined in GHC.TypeLits.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConsSymbolSym1 x)

SingI1 ShowStringSym1 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowStringSym1 x)

SingI1 ((:$$:@#@$$) :: ErrorMessage' Symbol -> TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((:$$:@#@$$) x)

SingI1 ((:<>:@#@$$) :: ErrorMessage' Symbol -> TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((:<>:@#@$$) x)

SShow a => SingI1 (ShowsPrecSym1 :: Natural -> TyFun a (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym1 x)

SShow a => SingI1 (ShowsSym1 :: a -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsSym1 x)

(SShow a, SingI d) => SingI1 (ShowsPrecSym2 d :: a -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym2 d x)

SingI2 ShowParenSym2 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowParenSym2 x y)

(SingI e1, SingI e2) => SingI (e1 ':$$: e2 :: ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing (e1 ':$$: e2)

(SingI e1, SingI e2) => SingI (e1 ':<>: e2 :: ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing (e1 ':<>: e2)

SingI ty => SingI ('ShowType ty :: ErrorMessage' Symbol) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing ('ShowType ty)

SShow a => SingI1 (ShowListSym1 :: [a] -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowListSym1 x)

SingI d => SingI1 (ShowListWithSym2 d :: [a] -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowListWithSym2 d x)

SingI ShowParenSym0 
Instance details

Defined in Text.Show.Singletons

SingI ShowCharSym0 
Instance details

Defined in Text.Show.Singletons

SingI ShowStringSym0 
Instance details

Defined in Text.Show.Singletons

SingI ShowCommaSpaceSym0 
Instance details

Defined in Text.Show.Singletons

SingI ShowSpaceSym0 
Instance details

Defined in Text.Show.Singletons

SingI UnlinesSym0 
Instance details

Defined in Data.List.Singletons.Internal

SingI UnwordsSym0 
Instance details

Defined in Data.List.Singletons.Internal

SingI ConsSymbolSym0 
Instance details

Defined in GHC.TypeLits.Singletons

SingI UnconsSymbolSym0 
Instance details

Defined in GHC.TypeLits.Singletons

SuppressUnusedWarnings ShowParenSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ConsSymbolSym0 Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SuppressUnusedWarnings ShowCharSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ShowStringSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings UnconsSymbolSym0 Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SuppressUnusedWarnings KnownSymbolSym0 Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SuppressUnusedWarnings ShowCommaSpaceSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ShowSpaceSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI d => SingI (ShowParenSym1 d :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowParenSym1 d)

SingI (ShowListWithSym0 :: TyFun (a ~> (Symbol ~> Symbol)) ([a] ~> (Symbol ~> Symbol)) -> Type) 
Instance details

Defined in Text.Show.Singletons

SingI ((:$$:@#@$) :: TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol ~> ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing (:$$:@#@$)

SingI ((:<>:@#@$) :: TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol ~> ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing (:<>:@#@$)

SShow a => SingI (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) 
Instance details

Defined in Text.Show.Singletons

SingI (TextSym0 :: TyFun Symbol (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing TextSym0

SingI d => SingI (ShowCharSym1 d :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowCharSym1 d)

SingI d => SingI (ShowStringSym1 d :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowStringSym1 d)

SIsString a => SingI (FromStringSym0 :: TyFun Symbol a -> Type) 
Instance details

Defined in Data.String.Singletons

SShow a => SingI (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

SShow a => SingI (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing ShowsSym0

SShow a => SingI (Show_Sym0 :: TyFun a Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing Show_Sym0

SingI (TypeErrorSym0 :: TyFun PErrorMessage a -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

SingI x => SingI (ConsSymbolSym1 x :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in GHC.TypeLits.Singletons

Methods

sing :: Sing (ConsSymbolSym1 x)

SuppressUnusedWarnings (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowListWithSym0 :: TyFun (a ~> (Symbol ~> Symbol)) ([a] ~> (Symbol ~> Symbol)) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (TypeErrorSym0 :: TyFun PErrorMessage a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

SuppressUnusedWarnings (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ConsSymbolSym1 a6989586621679559832 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in GHC.TypeLits.Singletons

SuppressUnusedWarnings (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (FromStringSym0 :: TyFun Symbol a -> Type) Source # 
Instance details

Defined in Data.String.Singletons

SuppressUnusedWarnings (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (Show_Sym0 :: TyFun a Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SingI2 (ShowListWithSym2 :: (a ~> (Symbol ~> Symbol)) -> [a] -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowListWithSym2 x y)

SingI x => SingI ((:$$:@#@$$) x :: TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing ((:$$:@#@$$) x)

SingI x => SingI ((:<>:@#@$$) x :: TyFun (ErrorMessage' Symbol) (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

Methods

sing :: Sing ((:<>:@#@$$) x)

(SShow a, SingI d) => SingI (ShowListSym1 d :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowListSym1 d)

(SingI d1, SingI d2) => SingI (ShowParenSym2 d1 d2 :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowParenSym2 d1 d2)

(SShow a, SingI d) => SingI (ShowsSym1 d :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsSym1 d)

SingI (ErrorSym0 :: TyFun Symbol a -> Type) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sing :: Sing ErrorSym0

SingI (ErrorWithoutStackTraceSym0 :: TyFun Symbol a -> Type) 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

SingI d => SingI (ShowListWithSym1 d :: TyFun [a] (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowListWithSym1 d)

(SShow a, SingI d) => SingI (ShowsPrecSym1 d :: TyFun a (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsPrecSym1 d)

SingI (ShowTypeSym0 :: TyFun t (ErrorMessage' Symbol) -> Type) 
Instance details

Defined in Data.Singletons.Base.TypeError

SuppressUnusedWarnings (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowListWithSym1 a6989586621680249831 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SingI d => SingI1 (ShowParenSym2 d :: (Symbol ~> Symbol) -> TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym2 d x)

SingI1 (ShowListWithSym1 :: (a ~> (Symbol ~> Symbol)) -> TyFun [a] (Symbol ~> Symbol) -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowListWithSym1 x)

(SingI d1, SingI d2) => SingI (ShowListWithSym2 d1 d2 :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowListWithSym2 d1 d2)

(SShow a, SingI d1, SingI d2) => SingI (ShowsPrecSym2 d1 d2 :: TyFun Symbol Symbol -> Type) 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsPrecSym2 d1 d2)

SuppressUnusedWarnings (ShowListWithSym2 a6989586621680249831 a6989586621680249832 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type DemoteRep Symbol 
Instance details

Defined in GHC.Generics

type DemoteRep Symbol = String
data Sing (s :: Symbol) 
Instance details

Defined in GHC.Generics

data Sing (s :: Symbol) where
type Demote PErrorMessage 
Instance details

Defined in Data.Singletons.Base.TypeError

type Demote Symbol 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Demote Symbol = Text
type Sing Source # 
Instance details

Defined in Data.Singletons.Base.TypeError

type Sing Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Sing = SSymbol
type Mempty Source # 
Instance details

Defined in Data.Monoid.Singletons

type Mempty
type Mconcat (arg :: [Symbol]) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Mconcat (arg :: [Symbol])
type Sconcat (arg :: NonEmpty Symbol) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Sconcat (arg :: NonEmpty Symbol)
type FromString a Source # 
Instance details

Defined in Data.String.Singletons

type FromString a = a
type Show_ (arg :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Show_ (arg :: Symbol)
type Compare (a :: Symbol) (b :: Symbol) 
Instance details

Defined in Data.Type.Ord

type Compare (a :: Symbol) (b :: Symbol) = CmpSymbol a b
type (arg :: Symbol) /= (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) /= (arg1 :: Symbol)
type (x :: Symbol) == (y :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (x :: Symbol) == (y :: Symbol) = DefaultEq x y
type Mappend (arg1 :: Symbol) (arg2 :: Symbol) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Mappend (arg1 :: Symbol) (arg2 :: Symbol)
type (arg :: Symbol) < (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) < (arg1 :: Symbol)
type (arg :: Symbol) <= (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) <= (arg1 :: Symbol)
type (arg :: Symbol) > (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) > (arg1 :: Symbol)
type (arg :: Symbol) >= (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type (arg :: Symbol) >= (arg1 :: Symbol)
type Compare (a :: Symbol) (b :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Compare (a :: Symbol) (b :: Symbol) = CmpSymbol a b
type Max (arg :: Symbol) (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Max (arg :: Symbol) (arg1 :: Symbol)
type Min (arg :: Symbol) (arg1 :: Symbol) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Min (arg :: Symbol) (arg1 :: Symbol)
type (a :: Symbol) <> (b :: Symbol) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type (a :: Symbol) <> (b :: Symbol) = AppendSymbol a b
type ShowList (arg1 :: [Symbol]) arg2 Source # 
Instance details

Defined in Text.Show.Singletons

type ShowList (arg1 :: [Symbol]) arg2
type Apply KnownSymbolSym0 (a6989586621679556510 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons

type Apply KnownSymbolSym0 (a6989586621679556510 :: Symbol) = KnownSymbol a6989586621679556510
type Apply ShowCommaSpaceSym0 (a6989586621680249778 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply ShowCommaSpaceSym0 (a6989586621680249778 :: Symbol) = ShowCommaSpace a6989586621680249778
type Apply ShowSpaceSym0 (a6989586621680249784 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply ShowSpaceSym0 (a6989586621680249784 :: Symbol) = ShowSpace a6989586621680249784
type ShowsPrec _1 (s :: Symbol) x Source # 
Instance details

Defined in Text.Show.Singletons

type ShowsPrec _1 (s :: Symbol) x
type Apply (TypeErrorSym0 :: TyFun PErrorMessage k2 -> Type) (a6989586621679682320 :: PErrorMessage) 
Instance details

Defined in Data.Singletons.Base.TypeError

type Apply (TypeErrorSym0 :: TyFun PErrorMessage k2 -> Type) (a6989586621679682320 :: PErrorMessage) = TypeError a6989586621679682320 :: k2
type Apply (ConsSymbolSym1 a6989586621679559832 :: TyFun Symbol Symbol -> Type) (a6989586621679559833 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons

type Apply (ConsSymbolSym1 a6989586621679559832 :: TyFun Symbol Symbol -> Type) (a6989586621679559833 :: Symbol) = ConsSymbol a6989586621679559832 a6989586621679559833
type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) = ShowChar a6989586621680249823 a6989586621680249824
type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) = ShowString a6989586621680249812 a6989586621680249813
type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681319050 :: Symbol) 
Instance details

Defined in Data.String.Singletons

type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681319050 :: Symbol) = FromString a6989586621681319050 :: k2
type Apply (Show_Sym0 :: TyFun a Symbol -> Type) (a6989586621680249862 :: a) 
Instance details

Defined in Text.Show.Singletons

type Apply (Show_Sym0 :: TyFun a Symbol -> Type) (a6989586621680249862 :: a) = Show_ a6989586621680249862
type Apply (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) (a6989586621680249867 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) (a6989586621680249867 :: Symbol) = ShowList a6989586621680249866 a6989586621680249867
type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) = ShowParen a6989586621680249796 a6989586621680249797 a6989586621680249798
type Apply (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) (a6989586621680249850 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) (a6989586621680249850 :: Symbol) = Shows a6989586621680249849 a6989586621680249850
type Apply (ShowListWithSym2 a6989586621680249831 a6989586621680249832 :: TyFun Symbol Symbol -> Type) (a6989586621680249833 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListWithSym2 a6989586621680249831 a6989586621680249832 :: TyFun Symbol Symbol -> Type) (a6989586621680249833 :: Symbol) = ShowListWith a6989586621680249831 a6989586621680249832 a6989586621680249833
type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) = ShowsPrec a6989586621680249857 a6989586621680249858 a6989586621680249859
type Apply UnconsSymbolSym0 (a6989586621679560363 :: Symbol) 
Instance details

Defined in GHC.TypeLits.Singletons

type Apply UnconsSymbolSym0 (a6989586621679560363 :: Symbol) = UnconsSymbol a6989586621679560363
type Apply ShowParenSym0 (a6989586621680249796 :: Bool) 
Instance details

Defined in Text.Show.Singletons

type Apply ShowParenSym0 (a6989586621680249796 :: Bool) = ShowParenSym1 a6989586621680249796
type Apply ConsSymbolSym0 (a6989586621679559832 :: Char) 
Instance details

Defined in GHC.TypeLits.Singletons

type Apply ConsSymbolSym0 (a6989586621679559832 :: Char) = ConsSymbolSym1 a6989586621679559832
type Apply ShowCharSym0 (a6989586621680249823 :: Char) 
Instance details

Defined in Text.Show.Singletons

type Apply ShowCharSym0 (a6989586621680249823 :: Char) = ShowCharSym1 a6989586621680249823
type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) = ShowStringSym1 a6989586621680249812
type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) = ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type
type Apply (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249849 :: a) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249849 :: a) = ShowsSym1 a6989586621680249849
type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) = ShowsPrecSym2 a6989586621680249857 a6989586621680249858
type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) = Unlines a6989586621679851701
type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) = Unwords a6989586621679851691
type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) = ShowListSym1 a6989586621680249866
type Apply (ShowListWithSym1 a6989586621680249831 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249832 :: [a]) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListWithSym1 a6989586621680249831 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249832 :: [a]) = ShowListWithSym2 a6989586621680249831 a6989586621680249832
type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) = ShowParenSym2 a6989586621680249796 a6989586621680249797
type Apply (ShowListWithSym0 :: TyFun (a ~> (Symbol ~> Symbol)) ([a] ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249831 :: a ~> (Symbol ~> Symbol)) 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListWithSym0 :: TyFun (a ~> (Symbol ~> Symbol)) ([a] ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249831 :: a ~> (Symbol ~> Symbol)) = ShowListWithSym1 a6989586621680249831

data SList :: forall (a :: Type). [a] -> Type where Source #

Constructors

SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) 
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 

Instances

Instances details
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (Coercion a0 b) #

(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b :: k). SList a0 -> SList b -> Maybe (a0 :~: b) #

(ShowSing a, ShowSing [a]) => Show (SList z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> SList z -> ShowS #

show :: SList z -> String #

showList :: [SList z] -> ShowS #

Tuples

data STuple0 :: () -> Type where Source #

Constructors

STuple0 :: STuple0 ('() :: ()) 

Instances

Instances details
TestCoercion STuple0 Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a :: k) (b :: k). STuple0 a -> STuple0 b -> Maybe (Coercion a b) #

TestEquality STuple0 Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a :: k) (b :: k). STuple0 a -> STuple0 b -> Maybe (a :~: b) #

Show (STuple0 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple0 z -> ShowS #

show :: STuple0 z -> String #

showList :: [STuple0 z] -> ShowS #

data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where Source #

Constructors

STuple2 :: forall (a :: Type) (b :: Type) (n :: a) (n :: b). (Sing n) -> (Sing n) -> STuple2 ('(n, n) :: (a :: Type, b :: Type)) 

Instances

Instances details
(SDecide a, SDecide b) => TestCoercion (STuple2 :: (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple2 a0 -> STuple2 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b) => TestEquality (STuple2 :: (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple2 a0 -> STuple2 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b) => Show (STuple2 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple2 z -> ShowS #

show :: STuple2 z -> String #

showList :: [STuple2 z] -> ShowS #

data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where Source #

Constructors

STuple3 :: forall (a :: Type) (b :: Type) (c :: Type) (n :: a) (n :: b) (n :: c). (Sing n) -> (Sing n) -> (Sing n) -> STuple3 ('(n, n, n) :: (a :: Type, b :: Type, c :: Type)) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c) => TestCoercion (STuple3 :: (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple3 a0 -> STuple3 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c) => TestEquality (STuple3 :: (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple3 a0 -> STuple3 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c) => Show (STuple3 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple3 z -> ShowS #

show :: STuple3 z -> String #

showList :: [STuple3 z] -> ShowS #

data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where Source #

Constructors

STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (n :: a) (n :: b) (n :: c) (n :: d). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple4 ('(n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type)) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d) => TestCoercion (STuple4 :: (a, b, c, d) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple4 a0 -> STuple4 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d) => TestEquality (STuple4 :: (a, b, c, d) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple4 a0 -> STuple4 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (STuple4 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple4 z -> ShowS #

show :: STuple4 z -> String #

showList :: [STuple4 z] -> ShowS #

data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where Source #

Constructors

STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple5 ('(n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestCoercion (STuple5 :: (a, b, c, d, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple5 a0 -> STuple5 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestEquality (STuple5 :: (a, b, c, d, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple5 a0 -> STuple5 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (STuple5 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple5 z -> ShowS #

show :: STuple5 z -> String #

showList :: [STuple5 z] -> ShowS #

data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where Source #

Constructors

STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestCoercion (STuple6 :: (a, b, c, d, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple6 a0 -> STuple6 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestEquality (STuple6 :: (a, b, c, d, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple6 a0 -> STuple6 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (STuple6 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple6 z -> ShowS #

show :: STuple6 z -> String #

showList :: [STuple6 z] -> ShowS #

data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where Source #

Constructors

STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) 

Instances

Instances details
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestCoercion (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testCoercion :: forall (a0 :: k) (b0 :: k). STuple7 a0 -> STuple7 b0 -> Maybe (Coercion a0 b0) #

(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestEquality (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

testEquality :: forall (a0 :: k) (b0 :: k). STuple7 a0 -> STuple7 b0 -> Maybe (a0 :~: b0) #

(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (STuple7 z) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

showsPrec :: Int -> STuple7 z -> ShowS #

show :: STuple7 z -> String #

showList :: [STuple7 z] -> ShowS #

type family Fst (a :: (a, b)) :: a where ... Source #

Equations

Fst '(x, _) = x 

sFst :: forall a b (t :: (a, b)). Sing t -> Sing (Apply FstSym0 t :: a) Source #

type family Snd (a :: (a, b)) :: b where ... Source #

Equations

Snd '(_, y) = y 

sSnd :: forall a b (t :: (a, b)). Sing t -> Sing (Apply SndSym0 t :: b) Source #

type family Curry (a :: (~>) (a, b) c) (a :: a) (a :: b) :: c where ... Source #

Equations

Curry f x y = Apply f (Apply (Apply Tuple2Sym0 x) y) 

sCurry :: forall a b c (t :: (~>) (a, b) c) (t :: a) (t :: b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply CurrySym0 t) t) t :: c) Source #

type family Uncurry (a :: (~>) a ((~>) b c)) (a :: (a, b)) :: c where ... Source #

Equations

Uncurry f p = Apply (Apply f (Apply FstSym0 p)) (Apply SndSym0 p) 

sUncurry :: forall a b c (t :: (~>) a ((~>) b c)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply UncurrySym0 t) t :: c) Source #

Basic type classes

class PEq a Source #

Associated Types

type (arg :: a) == (arg :: a) :: Bool infix 4 Source #

type a == a = Apply (Apply TFHelper_6989586621679140225Sym0 a) a

type (arg :: a) /= (arg :: a) :: Bool infix 4 Source #

type a /= a = Apply (Apply TFHelper_6989586621679140214Sym0 a) a

Instances

Instances details
PEq All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Void Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Ordering Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq () Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Bool Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Identity a) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (NonEmpty a) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Maybe a) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq [a] Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Either a b) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b, c) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b, c, d) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

PEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Eq.Singletons

Associated Types

type arg == arg1 :: Bool Source #

type arg /= arg1 :: Bool Source #

class SEq a where Source #

Minimal complete definition

Nothing

Methods

(%==) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) infix 4 Source #

default (%==) :: forall (t :: a) (t :: a). (Apply (Apply (==@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679140225Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) Source #

(%/=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t :: Bool) infix 4 Source #

default (%/=) :: forall (t :: a) (t :: a). (Apply (Apply (/=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679140214Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t :: Bool) Source #

Instances

Instances details
SEq Bool => SEq All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Bool => SEq Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Void Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Ordering Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

(%==) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq () Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Bool Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

(%==) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

(%==) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Identity a) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq (Maybe a) => SEq (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%==) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq (Maybe a) => SEq (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%==) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

(%==) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq m => SEq (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%==) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq [a]) => SEq (NonEmpty a) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Maybe a) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq (TYPE rep) Source # 
Instance details

Defined in Data.Singletons.Base.TypeRepTYPE

Methods

(%==) :: forall (t1 :: TYPE rep) (t2 :: TYPE rep). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: TYPE rep) (t2 :: TYPE rep). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq [a]) => SEq [a] Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b) => SEq (Either a b) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%==) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%==) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b) => SEq (a, b) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

SEq a => SEq (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%==) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b, SEq c) => SEq (a, b, c) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b, SEq c, SEq d) => SEq (a, b, c, d) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e) => SEq (a, b, c, d, e) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f) => SEq (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

(SEq a, SEq b, SEq c, SEq d, SEq e, SEq f, SEq g) => SEq (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

(%==) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (==@#@$) t1) t2) Source #

(%/=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (/=@#@$) t1) t2) Source #

class POrd a Source #

Associated Types

type Compare (arg :: a) (arg :: a) :: Ordering Source #

type Compare a a = Apply (Apply Compare_6989586621679178639Sym0 a) a

type (arg :: a) < (arg :: a) :: Bool infix 4 Source #

type a < a = Apply (Apply TFHelper_6989586621679178660Sym0 a) a

type (arg :: a) <= (arg :: a) :: Bool infix 4 Source #

type a <= a = Apply (Apply TFHelper_6989586621679178676Sym0 a) a

type (arg :: a) > (arg :: a) :: Bool infix 4 Source #

type a > a = Apply (Apply TFHelper_6989586621679178692Sym0 a) a

type (arg :: a) >= (arg :: a) :: Bool infix 4 Source #

type a >= a = Apply (Apply TFHelper_6989586621679178708Sym0 a) a

type Max (arg :: a) (arg :: a) :: a Source #

type Max a a = Apply (Apply Max_6989586621679178724Sym0 a) a

type Min (arg :: a) (arg :: a) :: a Source #

type Min a a = Apply (Apply Min_6989586621679178740Sym0 a) a

Instances

Instances details
POrd All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Void Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Ordering Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd () Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Bool Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Identity a) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (NonEmpty a) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Maybe a) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd [a] Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Either a b) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b, c) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b, c, d) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

POrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Ord.Singletons

Associated Types

type Compare arg arg1 :: Ordering Source #

type arg < arg1 :: Bool Source #

type arg <= arg1 :: Bool Source #

type arg > arg1 :: Bool Source #

type arg >= arg1 :: Bool Source #

type Max arg arg1 :: a Source #

type Min arg arg1 :: a Source #

class SEq a => SOrd a where Source #

Minimal complete definition

Nothing

Methods

sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #

default sCompare :: forall (t :: a) (t :: a). (Apply (Apply CompareSym0 t) t :: Ordering) ~ Apply (Apply Compare_6989586621679178639Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #

(%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) infix 4 Source #

default (%<) :: forall (t :: a) (t :: a). (Apply (Apply (<@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178660Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) Source #

(%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) infix 4 Source #

default (%<=) :: forall (t :: a) (t :: a). (Apply (Apply (<=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178676Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) Source #

(%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) infix 4 Source #

default (%>) :: forall (t :: a) (t :: a). (Apply (Apply (>@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178692Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) Source #

(%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) infix 4 Source #

default (%>=) :: forall (t :: a) (t :: a). (Apply (Apply (>=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178708Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) Source #

sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #

default sMax :: forall (t :: a) (t :: a). (Apply (Apply MaxSym0 t) t :: a) ~ Apply (Apply Max_6989586621679178724Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #

sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #

default sMin :: forall (t :: a) (t :: a). (Apply (Apply MinSym0 t) t :: a) ~ Apply (Apply Min_6989586621679178740Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #

Instances

Instances details
SOrd Bool => SOrd All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Bool => SOrd Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Void Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Ordering Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Natural Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd () Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Bool Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Char Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd Symbol Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sCompare :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Identity a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd (Maybe a) => SOrd (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd (Maybe a) => SOrd (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Down a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd m => SOrd (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sCompare :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Maybe a) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd [a]) => SOrd [a] Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b) => SOrd (Either a b) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sCompare :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sCompare :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b) => SOrd (a, b) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

SOrd a => SOrd (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sCompare :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source #

(%<) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source #

(%<=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source #

(%>) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source #

(%>=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source #

sMax :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source #

sMin :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source #

As a matter of convenience, the Prelude.Singletons does not export promoted/singletonized succ and pred, due to likely conflicts with unary numbers. Please import Data.Singletons.Base.Enum directly if you want these.

class PEnum a Source #

Associated Types

type ToEnum (arg :: Natural) :: a Source #

type FromEnum (arg :: a) :: Natural Source #

type EnumFromTo (arg :: a) (arg :: a) :: [a] Source #

type EnumFromTo a a = Apply (Apply EnumFromTo_6989586621679606524Sym0 a) a

type EnumFromThenTo (arg :: a) (arg :: a) (arg :: a) :: [a] Source #

type EnumFromThenTo a a a = Apply (Apply (Apply EnumFromThenTo_6989586621679606536Sym0 a) a) a

Instances

Instances details
PEnum Ordering Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum Natural Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum () Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum Bool Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum Char Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (WrappedMonoid a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

PEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Succ arg :: a Source #

type Pred arg :: a Source #

type ToEnum arg :: a Source #

type FromEnum arg :: Natural Source #

type EnumFromTo arg arg1 :: [a] Source #

type EnumFromThenTo arg arg1 arg2 :: [a] Source #

class SEnum a where Source #

Minimal complete definition

sToEnum, sFromEnum

Methods

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a) Source #

sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural) Source #

sEnumFromTo :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #

default sEnumFromTo :: forall (t :: a) (t :: a). (Apply (Apply EnumFromToSym0 t) t :: [a]) ~ Apply (Apply EnumFromTo_6989586621679606524Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #

sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #

default sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) ~ Apply (Apply (Apply EnumFromThenTo_6989586621679606536Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #

Instances

Instances details
SEnum Ordering Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sSucc :: forall (t :: Ordering). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Ordering). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Ordering). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Ordering) (t2 :: Ordering) (t3 :: Ordering). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum Natural Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sSucc :: forall (t :: Natural). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Natural). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Natural). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Natural). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum () Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sSucc :: forall (t :: ()). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: ()). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: ()). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: ()) (t2 :: ()) (t3 :: ()). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum Bool Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sSucc :: forall (t :: Bool). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Bool). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Bool). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Bool) (t2 :: Bool) (t3 :: Bool). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum Char Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sSucc :: forall (t :: Char). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Char). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Char). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Char) (t2 :: Char) (t3 :: Char). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Identity a) (t2 :: Identity a) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: First a) (t2 :: First a) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Last a) (t2 :: Last a) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Max a) (t2 :: Max a) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Min a) (t2 :: Min a) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (WrappedMonoid a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a) (t3 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sSucc :: forall (t :: Proxy s). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Proxy s). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Proxy s). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Proxy s) (t2 :: Proxy s) (t3 :: Proxy s). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

SEnum a => SEnum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source #

sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source #

sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source #

sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source #

sEnumFromTo :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source #

sEnumFromThenTo :: forall (t1 :: Const a b) (t2 :: Const a b) (t3 :: Const a b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source #

class PBounded a Source #

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

Instances

Instances details
PBounded All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Ordering Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded () Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Bool Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded Char Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Identity a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

PBounded (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Associated Types

type MinBound :: a Source #

type MaxBound :: a Source #

class SBounded a where Source #

Instances

Instances details
SBounded Bool => SBounded All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded Bool => SBounded Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded Ordering Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded () Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded Bool Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded Char Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded a => SBounded (Identity a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded a => SBounded (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded m => SBounded (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded a => SBounded (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

SBounded (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

(SBounded a, SBounded b) => SBounded (a, b) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SBounded a => SBounded (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

(SBounded a, SBounded b, SBounded c) => SBounded (a, b, c) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

(SBounded a, SBounded b, SBounded c, SBounded d) => SBounded (a, b, c, d) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e) => SBounded (a, b, c, d, e) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e, SBounded f) => SBounded (a, b, c, d, e, f) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

(SBounded a, SBounded b, SBounded c, SBounded d, SBounded e, SBounded f, SBounded g) => SBounded (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Numbers

Numeric type classes

class PNum a Source #

Associated Types

type (arg :: a) + (arg :: a) :: a infixl 6 Source #

type (arg :: a) - (arg :: a) :: a infixl 6 Source #

type a - a = Apply (Apply TFHelper_6989586621679582484Sym0 a) a

type (arg :: a) * (arg :: a) :: a infixl 7 Source #

type Negate (arg :: a) :: a Source #

type Negate a = Apply Negate_6989586621679582494Sym0 a

type Abs (arg :: a) :: a Source #

type Signum (arg :: a) :: a Source #

type FromInteger (arg :: Natural) :: a Source #

Instances

Instances details
PNum Natural Source # 
Instance details

Defined in GHC.Num.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Down a) Source # 
Instance details

Defined in GHC.Num.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

PNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg + arg1 :: a Source #

type arg - arg1 :: a Source #

type arg * arg1 :: a Source #

type Negate arg :: a Source #

type Abs arg :: a Source #

type Signum arg :: a Source #

type FromInteger arg :: a Source #

class SNum a where Source #

Minimal complete definition

(%+), (%*), sAbs, sSignum, sFromInteger

Methods

(%+) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t :: a) infixl 6 Source #

(%-) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t :: a) infixl 6 Source #

default (%-) :: forall (t :: a) (t :: a). (Apply (Apply (-@#@$) t) t :: a) ~ Apply (Apply TFHelper_6989586621679582484Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t :: a) Source #

(%*) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t :: a) infixl 7 Source #

sNegate :: forall (t :: a). Sing t -> Sing (Apply NegateSym0 t :: a) Source #

default sNegate :: forall (t :: a). (Apply NegateSym0 t :: a) ~ Apply Negate_6989586621679582494Sym0 t => Sing t -> Sing (Apply NegateSym0 t :: a) Source #

sAbs :: forall (t :: a). Sing t -> Sing (Apply AbsSym0 t :: a) Source #

sSignum :: forall (t :: a). Sing t -> Sing (Apply SignumSym0 t :: a) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t :: a) Source #

Instances

Instances details
SNum Natural Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

(%+) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Natural). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Natural). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Natural). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%+) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Identity a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Identity a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Identity a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Down a) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

(%+) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Down a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Down a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Down a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%+) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Max a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Max a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Max a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%+) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Min a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Min a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Min a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%+) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Product a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Product a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Product a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%+) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Sum a). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Sum a). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Sum a). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

SNum a => SNum (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%+) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source #

(%-) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source #

(%*) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source #

sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source #

sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source #

sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source #

sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source #

Numeric functions

type family Subtract (a :: a) (a :: a) :: a where ... Source #

Equations

Subtract x y = Apply (Apply (-@#@$) y) x 

sSubtract :: forall a (t :: a) (t :: a). SNum a => Sing t -> Sing t -> Sing (Apply (Apply SubtractSym0 t) t :: a) Source #

Semigroups and Monoids

class PSemigroup a Source #

Associated Types

type (arg :: a) <> (arg :: a) :: a infixr 6 Source #

Instances

Instances details
PSemigroup All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup Void Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup Ordering Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup () Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Down a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (NonEmpty a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Maybe a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup [a] Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Either a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a ~> b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c, d) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

PSemigroup (a, b, c, d, e) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg <> arg1 :: a Source #

type Sconcat arg :: a Source #

class SSemigroup a where Source #

Methods

(%<>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t :: a) infixr 6 Source #

Instances

Instances details
SSemigroup All Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty All). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Any Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty Any). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Void Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty Void). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Ordering Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty Ordering). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup () Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty ()). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup Symbol Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty Symbol). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%<>) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Identity a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%<>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (First a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%<>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Last a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Down a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Down a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (First a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Last a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Max a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SOrd a => SSemigroup (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Min a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SMonoid m => SSemigroup (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%<>) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (WrappedMonoid m)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Dual a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SNum a => SSemigroup (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Product a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SNum a => SSemigroup (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Sum a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (NonEmpty a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (NonEmpty a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Maybe a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Maybe a)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup [a] Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty [a]). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Either a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Either a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%<>) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Proxy s)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup b => SSemigroup (a ~> b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: a ~> b) (t2 :: a ~> b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (a ~> b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b) => SSemigroup (a, b) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (a, b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

SSemigroup a => SSemigroup (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

(%<>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (Const a b)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c) => SSemigroup (a, b, c) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c, SSemigroup d) => SSemigroup (a, b, c, d) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c, d)). Sing t -> Sing (Apply SconcatSym0 t) Source #

(SSemigroup a, SSemigroup b, SSemigroup c, SSemigroup d, SSemigroup e) => SSemigroup (a, b, c, d, e) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%<>) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<>@#@$) t1) t2) Source #

sSconcat :: forall (t :: NonEmpty (a, b, c, d, e)). Sing t -> Sing (Apply SconcatSym0 t) Source #

class PMonoid a Source #

Associated Types

type Mempty :: a Source #

type Mappend (arg :: a) (arg :: a) :: a Source #

type Mappend a a = Apply (Apply Mappend_6989586621680336638Sym0 a) a

type Mconcat (arg :: [a]) :: a Source #

type Mconcat a = Apply Mconcat_6989586621680336652Sym0 a

Instances

Instances details
PMonoid All Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid Any Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid Ordering Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid () Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid Symbol Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Down a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Dual a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Product a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Sum a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Maybe a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid [a] Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (a ~> b) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (a, b) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (a, b, c) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (a, b, c, d) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

PMonoid (a, b, c, d, e) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Mempty :: a Source #

type Mappend arg arg1 :: a Source #

type Mconcat arg :: a Source #

class SSemigroup a => SMonoid a where Source #

Minimal complete definition

sMempty

Methods

sMempty :: Sing (MemptySym0 :: a) Source #

sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #

default sMappend :: forall (t :: a) (t :: a). (Apply (Apply MappendSym0 t) t :: a) ~ Apply (Apply Mappend_6989586621680336638Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #

sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a) Source #

default sMconcat :: forall (t :: [a]). (Apply MconcatSym0 t :: a) ~ Apply Mconcat_6989586621680336652Sym0 t => Sing t -> Sing (Apply MconcatSym0 t :: a) Source #

Instances

Instances details
SMonoid All Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [All]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid Any Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Any]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid Ordering Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Ordering]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid () Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [()]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid Symbol Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Symbol]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid a => SMonoid (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Identity a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [First a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Last a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid a => SMonoid (Down a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Down a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SOrd a, SBounded a) => SMonoid (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Max a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SOrd a, SBounded a) => SMonoid (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Min a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid m => SMonoid (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [WrappedMonoid m]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid a => SMonoid (Dual a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Dual a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SNum a => SMonoid (Product a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Product a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SNum a => SMonoid (Sum a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Sum a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SSemigroup a => SMonoid (Maybe a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Maybe a]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid [a] Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [[a]]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Proxy s]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid b => SMonoid (a ~> b) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: a ~> b) (t2 :: a ~> b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [a ~> b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SMonoid a, SMonoid b) => SMonoid (a, b) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [(a, b)]). Sing t -> Sing (Apply MconcatSym0 t) Source #

SMonoid a => SMonoid (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [Const a b]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SMonoid a, SMonoid b, SMonoid c) => SMonoid (a, b, c) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [(a, b, c)]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SMonoid a, SMonoid b, SMonoid c, SMonoid d) => SMonoid (a, b, c, d) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [(a, b, c, d)]). Sing t -> Sing (Apply MconcatSym0 t) Source #

(SMonoid a, SMonoid b, SMonoid c, SMonoid d, SMonoid e) => SMonoid (a, b, c, d, e) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sMempty :: Sing MemptySym0 Source #

sMappend :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MappendSym0 t1) t2) Source #

sMconcat :: forall (t :: [(a, b, c, d, e)]). Sing t -> Sing (Apply MconcatSym0 t) Source #

Monads and functors

class PFunctor f Source #

Associated Types

type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #

type (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #

type a <$ a = Apply (Apply TFHelper_6989586621679329121Sym0 a) a

Instances

Instances details
PFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

PFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Fmap arg arg1 :: f b Source #

type arg <$ arg1 :: f a Source #

class SFunctor f where Source #

Minimal complete definition

sFmap

Methods

sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #

(%<$) :: forall a b (t :: a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #

default (%<$) :: forall a b (t :: a) (t :: f b). (Apply (Apply (<$@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679329121Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) Source #

Instances

Instances details
SFunctor Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Down Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor (Either a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor ((,) a) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sFmap :: forall a0 b (t1 :: a0 ~> b) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a0 b (t1 :: a0) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

SFunctor (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Sum f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sFmap :: forall a b (t1 :: a ~> b) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply FmapSym0 t1) t2) Source #

(%<$) :: forall a b (t1 :: a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<$@#@$) t1) t2) Source #

type family (a :: (~>) a b) <$> (a :: f a) :: f b where ... infixl 4 Source #

Equations

a_6989586621679519971 <$> a_6989586621679519973 = Apply (Apply FmapSym0 a_6989586621679519971) a_6989586621679519973 

(%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) infixl 4 Source #

class PApplicative f Source #

Associated Types

type Pure (arg :: a) :: f a Source #

type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #

type a <*> a = Apply (Apply TFHelper_6989586621679329161Sym0 a) a

type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #

type a *> a = Apply (Apply TFHelper_6989586621679329193Sym0 a) a

type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #

type a <* a = Apply (Apply TFHelper_6989586621679329204Sym0 a) a

Instances

Instances details
PApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

PApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Pure arg :: f a Source #

type arg <*> arg1 :: f b Source #

type LiftA2 arg arg1 arg2 :: f c Source #

type arg *> arg1 :: f b Source #

type arg <* arg1 :: f a Source #

class SFunctor f => SApplicative f where Source #

Minimal complete definition

sPure

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #

(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #

default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329161Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #

(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #

default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329193Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #

(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #

default (%<*) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (<*@#@$) t) t :: f a) ~ Apply (Apply TFHelper_6989586621679329204Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) Source #

Instances

Instances details
SApplicative Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Identity (a ~> b)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Identity a) (t3 :: Identity b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Down Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Max (a ~> b)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Max a) (t3 :: Max b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Min (a ~> b)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Min a) (t3 :: Min b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Dual (a ~> b)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Dual a) (t3 :: Dual b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Product (a ~> b)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product a) (t3 :: Product b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Sum (a ~> b)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Sum a) (t3 :: Sum b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: NonEmpty (a ~> b)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: NonEmpty a) (t3 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Maybe (a ~> b)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Maybe a) (t3 :: Maybe b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: [a ~> b]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Either e (a ~> b)) (t2 :: Either e a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Either e a) (t3 :: Either e b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SApplicative (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Proxy (a ~> b)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Proxy a) (t3 :: Proxy b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SMonoid a => SApplicative ((,) a) Source # 
Instance details

Defined in Control.Applicative.Singletons

Methods

sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

SMonoid m => SApplicative (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source #

(%<*>) :: forall a b (t1 :: Compose f g (a ~> b)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source #

sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Compose f g a) (t3 :: Compose f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source #

(%*>) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source #

(%<*) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source #

class PMonad m Source #

Associated Types

type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b infixl 1 Source #

type (arg :: m a) >> (arg :: m b) :: m b infixl 1 Source #

type a >> a = Apply (Apply TFHelper_6989586621679329232Sym0 a) a

type Return (arg :: a) :: m a Source #

type Return a = Apply Return_6989586621679329249Sym0 a

Instances

Instances details
PMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

PMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type arg >>= arg1 :: m b Source #

type arg >> arg1 :: m b Source #

type Return arg :: m a Source #

class SApplicative m => SMonad m where Source #

Minimal complete definition

(%>>=)

Methods

(%>>=) :: forall a b (t :: m a) (t :: (~>) a (m b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t :: m b) infixl 1 Source #

(%>>) :: forall a b (t :: m a) (t :: m b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) infixl 1 Source #

default (%>>) :: forall a b (t :: m a) (t :: m b). (Apply (Apply (>>@#@$) t) t :: m b) ~ Apply (Apply TFHelper_6989586621679329232Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

default sReturn :: forall a (t :: a). (Apply ReturnSym0 t :: m a) ~ Apply Return_6989586621679329249Sym0 t => Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #

Instances

Instances details
SMonad Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

(%>>=) :: forall a b (t1 :: Identity a) (t2 :: a ~> Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

(%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Down Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a b (t1 :: Down a) (t2 :: a ~> Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Max a) (t2 :: a ~> Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

(%>>=) :: forall a b (t1 :: Min a) (t2 :: a ~> Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Dual Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Dual a) (t2 :: a ~> Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Product Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Product a) (t2 :: a ~> Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Sum Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Sum a) (t2 :: a ~> Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad NonEmpty Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: NonEmpty a) (t2 :: a ~> NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad Maybe Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Maybe a) (t2 :: a ~> Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad [] Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: [a]) (t2 :: a ~> [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad (Either e) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

(%>>=) :: forall a b (t1 :: Either e a) (t2 :: a ~> Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonad (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

(%>>=) :: forall a b (t1 :: Proxy a) (t2 :: a ~> Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

SMonoid a => SMonad ((,) a) Source # 
Instance details

Defined in Control.Monad.Singletons

Methods

(%>>=) :: forall a0 b (t1 :: (a, a0)) (t2 :: a0 ~> (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source #

(SMonad f, SMonad g) => SMonad (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

(%>>=) :: forall a b (t1 :: Product f g a) (t2 :: a ~> Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source #

(%>>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source #

sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source #

class PMonadFail m Source #

Associated Types

type Fail (arg :: [Char]) :: m a Source #

Instances

Instances details
PMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail arg :: m a Source #

PMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Associated Types

type Fail arg :: m a Source #

class SMonad m => SMonadFail m where Source #

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t :: m a) Source #

Instances

Instances details
SMonadFail Maybe Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

SMonadFail [] Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sFail :: forall a (t :: [Char]). Sing t -> Sing (Apply FailSym0 t) Source #

type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #

Equations

MapM_ f a_6989586621680438245 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680438245 

sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #

type family Sequence_ (a :: t (m a)) :: m () where ... Source #

Equations

Sequence_ a_6989586621680438222 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680438222 

sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #

type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ... infixr 1 Source #

Equations

f =<< x = Apply (Apply (>>=@#@$) x) f 

(%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b) infixr 1 Source #

Folds and traversals

class PFoldable t Source #

Associated Types

type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #

type FoldMap a a = Apply (Apply FoldMap_6989586621680438393Sym0 a) a

type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #

type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680438407Sym0 a) a) a

type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #

type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680438445Sym0 a) a) a

type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldr1 a a = Apply (Apply Foldr1_6989586621680438482Sym0 a) a

type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #

type Foldl1 a a = Apply (Apply Foldl1_6989586621680438503Sym0 a) a

type Elem (arg :: a) (arg :: t a) :: Bool Source #

type Elem a a = Apply (Apply Elem_6989586621680438568Sym0 a) a

type Maximum (arg :: t a) :: a Source #

type Maximum a = Apply Maximum_6989586621680438582Sym0 a

type Minimum (arg :: t a) :: a Source #

type Minimum a = Apply Minimum_6989586621680438597Sym0 a

type Sum (arg :: t a) :: a Source #

type Sum a = Apply Sum_6989586621680438612Sym0 a

type Product (arg :: t a) :: a Source #

type Product a = Apply Product_6989586621680438621Sym0 a

Instances

Instances details
PFoldable Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Dual Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Product Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Sum Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable NonEmpty Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable Maybe Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable [] Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Either a) Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable ((,) a) Source # 
Instance details

Defined in Data.Foldable.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

PFoldable (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Fold arg :: m Source #

type FoldMap arg arg1 :: m Source #

type Foldr arg arg1 arg2 :: b Source #

type Foldr' arg arg1 arg2 :: b Source #

type Foldl arg arg1 arg2 :: b Source #

type Foldl' arg arg1 arg2 :: b Source #

type Foldr1 arg arg1 :: a Source #

type Foldl1 arg arg1 :: a Source #

type ToList arg :: [a] Source #

type Null arg :: Bool Source #

type Length arg :: Natural Source #

type Elem arg arg1 :: Bool Source #

type Maximum arg :: a Source #

type Minimum arg :: a Source #

type Sum arg :: a Source #

type Product arg :: a Source #

class SFoldable t where Source #

Minimal complete definition

Nothing

Methods

sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680438393Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #

sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680438407Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #

sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680438445Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #

sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680438482Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #

sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680438503Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #

sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680438568Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #

sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680438582Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #

sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680438597Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #

sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #

default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680438612Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #

sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680438621Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #

Instances

Instances details
SFoldable Identity Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sFold :: forall m (t1 :: Identity m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Identity a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Identity a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable First Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFold :: forall m (t1 :: Max m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Max a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Max a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFold :: forall m (t1 :: Min m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Min a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Min a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Dual Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Dual m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Dual a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Dual a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Product Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Product m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Product a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Sum Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Sum m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Sum a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable NonEmpty Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: NonEmpty m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: NonEmpty a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: NonEmpty a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable Maybe Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Maybe m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Maybe a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Maybe a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable [] Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: [m]). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: [a]). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable (Either a) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Either a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Either a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a0 (t1 :: a0) (t2 :: Either a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: Proxy m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Proxy a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Proxy a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sFold :: forall m (t1 :: Arg a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Arg a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a0 (t1 :: a0) (t2 :: Arg a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable ((,) a) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sFold :: forall m (t1 :: (a, m)). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: (a, a0)). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a0 (t1 :: a0) (t2 :: (a, a0)). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

SFoldable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sFold :: forall m0 (t1 :: Const m m0). SMonoid m0 => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m0 (t1 :: a ~> m0) (t2 :: Const m a). SMonoid m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Const m a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

(SFoldable f, SFoldable g) => SFoldable (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sFold :: forall m (t1 :: Product f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Product f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

(SFoldable f, SFoldable g) => SFoldable (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sFold :: forall m (t1 :: Sum f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Sum f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

(SFoldable f, SFoldable g) => SFoldable (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sFold :: forall m (t1 :: Compose f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source #

sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Compose f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source #

sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source #

sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source #

sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source #

sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source #

sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source #

sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source #

sToList :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source #

sNull :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source #

sLength :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source #

sElem :: forall a (t1 :: a) (t2 :: Compose f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source #

sMaximum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source #

sMinimum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source #

sSum :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source #

sProduct :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source #

class PTraversable t Source #

Associated Types

type Traverse (arg :: (~>) a (f b)) (arg :: t a) :: f (t b) Source #

type Traverse a a = Apply (Apply Traverse_6989586621680796862Sym0 a) a

type SequenceA (arg :: t (f a)) :: f (t a) Source #

type SequenceA a = Apply SequenceA_6989586621680796874Sym0 a

type MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #

type MapM a a = Apply (Apply MapM_6989586621680796884Sym0 a) a

type Sequence (arg :: t (m a)) :: m (t a) Source #

type Sequence a = Apply Sequence_6989586621680796898Sym0 a

Instances

Instances details
PTraversable Identity Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable First Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Last Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Dual Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Product Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Sum Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable NonEmpty Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable Maybe Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable [] Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Either a) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable ((,) a) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

PTraversable (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Associated Types

type Traverse arg arg1 :: f (t b) Source #

type SequenceA arg :: f (t a) Source #

type MapM arg arg1 :: m (t b) Source #

type Sequence arg :: m (t a) Source #

class (SFunctor t, SFoldable t) => STraversable t where Source #

Minimal complete definition

Nothing

Methods

sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #

default sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). ((Apply (Apply TraverseSym0 t) t :: f (t b)) ~ Apply (Apply Traverse_6989586621680796862Sym0 t) t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #

sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #

default sSequenceA :: forall f a (t :: t (f a)). ((Apply SequenceASym0 t :: f (t a)) ~ Apply SequenceA_6989586621680796874Sym0 t, SApplicative f) => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #

sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #

default sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). ((Apply (Apply MapMSym0 t) t :: m (t b)) ~ Apply (Apply MapM_6989586621680796884Sym0 t) t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #

sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #

default sSequence :: forall m a (t :: t (m a)). ((Apply SequenceSym0 t :: m (t a)) ~ Apply Sequence_6989586621680796898Sym0 t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #

Instances

Instances details
STraversable Identity Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Identity a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Identity (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Identity a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Identity (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable First Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Last Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable First Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Last Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Max Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Max a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Max (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Max a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Max (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Min Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Min a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Min (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Min a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Min (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Dual Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Dual a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Dual (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Dual a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Dual (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Product Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Product a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Product (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Product (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Sum Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Sum a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Sum (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Sum (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable NonEmpty Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: NonEmpty a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: NonEmpty (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: NonEmpty a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: NonEmpty (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable Maybe Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Maybe a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Maybe (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Maybe a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Maybe (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable [] Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: [a]). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: [f a]). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: [a]). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: [m a]). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable (Either a) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Either a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Either a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Either a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a0 (t1 :: Either a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable (Proxy :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Proxy a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Proxy (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Proxy a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Proxy (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable (Arg a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Arg a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Arg a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Arg a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a0 (t1 :: Arg a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable ((,) a) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: (a, a0)). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: (a, f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: (a, a0)). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a0 (t1 :: (a, m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

STraversable (Const m :: Type -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Const m a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f :: Type -> Type) a (t1 :: Const m (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m0 :: Type -> Type) b (t1 :: a ~> m0 b) (t2 :: Const m a). SMonad m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m0 :: Type -> Type) a (t1 :: Const m (m0 a)). SMonad m0 => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

(STraversable f, STraversable g) => STraversable (Product f g) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

Methods

sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Product f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Product f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Product f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

(STraversable f, STraversable g) => STraversable (Sum f g) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

Methods

sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Sum f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Sum f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Sum f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

(STraversable f, STraversable g) => STraversable (Compose f g) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

Methods

sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Compose f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source #

sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Compose f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source #

sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Compose f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source #

sSequence :: forall (m :: Type -> Type) a (t1 :: Compose f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source #

Miscellaneous functions

type family Id (a :: a) :: a where ... Source #

Equations

Id x = x 

sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a) Source #

type family Const (a :: a) (a :: b) :: a where ... Source #

Equations

Const x _ = x 

sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a) Source #

type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #

Equations

(f . g) a_6989586621679278893 = Apply (Apply (Apply (Apply Lambda_6989586621679278905Sym0 f) g) a_6989586621679278893) a_6989586621679278893 

(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #

type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ... Source #

Equations

Flip f x y = Apply (Apply f y) x 

sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c) Source #

type family (a :: (~>) a b) $ (a :: a) :: b where ... infixr 0 Source #

Equations

f $ x = Apply f x 

(%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b) infixr 0 Source #

type family Until (a :: (~>) a Bool) (a :: (~>) a a) (a :: a) :: a where ... Source #

Equations

Until p f a_6989586621679278835 = Apply (Let6989586621679278847GoSym3 p f a_6989586621679278835) a_6989586621679278835 

sUntil :: forall a (t :: (~>) a Bool) (t :: (~>) a a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UntilSym0 t) t) t :: a) Source #

type family AsTypeOf (a :: a) (a :: a) :: a where ... Source #

Equations

AsTypeOf a_6989586621679278872 a_6989586621679278874 = Apply (Apply ConstSym0 a_6989586621679278872) a_6989586621679278874 

sAsTypeOf :: forall a (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply AsTypeOfSym0 t) t :: a) Source #

type family Error (str :: k0) :: k where ... Source #

The promotion of error. This version is more poly-kinded for easier use.

sError :: HasCallStack => Sing (str :: Symbol) -> a Source #

The singleton for error

type family ErrorWithoutStackTrace (str :: k0) :: k where ... Source #

The promotion of errorWithoutStackTrace. This version is more poly-kinded for easier use.

type family Undefined :: k where ... Source #

The promotion of undefined.

sUndefined :: HasCallStack => a Source #

The singleton for undefined.

type family Seq (a :: a) (a :: b) :: b where ... infixr 0 Source #

Equations

Seq _ x = x 

sSeq :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply SeqSym0 t) t :: b) infixr 0 Source #

type family (a :: (~>) a b) $! (a :: a) :: b where ... infixr 0 Source #

Equations

f $! x = Apply f (Let6989586621679278863VxSym2 f x) 

(%$!) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($!@#@$) t) t :: b) infixr 0 Source #

List operations

type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ... Source #

Equations

Map _ '[] = NilSym0 
Map f ('(:) x xs) = Apply (Apply (:@#@$) (Apply f x)) (Apply (Apply MapSym0 f) xs) 

sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b]) Source #

type family (a :: [a]) ++ (a :: [a]) :: [a] where ... infixr 5 Source #

Equations

'[] ++ ys = ys 
('(:) x xs) ++ ys = Apply (Apply (:@#@$) x) (Apply (Apply (++@#@$) xs) ys) 

(%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a]) infixr 5 Source #

type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

Filter _p '[] = NilSym0 
Filter p ('(:) x xs) = Case_6989586621679851564 p x xs (Let6989586621679851562Scrutinee_6989586621679848090Sym3 p x xs) 

sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a]) Source #

type family Head (a :: [a]) :: a where ... Source #

Equations

Head ('(:) a _) = a 
Head '[] = Apply ErrorSym0 "Data.Singletons.List.head: empty list" 

sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a) Source #

type family Last (a :: [a]) :: a where ... Source #

Equations

Last '[] = Apply ErrorSym0 "Data.Singletons.List.last: empty list" 
Last '[x] = x 
Last ('(:) _ ('(:) x xs)) = Apply LastSym0 (Apply (Apply (:@#@$) x) xs) 

sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a) Source #

type family Tail (a :: [a]) :: [a] where ... Source #

Equations

Tail ('(:) _ t) = t 
Tail '[] = Apply ErrorSym0 "Data.Singletons.List.tail: empty list" 

sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a]) Source #

type family Init (a :: [a]) :: [a] where ... Source #

Equations

Init '[] = Apply ErrorSym0 "Data.Singletons.List.init: empty list" 
Init ('(:) x xs) = Apply (Apply (Let6989586621679852307Init'Sym2 x xs) x) xs 

sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a]) Source #

type family (a :: [a]) !! (a :: Natural) :: a where ... infixl 9 Source #

Equations

'[] !! _ = Apply ErrorSym0 "Data.Singletons.List.!!: index too large" 
('(:) x xs) !! n = Case_6989586621679851171 x xs n (Let6989586621679851169Scrutinee_6989586621679848130Sym3 x xs n) 

(%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a) infixl 9 Source #

type family Null (arg :: t a) :: Bool Source #

Instances

Instances details
type Null (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Null (a2 :: Identity a1)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Last a)
type Null (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: First a)
type Null (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Last a)
type Null (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Max a)
type Null (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Min a)
type Null (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Dual a1)
type Null (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Product a1)
type Null (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Sum a1)
type Null (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: NonEmpty a)
type Null (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: Maybe a)
type Null (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: [a1])
type Null (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a3 :: Either a1 a2)
type Null (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (a2 :: Proxy a1)
type Null (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Null (arg :: Arg a1 a2)
type Null (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Null (arg :: (a1, a2))
type Null (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Null (arg :: Const m a)
type Null (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Null (arg :: Product f g a)
type Null (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Null (arg :: Sum f g a)
type Null (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Null (arg :: Compose f g a)

sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #

type family Length (arg :: t a) :: Natural Source #

Instances

Instances details
type Length (a2 :: Identity a1) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

type Length (a2 :: Identity a1)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Last a)
type Length (arg :: First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: First a)
type Length (arg :: Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Last a)
type Length (arg :: Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Max a)
type Length (arg :: Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Min a)
type Length (a2 :: Dual a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Dual a1)
type Length (a2 :: Product a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Product a1)
type Length (a2 :: Sum a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Sum a1)
type Length (arg :: NonEmpty a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: NonEmpty a)
type Length (arg :: Maybe a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: Maybe a)
type Length (a2 :: [a1]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: [a1])
type Length (a3 :: Either a1 a2) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a3 :: Either a1 a2)
type Length (a2 :: Proxy a1) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (a2 :: Proxy a1)
type Length (arg :: Arg a1 a2) Source # 
Instance details

Defined in Data.Semigroup.Singletons

type Length (arg :: Arg a1 a2)
type Length (arg :: (a1, a2)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Length (arg :: (a1, a2))
type Length (arg :: Const m a) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

type Length (arg :: Const m a)
type Length (arg :: Product f g a) Source # 
Instance details

Defined in Data.Functor.Product.Singletons

type Length (arg :: Product f g a)
type Length (arg :: Sum f g a) Source # 
Instance details

Defined in Data.Functor.Sum.Singletons

type Length (arg :: Sum f g a)
type Length (arg :: Compose f g a) Source # 
Instance details

Defined in Data.Functor.Compose.Singletons

type Length (arg :: Compose f g a)

sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #

type family Reverse (a :: [a]) :: [a] where ... Source #

Equations

Reverse l = Apply (Apply (Let6989586621679852291RevSym1 l) l) NilSym0 

sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a]) Source #

Special folds

type family And (a :: t Bool) :: Bool where ... Source #

Equations

And a_6989586621680438183 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680438183 

sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool) Source #

type family Or (a :: t Bool) :: Bool where ... Source #

Equations

Or a_6989586621680438177 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680438177 

sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool) Source #

type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

Any p a_6989586621680438168 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) Any_Sym0) p))) a_6989586621680438168 

sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #

type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #

Equations

All p a_6989586621680438159 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) All_Sym0) p))) a_6989586621680438159 

sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #

type family Concat (a :: t [a]) :: [a] where ... Source #

Equations

Concat xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621680438205Sym0 xs)) NilSym0) xs 

sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #

type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ... Source #

Equations

ConcatMap f xs = Apply (Apply (Apply FoldrSym0 (Apply (Apply Lambda_6989586621680438196Sym0 f) xs)) NilSym0) xs 

sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #

Building lists

Scans

type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanl f q ls = Apply (Apply (:@#@$) q) (Case_6989586621679852100 f q ls ls) 

sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b]) Source #

type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanl1 f ('(:) x xs) = Apply (Apply (Apply ScanlSym0 f) x) xs 
Scanl1 _ '[] = NilSym0 

sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a]) Source #

type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ... Source #

Equations

Scanr _ q0 '[] = Apply (Apply (:@#@$) q0) NilSym0 
Scanr f q0 ('(:) x xs) = Case_6989586621679852077 f q0 x xs (Let6989586621679852075Scrutinee_6989586621679848020Sym4 f q0 x xs) 

sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b]) Source #

type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #

Equations

Scanr1 _ '[] = NilSym0 
Scanr1 _ '[x] = Apply (Apply (:@#@$) x) NilSym0 
Scanr1 f ('(:) x ('(:) wild_6989586621679848032 wild_6989586621679848034)) = Case_6989586621679852058 f x wild_6989586621679848032 wild_6989586621679848034 (Let6989586621679852056Scrutinee_6989586621679848026Sym4 f x wild_6989586621679848032 wild_6989586621679848034) 

sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a]) Source #

Infinite lists

type family Replicate (a :: Natural) (a :: a) :: [a] where ... Source #

Equations

Replicate n x = Case_6989586621679851190 n x (Let6989586621679851188Scrutinee_6989586621679848128Sym2 n x) 

sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a]) Source #

Sublists

type family Take (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Take _ '[] = NilSym0 
Take n ('(:) x xs) = Case_6989586621679851346 n x xs (Let6989586621679851344Scrutinee_6989586621679848112Sym3 n x xs) 

sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a]) Source #

type family Drop (a :: Natural) (a :: [a]) :: [a] where ... Source #

Equations

Drop _ '[] = NilSym0 
Drop n ('(:) x xs) = Case_6989586621679851333 n x xs (Let6989586621679851331Scrutinee_6989586621679848114Sym3 n x xs) 

sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a]) Source #

type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

TakeWhile _ '[] = NilSym0 
TakeWhile p ('(:) x xs) = Case_6989586621679851463 p x xs (Let6989586621679851461Scrutinee_6989586621679848102Sym3 p x xs) 

sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a]) Source #

type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ... Source #

Equations

DropWhile _ '[] = NilSym0 
DropWhile p ('(:) x xs') = Case_6989586621679851450 p x xs' (Let6989586621679851448Scrutinee_6989586621679848104Sym3 p x xs') 

sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a]) Source #

type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Span _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851389XsSym0) Let6989586621679851389XsSym0 
Span p ('(:) x xs') = Case_6989586621679851398 p x xs' (Let6989586621679851396Scrutinee_6989586621679848108Sym3 p x xs') 

sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a])) Source #

type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

Break _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851354XsSym0) Let6989586621679851354XsSym0 
Break p ('(:) x xs') = Case_6989586621679851363 p x xs' (Let6989586621679851361Scrutinee_6989586621679848110Sym3 p x xs') 

sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a])) Source #

type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAt n xs = Apply (Apply Tuple2Sym0 (Apply (Apply TakeSym0 n) xs)) (Apply (Apply DropSym0 n) xs) 

sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a])) Source #

Searching lists

type family NotElem (a :: a) (a :: t a) :: Bool where ... Source #

Equations

NotElem x a_6989586621680438110 = Apply (Apply (Apply (.@#@$) NotSym0) (Apply ElemSym0 x)) a_6989586621680438110 

sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #

type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ... Source #

Equations

Lookup _key '[] = NothingSym0 
Lookup key ('(:) '(x, y) xys) = Case_6989586621679851256 key x y xys (Let6989586621679851254Scrutinee_6989586621679848124Sym4 key x y xys) 

sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b) Source #

Zipping and unzipping lists

type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ... Source #

Equations

Zip ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply Tuple2Sym0 x) y)) (Apply (Apply ZipSym0 xs) ys) 
Zip '[] '[] = NilSym0 
Zip ('(:) _ _) '[] = NilSym0 
Zip '[] ('(:) _ _) = NilSym0 

sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)]) Source #

type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3 ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) 
Zip3 '[] '[] '[] = NilSym0 
Zip3 '[] '[] ('(:) _ _) = NilSym0 
Zip3 '[] ('(:) _ _) '[] = NilSym0 
Zip3 '[] ('(:) _ _) ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) '[] '[] = NilSym0 
Zip3 ('(:) _ _) '[] ('(:) _ _) = NilSym0 
Zip3 ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)]) Source #

type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ... Source #

Equations

ZipWith f ('(:) x xs) ('(:) y ys) = Apply (Apply (:@#@$) (Apply (Apply f x) y)) (Apply (Apply (Apply ZipWithSym0 f) xs) ys) 
ZipWith _ '[] '[] = NilSym0 
ZipWith _ ('(:) _ _) '[] = NilSym0 
ZipWith _ '[] ('(:) _ _) = NilSym0 

sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c]) Source #

type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ... Source #

Equations

ZipWith3 z ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) 
ZipWith3 _ '[] '[] '[] = NilSym0 
ZipWith3 _ '[] '[] ('(:) _ _) = NilSym0 
ZipWith3 _ '[] ('(:) _ _) '[] = NilSym0 
ZipWith3 _ '[] ('(:) _ _) ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) '[] '[] = NilSym0 
ZipWith3 _ ('(:) _ _) '[] ('(:) _ _) = NilSym0 
ZipWith3 _ ('(:) _ _) ('(:) _ _) '[] = NilSym0 

sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d]) Source #

type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

Unzip xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851818Sym0 xs)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs 

sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b])) Source #

type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851800Sym0 xs)) (Apply (Apply (Apply Tuple3Sym0 NilSym0) NilSym0) NilSym0)) xs 

sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c])) Source #

Functions on Symbols

type family Unlines (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unlines '[] = "" 
Unlines ('(:) l ls) = Apply (Apply (<>@#@$) l) (Apply (Apply (<>@#@$) "\n") (Apply UnlinesSym0 ls)) 

sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol) Source #

type family Unwords (a :: [Symbol]) :: Symbol where ... Source #

Equations

Unwords '[] = "" 
Unwords ('(:) w ws) = Apply (Apply (<>@#@$) w) (Apply (Let6989586621679851694GoSym2 w ws) ws) 

sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol) Source #

Converting to and from Symbol

Converting to Symbol

type SymbolS = Symbol -> Symbol Source #

The shows functions return a function that prepends the output Symbol to an existing Symbol. This allows constant-time concatenation of results using function composition.

show_ :: Show a => a -> String Source #

show, but with an extra underscore so that its promoted counterpart (Show_) will not clash with the Show class.

class PShow a Source #

Associated Types

type ShowsPrec (arg :: Natural) (arg :: a) (arg :: Symbol) :: Symbol Source #

type ShowsPrec a a a = Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 a) a) a

type Show_ (arg :: a) :: Symbol Source #

type Show_ a = Apply Show__6989586621680249883Sym0 a

type ShowList (arg :: [a]) (arg :: Symbol) :: Symbol Source #

type ShowList a a = Apply (Apply ShowList_6989586621680249891Sym0 a) a

Instances

Instances details
PShow All Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Any Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Void Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Ordering Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Natural Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow () Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Bool Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Char Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow Symbol Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (NonEmpty a) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Maybe a) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow [a] Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Either a b) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b, c) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b, c, d) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b, c, d, e) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b, c, d, e, f) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

PShow (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Text.Show.Singletons

Associated Types

type ShowsPrec arg arg1 arg2 :: Symbol Source #

type Show_ arg :: Symbol Source #

type ShowList arg arg1 :: Symbol Source #

class SShow a where Source #

Minimal complete definition

Nothing

Methods

sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #

default sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) ~ Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #

sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #

default sShow_ :: forall (t :: a). (Apply Show_Sym0 t :: Symbol) ~ Apply Show__6989586621680249883Sym0 t => Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #

sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol) Source #

default sShowList :: forall (t :: [a]) (t :: Symbol). (Apply (Apply ShowListSym0 t) t :: Symbol) ~ Apply (Apply ShowList_6989586621680249891Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol) Source #

Instances

Instances details
SShow Bool => SShow All Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: All) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: All). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [All]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Bool => SShow Any Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Any) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Any). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Any]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Void Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Void) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Void]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Ordering Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Ordering) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Ordering). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Ordering]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Natural Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Natural). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Natural]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow () Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: ()) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: ()). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [()]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Bool Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Bool) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Bool). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Bool]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Char Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Char) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Char). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Char]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow Symbol Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Symbol) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Symbol). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Symbol]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Identity a) Source # 
Instance details

Defined in Data.Functor.Identity.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Identity a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Identity a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Identity a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow (Maybe a) => SShow (First a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow (Maybe a) => SShow (Last a) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (First a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Last a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Max a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Max a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Max a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Max a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Min a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Min a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Min a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Min a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow m => SShow (WrappedMonoid m) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: WrappedMonoid m) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: WrappedMonoid m). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [WrappedMonoid m]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Dual a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Dual a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Dual a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Dual a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Product a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Product a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Product a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Product a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Sum a) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Sum a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Sum a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Sum a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow [a]) => SShow (NonEmpty a) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: NonEmpty a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: NonEmpty a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [NonEmpty a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Maybe a) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Maybe a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Maybe a). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Maybe a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow [a] Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: [a]) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: [a]). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [[a]]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b) => SShow (Either a b) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Either a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Either a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Either a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow (Proxy s) Source # 
Instance details

Defined in Data.Proxy.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Proxy s) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Proxy s). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Proxy s]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b) => SShow (Arg a b) Source # 
Instance details

Defined in Data.Semigroup.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Arg a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Arg a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Arg a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b) => SShow (a, b) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

SShow a => SShow (Const a b) Source # 
Instance details

Defined in Data.Functor.Const.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: Const a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [Const a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b, SShow c) => SShow (a, b, c) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b, c)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b, c)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b, SShow c, SShow d) => SShow (a, b, c, d) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b, c, d)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b, c, d)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b, SShow c, SShow d, SShow e) => SShow (a, b, c, d, e) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b, c, d, e)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b, c, d, e)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f) => SShow (a, b, c, d, e, f) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b, c, d, e, f)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b, c, d, e, f)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f, SShow g) => SShow (a, b, c, d, e, f, g) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f, g)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source #

sShow_ :: forall (t :: (a, b, c, d, e, f, g)). Sing t -> Sing (Apply Show_Sym0 t) Source #

sShowList :: forall (t1 :: [(a, b, c, d, e, f, g)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source #

type family Shows (a :: a) (a :: Symbol) :: Symbol where ... Source #

Equations

Shows s a_6989586621680249844 = Apply (Apply (Apply ShowsPrecSym0 (FromInteger 0)) s) a_6989586621680249844 

sShows :: forall a (t :: a) (t :: Symbol). SShow a => Sing t -> Sing t -> Sing (Apply (Apply ShowsSym0 t) t :: Symbol) Source #

type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ... Source #

Equations

ShowChar a_6989586621680249816 a_6989586621680249818 = Apply (Apply ConsSymbolSym0 a_6989586621680249816) a_6989586621680249818 

sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol) Source #

type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ... Source #

Equations

ShowString a_6989586621680249805 a_6989586621680249807 = Apply (Apply (<>@#@$) a_6989586621680249805) a_6989586621680249807 

sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol) Source #

type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ... Source #

Equations

ShowParen b p a_6989586621680249790 = Apply (Case_6989586621680249802 b p a_6989586621680249790 b) a_6989586621680249790 

sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol) Source #

Defunctionalization symbols

Basic data types

type family FalseSym0 :: Bool where ... Source #

Equations

FalseSym0 = 'False 

type family TrueSym0 :: Bool where ... Source #

Equations

TrueSym0 = 'True 

data IfSym0 :: (~>) Bool ((~>) k ((~>) k k)) Source #

Instances

Instances details
SingI (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing IfSym0

SuppressUnusedWarnings (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) (a6989586621679135270 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) (a6989586621679135270 :: Bool) = IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type

data IfSym1 (a6989586621679135270 :: Bool) :: (~>) k ((~>) k k) Source #

Instances

Instances details
SingI1 (IfSym1 :: Bool -> TyFun k (k ~> k) -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (IfSym1 x)

SingI c => SingI (IfSym1 c :: TyFun k (k ~> k) -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing (IfSym1 c)

SuppressUnusedWarnings (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) (a6989586621679135271 :: k) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) (a6989586621679135271 :: k) = IfSym2 a6989586621679135270 a6989586621679135271

data IfSym2 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) :: (~>) k k Source #

Instances

Instances details
SingI2 (IfSym2 :: Bool -> k2 -> TyFun k2 k2 -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k20). Sing x -> Sing y -> Sing (IfSym2 x y)

SingI c => SingI1 (IfSym2 c :: k1 -> TyFun k1 k1 -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

liftSing :: forall (x :: k10). Sing x -> Sing (IfSym2 c x)

(SingI c, SingI t) => SingI (IfSym2 c t :: TyFun k k -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing (IfSym2 c t)

SuppressUnusedWarnings (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) (a6989586621679135272 :: k) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) (a6989586621679135272 :: k) = If a6989586621679135270 a6989586621679135271 a6989586621679135272

type family IfSym3 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) (a6989586621679135272 :: k) :: k where ... Source #

Equations

IfSym3 a6989586621679135270 a6989586621679135271 a6989586621679135272 = If a6989586621679135270 a6989586621679135271 a6989586621679135272 

data (&&@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 3 Source #

Instances

Instances details
SingI (&&@#@$) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing (&&@#@$)

SuppressUnusedWarnings (&&@#@$) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (&&@#@$) (a6989586621679134313 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (&&@#@$) (a6989586621679134313 :: Bool) = (&&@#@$$) a6989586621679134313

data (&&@#@$$) (a6989586621679134313 :: Bool) :: (~>) Bool Bool infixr 3 Source #

Instances

Instances details
SingI x => SingI ((&&@#@$$) x :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing ((&&@#@$$) x)

SuppressUnusedWarnings ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) (a6989586621679134314 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) (a6989586621679134314 :: Bool) = a6989586621679134313 && a6989586621679134314

type family (a6989586621679134313 :: Bool) &&@#@$$$ (a6989586621679134314 :: Bool) :: Bool where ... infixr 3 Source #

Equations

a6989586621679134313 &&@#@$$$ a6989586621679134314 = (&&) a6989586621679134313 a6989586621679134314 

data (||@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 2 Source #

Instances

Instances details
SingI (||@#@$) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing (||@#@$)

SuppressUnusedWarnings (||@#@$) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (||@#@$) (a6989586621679134686 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply (||@#@$) (a6989586621679134686 :: Bool) = (||@#@$$) a6989586621679134686

data (||@#@$$) (a6989586621679134686 :: Bool) :: (~>) Bool Bool infixr 2 Source #

Instances

Instances details
SingI x => SingI ((||@#@$$) x :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing ((||@#@$$) x)

SuppressUnusedWarnings ((||@#@$$) a6989586621679134686 :: TyFun Bool Bool -> Type) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply ((||@#@$$) a6989586621679134686 :: TyFun Bool Bool -> Type) (a6989586621679134687 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply ((||@#@$$) a6989586621679134686 :: TyFun Bool Bool -> Type) (a6989586621679134687 :: Bool) = a6989586621679134686 || a6989586621679134687

type family (a6989586621679134686 :: Bool) ||@#@$$$ (a6989586621679134687 :: Bool) :: Bool where ... infixr 2 Source #

Equations

a6989586621679134686 ||@#@$$$ a6989586621679134687 = (||) a6989586621679134686 a6989586621679134687 

data NotSym0 :: (~>) Bool Bool Source #

Instances

Instances details
SingI NotSym0 Source # 
Instance details

Defined in Data.Bool.Singletons

Methods

sing :: Sing NotSym0

SuppressUnusedWarnings NotSym0 Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply NotSym0 (a6989586621679135042 :: Bool) Source # 
Instance details

Defined in Data.Bool.Singletons

type Apply NotSym0 (a6989586621679135042 :: Bool) = Not a6989586621679135042

type family NotSym1 (a6989586621679135042 :: Bool) :: Bool where ... Source #

Equations

NotSym1 a6989586621679135042 = Not a6989586621679135042 

type family OtherwiseSym0 :: Bool where ... Source #

type family NothingSym0 :: Maybe (a :: Type) where ... Source #

Equations

NothingSym0 = 'Nothing 

data JustSym0 :: (~>) a (Maybe (a :: Type)) Source #

Instances

Instances details
SingI (JustSym0 :: TyFun a (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing JustSym0

SuppressUnusedWarnings (JustSym0 :: TyFun a (Maybe a) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (JustSym0 :: TyFun a (Maybe a) -> Type) (a6989586621679040342 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (JustSym0 :: TyFun a (Maybe a) -> Type) (a6989586621679040342 :: a) = 'Just a6989586621679040342

type family JustSym1 (a6989586621679040342 :: a) :: Maybe (a :: Type) where ... Source #

Equations

JustSym1 a6989586621679040342 = 'Just a6989586621679040342 

data Maybe_Sym0 :: (~>) b ((~>) ((~>) a b) ((~>) (Maybe a) b)) Source #

Instances

Instances details
SingI (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

sing :: Sing Maybe_Sym0

SuppressUnusedWarnings (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) (a6989586621679568692 :: b) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) (a6989586621679568692 :: b) = Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type

data Maybe_Sym1 (a6989586621679568692 :: b) :: (~>) ((~>) a b) ((~>) (Maybe a) b) Source #

Instances

Instances details
SingI1 (Maybe_Sym1 :: b -> TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Maybe_Sym1 x)

SingI d => SingI (Maybe_Sym1 d :: TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

sing :: Sing (Maybe_Sym1 d)

SuppressUnusedWarnings (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) (a6989586621679568693 :: a ~> b) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) (a6989586621679568693 :: a ~> b) = Maybe_Sym2 a6989586621679568692 a6989586621679568693

data Maybe_Sym2 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) :: (~>) (Maybe a) b Source #

Instances

Instances details
SingI2 (Maybe_Sym2 :: b -> (a ~> b) -> TyFun (Maybe a) b -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Maybe_Sym2 x y)

SingI d => SingI1 (Maybe_Sym2 d :: (a ~> b) -> TyFun (Maybe a) b -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Maybe_Sym2 d x)

(SingI d1, SingI d2) => SingI (Maybe_Sym2 d1 d2 :: TyFun (Maybe a) b -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

Methods

sing :: Sing (Maybe_Sym2 d1 d2)

SuppressUnusedWarnings (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) (a6989586621679568694 :: Maybe a) Source # 
Instance details

Defined in Data.Maybe.Singletons

type Apply (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) (a6989586621679568694 :: Maybe a) = Maybe_ a6989586621679568692 a6989586621679568693 a6989586621679568694

type family Maybe_Sym3 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) (a6989586621679568694 :: Maybe a) :: b where ... Source #

Equations

Maybe_Sym3 a6989586621679568692 a6989586621679568693 a6989586621679568694 = Maybe_ a6989586621679568692 a6989586621679568693 a6989586621679568694 

data LeftSym0 :: (~>) a (Either (a :: Type) (b :: Type)) Source #

Instances

Instances details
SingI (LeftSym0 :: TyFun a (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing LeftSym0

SuppressUnusedWarnings (LeftSym0 :: TyFun a (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (LeftSym0 :: TyFun a (Either a b) -> Type) (a6989586621679040414 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (LeftSym0 :: TyFun a (Either a b) -> Type) (a6989586621679040414 :: a) = 'Left a6989586621679040414 :: Either a b

type family LeftSym1 (a6989586621679040414 :: a) :: Either (a :: Type) (b :: Type) where ... Source #

Equations

LeftSym1 a6989586621679040414 = 'Left a6989586621679040414 

data RightSym0 :: (~>) b (Either (a :: Type) (b :: Type)) Source #

Instances

Instances details
SingI (RightSym0 :: TyFun b (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing RightSym0

SuppressUnusedWarnings (RightSym0 :: TyFun b (Either a b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RightSym0 :: TyFun b (Either a b) -> Type) (a6989586621679040416 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (RightSym0 :: TyFun b (Either a b) -> Type) (a6989586621679040416 :: b) = 'Right a6989586621679040416 :: Either a b

type family RightSym1 (a6989586621679040416 :: b) :: Either (a :: Type) (b :: Type) where ... Source #

Equations

RightSym1 a6989586621679040416 = 'Right a6989586621679040416 

data Either_Sym0 :: (~>) ((~>) a c) ((~>) ((~>) b c) ((~>) (Either a b) c)) Source #

Instances

Instances details
SingI (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

SuppressUnusedWarnings (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679314689 :: a ~> c) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679314689 :: a ~> c) = Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type

data Either_Sym1 (a6989586621679314689 :: (~>) a c) :: (~>) ((~>) b c) ((~>) (Either a b) c) Source #

Instances

Instances details
SingI1 (Either_Sym1 :: (a ~> c) -> TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym1 x)

SingI d => SingI (Either_Sym1 d :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing (Either_Sym1 d)

SuppressUnusedWarnings (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679314690 :: b ~> c) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679314690 :: b ~> c) = Either_Sym2 a6989586621679314689 a6989586621679314690

data Either_Sym2 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) :: (~>) (Either a b) c Source #

Instances

Instances details
SingI2 (Either_Sym2 :: (a ~> c) -> (b ~> c) -> TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Either_Sym2 x y)

SingI d => SingI1 (Either_Sym2 d :: (b ~> c) -> TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym2 d x)

(SingI d1, SingI d2) => SingI (Either_Sym2 d1 d2 :: TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

Methods

sing :: Sing (Either_Sym2 d1 d2)

SuppressUnusedWarnings (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) (a6989586621679314691 :: Either a b) Source # 
Instance details

Defined in Data.Either.Singletons

type Apply (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) (a6989586621679314691 :: Either a b) = Either_ a6989586621679314689 a6989586621679314690 a6989586621679314691

type family Either_Sym3 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) (a6989586621679314691 :: Either a b) :: c where ... Source #

Equations

Either_Sym3 a6989586621679314689 a6989586621679314690 a6989586621679314691 = Either_ a6989586621679314689 a6989586621679314690 a6989586621679314691 

type family LTSym0 :: Ordering where ... Source #

Equations

LTSym0 = 'LT 

type family EQSym0 :: Ordering where ... Source #

Equations

EQSym0 = 'EQ 

type family GTSym0 :: Ordering where ... Source #

Equations

GTSym0 = 'GT 

data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #

Instances

Instances details
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (:@#@$)

SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) = (:@#@$$) a6989586621679040366

data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #

Instances

Instances details
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((:@#@$$) x)

SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing ((:@#@$$) d)

SuppressUnusedWarnings ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) = a6989586621679040366 ': a6989586621679040367

type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ... infixr 5 Source #

Equations

a6989586621679040366 :@#@$$$ a6989586621679040367 = '(:) a6989586621679040366 a6989586621679040367 

type family NilSym0 :: [a :: Type] where ... Source #

Equations

NilSym0 = '[] 

Tuples

type family Tuple0Sym0 :: () where ... Source #

Equations

Tuple0Sym0 = '() 

data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type)) Source #

Instances

Instances details
SingI (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple2Sym0

SuppressUnusedWarnings (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) = Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type

data Tuple2Sym1 (a6989586621679040855 :: a) :: (~>) b (a :: Type, b :: Type) Source #

Instances

Instances details
SingI1 (Tuple2Sym1 :: a -> TyFun b (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple2Sym1 x)

SingI d => SingI (Tuple2Sym1 d :: TyFun b (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple2Sym1 d)

SuppressUnusedWarnings (Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) = '(a6989586621679040855, a6989586621679040856)

type family Tuple2Sym2 (a6989586621679040855 :: a) (a6989586621679040856 :: b) :: (a :: Type, b :: Type) where ... Source #

Equations

Tuple2Sym2 a6989586621679040855 a6989586621679040856 = '(a6989586621679040855, a6989586621679040856) 

data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type))) Source #

Instances

Instances details
SingI (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple3Sym0

SuppressUnusedWarnings (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) = Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type

data Tuple3Sym1 (a6989586621679040886 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type)) Source #

Instances

Instances details
SingI1 (Tuple3Sym1 :: a -> TyFun b (c ~> (a, b, c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym1 x)

SingI d => SingI (Tuple3Sym1 d :: TyFun b (c ~> (a, b, c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple3Sym1 d)

SuppressUnusedWarnings (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) = Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type

data Tuple3Sym2 (a6989586621679040886 :: a) (a6989586621679040887 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type) Source #

Instances

Instances details
SingI2 (Tuple3Sym2 :: a -> b -> TyFun c (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple3Sym2 x y)

SingI d => SingI1 (Tuple3Sym2 d :: b -> TyFun c (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym2 d x)

(SingI d1, SingI d2) => SingI (Tuple3Sym2 d1 d2 :: TyFun c (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple3Sym2 d1 d2)

SuppressUnusedWarnings (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) = '(a6989586621679040886, a6989586621679040887, a6989586621679040888)

type family Tuple3Sym3 (a6989586621679040886 :: a) (a6989586621679040887 :: b) (a6989586621679040888 :: c) :: (a :: Type, b :: Type, c :: Type) where ... Source #

Equations

Tuple3Sym3 a6989586621679040886 a6989586621679040887 a6989586621679040888 = '(a6989586621679040886, a6989586621679040887, a6989586621679040888) 

data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))) Source #

Instances

Instances details
SingI (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple4Sym0

SuppressUnusedWarnings (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) = Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type

data Tuple4Sym1 (a6989586621679040935 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))) Source #

Instances

Instances details
SingI1 (Tuple4Sym1 :: a -> TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym1 x)

SingI d1 => SingI (Tuple4Sym1 d1 :: TyFun b (c ~> (d2 ~> (a, b, c, d2))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple4Sym1 d1)

SuppressUnusedWarnings (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) = Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type

data Tuple4Sym2 (a6989586621679040935 :: a) (a6989586621679040936 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)) Source #

Instances

Instances details
SingI2 (Tuple4Sym2 :: a -> b -> TyFun c (d ~> (a, b, c, d)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym2 x y)

SingI d1 => SingI1 (Tuple4Sym2 d1 :: b -> TyFun c (d2 ~> (a, b, c, d2)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym2 d1 x)

(SingI d1, SingI d2) => SingI (Tuple4Sym2 d1 d2 :: TyFun c (d3 ~> (a, b, c, d3)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple4Sym2 d1 d2)

SuppressUnusedWarnings (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) = Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type

data Tuple4Sym3 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type) Source #

Instances

Instances details
SingI d1 => SingI2 (Tuple4Sym3 d1 :: b -> c -> TyFun d2 (a, b, c, d2) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym3 d1 x y)

(SingI d1, SingI d2) => SingI1 (Tuple4Sym3 d1 d2 :: c -> TyFun d3 (a, b, c, d3) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym3 d1 d2 x)

(SingI d1, SingI d2, SingI d3) => SingI (Tuple4Sym3 d1 d2 d3 :: TyFun d4 (a, b, c, d4) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple4Sym3 d1 d2 d3)

SuppressUnusedWarnings (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938)

type family Tuple4Sym4 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) (a6989586621679040938 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ... Source #

Equations

Tuple4Sym4 a6989586621679040935 a6989586621679040936 a6989586621679040937 a6989586621679040938 = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938) 

data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))) Source #

Instances

Instances details
SingI (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple5Sym0

SuppressUnusedWarnings (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) = Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type

data Tuple5Sym1 (a6989586621679041004 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))) Source #

Instances

Instances details
SingI1 (Tuple5Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym1 x)

SingI d1 => SingI (Tuple5Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (a, b, c, d2, e)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple5Sym1 d1)

SuppressUnusedWarnings (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) = Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type

data Tuple5Sym2 (a6989586621679041004 :: a) (a6989586621679041005 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))) Source #

Instances

Instances details
SingI2 (Tuple5Sym2 :: a -> b -> TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym2 x y)

SingI d1 => SingI1 (Tuple5Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (a, b, c, d2, e))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym2 d1 x)

(SingI d1, SingI d2) => SingI (Tuple5Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (a, b, c, d3, e))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple5Sym2 d1 d2)

SuppressUnusedWarnings (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) = Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type

data Tuple5Sym3 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) Source #

Instances

Instances details
SingI d1 => SingI2 (Tuple5Sym3 d1 :: b -> c -> TyFun d2 (e ~> (a, b, c, d2, e)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym3 d1 x y)

(SingI d1, SingI d2) => SingI1 (Tuple5Sym3 d1 d2 :: c -> TyFun d3 (e ~> (a, b, c, d3, e)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym3 d1 d2 x)

(SingI d1, SingI d2, SingI d3) => SingI (Tuple5Sym3 d1 d2 d3 :: TyFun d4 (e ~> (a, b, c, d4, e)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple5Sym3 d1 d2 d3)

SuppressUnusedWarnings (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) = Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type

data Tuple5Sym4 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI2 (Tuple5Sym4 d1 d2 :: c -> d3 -> TyFun e (a, b, c, d3, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym4 d1 d2 x y)

(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple5Sym4 d1 d2 d3 :: d4 -> TyFun e (a, b, c, d4, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym4 d1 d2 d3 x)

(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple5Sym4 d1 d2 d3 d5 :: TyFun e (a, b, c, d4, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple5Sym4 d1 d2 d3 d5)

SuppressUnusedWarnings (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008)

type family Tuple5Sym5 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) (a6989586621679041008 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ... Source #

Equations

Tuple5Sym5 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 a6989586621679041008 = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008) 

data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))) Source #

Instances

Instances details
SingI (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple6Sym0

SuppressUnusedWarnings (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) = Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type

data Tuple6Sym1 (a6989586621679041095 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))) Source #

Instances

Instances details
SingI1 (Tuple6Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym1 x)

SingI d1 => SingI (Tuple6Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple6Sym1 d1)

SuppressUnusedWarnings (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) = Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type

data Tuple6Sym2 (a6989586621679041095 :: a) (a6989586621679041096 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))) Source #

Instances

Instances details
SingI2 (Tuple6Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym2 x y)

SingI d1 => SingI1 (Tuple6Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym2 d1 x)

(SingI d1, SingI d2) => SingI (Tuple6Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (a, b, c, d3, e, f)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple6Sym2 d1 d2)

SuppressUnusedWarnings (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) = Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type

data Tuple6Sym3 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))) Source #

Instances

Instances details
SingI d1 => SingI2 (Tuple6Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (a, b, c, d2, e, f))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym3 d1 x y)

(SingI d1, SingI d2) => SingI1 (Tuple6Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (a, b, c, d3, e, f))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym3 d1 d2 x)

(SingI d1, SingI d2, SingI d3) => SingI (Tuple6Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (a, b, c, d4, e, f))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple6Sym3 d1 d2 d3)

SuppressUnusedWarnings (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) = Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type

data Tuple6Sym4 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI2 (Tuple6Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (a, b, c, d3, e, f)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym4 d1 d2 x y)

(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple6Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym4 d1 d2 d3 x)

(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple6Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple6Sym4 d1 d2 d3 d5)

SuppressUnusedWarnings (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) = Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type

data Tuple6Sym5 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) Source #

Instances

Instances details
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple6Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym5 d1 d2 d3 x y)

(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple6Sym5 d1 d2 d3 d5 :: e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym5 d1 d2 d3 d5 x)

(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple6Sym5 d1 d2 d3 d5 d6 :: TyFun f (a, b, c, d4, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple6Sym5 d1 d2 d3 d5 d6)

SuppressUnusedWarnings (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100)

type family Tuple6Sym6 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) (a6989586621679041100 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ... Source #

Equations

Tuple6Sym6 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 a6989586621679041100 = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100) 

data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))) Source #

Instances

Instances details
SingI (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing Tuple7Sym0

SuppressUnusedWarnings (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) = Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type

data Tuple7Sym1 (a6989586621679041210 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))) Source #

Instances

Instances details
SingI1 (Tuple7Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym1 x)

SingI d1 => SingI (Tuple7Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym1 d1)

SuppressUnusedWarnings (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) = Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type

data Tuple7Sym2 (a6989586621679041210 :: a) (a6989586621679041211 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))) Source #

Instances

Instances details
SingI2 (Tuple7Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym2 x y)

SingI d1 => SingI1 (Tuple7Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym2 d1 x)

(SingI d1, SingI d2) => SingI (Tuple7Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym2 d1 d2)

SuppressUnusedWarnings (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) = Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type

data Tuple7Sym3 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))) Source #

Instances

Instances details
SingI d1 => SingI2 (Tuple7Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym3 d1 x y)

(SingI d1, SingI d2) => SingI1 (Tuple7Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym3 d1 d2 x)

(SingI d1, SingI d2, SingI d3) => SingI (Tuple7Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (g ~> (a, b, c, d4, e, f, g)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym3 d1 d2 d3)

SuppressUnusedWarnings (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) = Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type

data Tuple7Sym4 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))) Source #

Instances

Instances details
(SingI d1, SingI d2) => SingI2 (Tuple7Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (g ~> (a, b, c, d3, e, f, g))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym4 d1 d2 x y)

(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple7Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym4 d1 d2 d3 x)

(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple7Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym4 d1 d2 d3 d5)

SuppressUnusedWarnings (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) = Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type

data Tuple7Sym5 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) Source #

Instances

Instances details
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple7Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym5 d1 d2 d3 x y)

(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple7Sym5 d1 d2 d3 d5 :: e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym5 d1 d2 d3 d5 x)

(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple7Sym5 d1 d2 d3 d5 d6 :: TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym5 d1 d2 d3 d5 d6)

SuppressUnusedWarnings (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) = Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type

data Tuple7Sym6 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) Source #

Instances

Instances details
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI2 (Tuple7Sym6 d1 d2 d3 d5 :: e -> f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym6 d1 d2 d3 d5 x y)

(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI1 (Tuple7Sym6 d1 d2 d3 d5 d6 :: f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym6 d1 d2 d3 d5 d6 x)

(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6, SingI d7) => SingI (Tuple7Sym6 d1 d2 d3 d5 d6 d7 :: TyFun g (a, b, c, d4, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

Methods

sing :: Sing (Tuple7Sym6 d1 d2 d3 d5 d6 d7)

SuppressUnusedWarnings (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) Source # 
Instance details

Defined in Data.Singletons.Base.Instances

type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216)

type family Tuple7Sym7 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) (a6989586621679041216 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ... Source #

Equations

Tuple7Sym7 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 a6989586621679041216 = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216) 

data FstSym0 :: (~>) (a, b) a Source #

Instances

Instances details
SingI (FstSym0 :: TyFun (a, b) a -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing FstSym0

SuppressUnusedWarnings (FstSym0 :: TyFun (a, b) a -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (FstSym0 :: TyFun (a, b) a -> Type) (a6989586621679270958 :: (a, b)) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (FstSym0 :: TyFun (a, b) a -> Type) (a6989586621679270958 :: (a, b)) = Fst a6989586621679270958

type family FstSym1 (a6989586621679270958 :: (a, b)) :: a where ... Source #

Equations

FstSym1 a6989586621679270958 = Fst a6989586621679270958 

data SndSym0 :: (~>) (a, b) b Source #

Instances

Instances details
SingI (SndSym0 :: TyFun (a, b) b -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing SndSym0

SuppressUnusedWarnings (SndSym0 :: TyFun (a, b) b -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (SndSym0 :: TyFun (a, b) b -> Type) (a6989586621679270954 :: (a, b)) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (SndSym0 :: TyFun (a, b) b -> Type) (a6989586621679270954 :: (a, b)) = Snd a6989586621679270954

type family SndSym1 (a6989586621679270954 :: (a, b)) :: b where ... Source #

Equations

SndSym1 a6989586621679270954 = Snd a6989586621679270954 

data CurrySym0 :: (~>) ((~>) (a, b) c) ((~>) a ((~>) b c)) Source #

Instances

Instances details
SingI (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing CurrySym0

SuppressUnusedWarnings (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) (a6989586621679270946 :: (a, b) ~> c) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) (a6989586621679270946 :: (a, b) ~> c) = CurrySym1 a6989586621679270946

data CurrySym1 (a6989586621679270946 :: (~>) (a, b) c) :: (~>) a ((~>) b c) Source #

Instances

Instances details
SingI1 (CurrySym1 :: ((a, b) ~> c) -> TyFun a (b ~> c) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (CurrySym1 x)

SingI d => SingI (CurrySym1 d :: TyFun a (b ~> c) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing (CurrySym1 d)

SuppressUnusedWarnings (CurrySym1 a6989586621679270946 :: TyFun a (b ~> c) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym1 a6989586621679270946 :: TyFun a (b ~> c) -> Type) (a6989586621679270947 :: a) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym1 a6989586621679270946 :: TyFun a (b ~> c) -> Type) (a6989586621679270947 :: a) = CurrySym2 a6989586621679270946 a6989586621679270947

data CurrySym2 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) :: (~>) b c Source #

Instances

Instances details
SingI d => SingI1 (CurrySym2 d :: a -> TyFun b c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (CurrySym2 d x)

SingI2 (CurrySym2 :: ((a, b) ~> c) -> a -> TyFun b c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (CurrySym2 x y)

(SingI d1, SingI d2) => SingI (CurrySym2 d1 d2 :: TyFun b c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing (CurrySym2 d1 d2)

SuppressUnusedWarnings (CurrySym2 a6989586621679270946 a6989586621679270947 :: TyFun b c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym2 a6989586621679270946 a6989586621679270947 :: TyFun b c -> Type) (a6989586621679270948 :: b) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (CurrySym2 a6989586621679270946 a6989586621679270947 :: TyFun b c -> Type) (a6989586621679270948 :: b) = Curry a6989586621679270946 a6989586621679270947 a6989586621679270948

type family CurrySym3 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) (a6989586621679270948 :: b) :: c where ... Source #

Equations

CurrySym3 a6989586621679270946 a6989586621679270947 a6989586621679270948 = Curry a6989586621679270946 a6989586621679270947 a6989586621679270948 

data UncurrySym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (a, b) c) Source #

Instances

Instances details
SingI (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

SuppressUnusedWarnings (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) (a6989586621679270938 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) (a6989586621679270938 :: a ~> (b ~> c)) = UncurrySym1 a6989586621679270938

data UncurrySym1 (a6989586621679270938 :: (~>) a ((~>) b c)) :: (~>) (a, b) c Source #

Instances

Instances details
SingI1 (UncurrySym1 :: (a ~> (b ~> c)) -> TyFun (a, b) c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UncurrySym1 x)

SingI d => SingI (UncurrySym1 d :: TyFun (a, b) c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

Methods

sing :: Sing (UncurrySym1 d)

SuppressUnusedWarnings (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) (a6989586621679270939 :: (a, b)) Source # 
Instance details

Defined in Data.Tuple.Singletons

type Apply (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) (a6989586621679270939 :: (a, b)) = Uncurry a6989586621679270938 a6989586621679270939

type family UncurrySym2 (a6989586621679270938 :: (~>) a ((~>) b c)) (a6989586621679270939 :: (a, b)) :: c where ... Source #

Equations

UncurrySym2 a6989586621679270938 a6989586621679270939 = Uncurry a6989586621679270938 a6989586621679270939 

Basic type classes

data (==@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

sing :: Sing (==@#@$)

SuppressUnusedWarnings ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140205 :: a) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140205 :: a) = (==@#@$$) a6989586621679140205

data (==@#@$$) (a6989586621679140205 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SEq a => SingI1 ((==@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((==@#@$$) x)

(SEq a, SingI d) => SingI ((==@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

sing :: Sing ((==@#@$$) d)

SuppressUnusedWarnings ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) (a6989586621679140206 :: a) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) (a6989586621679140206 :: a) = a6989586621679140205 == a6989586621679140206

type family (a6989586621679140205 :: a) ==@#@$$$ (a6989586621679140206 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679140205 ==@#@$$$ a6989586621679140206 = (==) a6989586621679140205 a6989586621679140206 

data (/=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SEq a => SingI ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

sing :: Sing (/=@#@$)

SuppressUnusedWarnings ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140210 :: a) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140210 :: a) = (/=@#@$$) a6989586621679140210

data (/=@#@$$) (a6989586621679140210 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SEq a => SingI1 ((/=@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((/=@#@$$) x)

(SEq a, SingI d) => SingI ((/=@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

Methods

sing :: Sing ((/=@#@$$) d)

SuppressUnusedWarnings ((/=@#@$$) a6989586621679140210 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((/=@#@$$) a6989586621679140210 :: TyFun a Bool -> Type) (a6989586621679140211 :: a) Source # 
Instance details

Defined in Data.Eq.Singletons

type Apply ((/=@#@$$) a6989586621679140210 :: TyFun a Bool -> Type) (a6989586621679140211 :: a) = a6989586621679140210 /= a6989586621679140211

type family (a6989586621679140210 :: a) /=@#@$$$ (a6989586621679140211 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679140210 /=@#@$$$ a6989586621679140211 = (/=) a6989586621679140210 a6989586621679140211 

data CompareSym0 :: (~>) a ((~>) a Ordering) Source #

Instances

Instances details
SOrd a => SingI (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

SuppressUnusedWarnings (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) = CompareSym1 a6989586621679178605

data CompareSym1 (a6989586621679178605 :: a) :: (~>) a Ordering Source #

Instances

Instances details
SOrd a => SingI1 (CompareSym1 :: a -> TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (CompareSym1 x)

(SOrd a, SingI d) => SingI (CompareSym1 d :: TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (CompareSym1 d)

SuppressUnusedWarnings (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) = Compare a6989586621679178605 a6989586621679178606

type family CompareSym2 (a6989586621679178605 :: a) (a6989586621679178606 :: a) :: Ordering where ... Source #

Equations

CompareSym2 a6989586621679178605 a6989586621679178606 = Compare a6989586621679178605 a6989586621679178606 

data (<@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (<@#@$)

SuppressUnusedWarnings ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178610 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178610 :: a) = (<@#@$$) a6989586621679178610

data (<@#@$$) (a6989586621679178610 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((<@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<@#@$$) x)

(SOrd a, SingI d) => SingI ((<@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<@#@$$) d)

SuppressUnusedWarnings ((<@#@$$) a6989586621679178610 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$$) a6989586621679178610 :: TyFun a Bool -> Type) (a6989586621679178611 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<@#@$$) a6989586621679178610 :: TyFun a Bool -> Type) (a6989586621679178611 :: a) = a6989586621679178610 < a6989586621679178611

type family (a6989586621679178610 :: a) <@#@$$$ (a6989586621679178611 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679178610 <@#@$$$ a6989586621679178611 = (<) a6989586621679178610 a6989586621679178611 

data (<=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (<=@#@$)

SuppressUnusedWarnings ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178615 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178615 :: a) = (<=@#@$$) a6989586621679178615

data (<=@#@$$) (a6989586621679178615 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((<=@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<=@#@$$) x)

(SOrd a, SingI d) => SingI ((<=@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((<=@#@$$) d)

SuppressUnusedWarnings ((<=@#@$$) a6989586621679178615 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$$) a6989586621679178615 :: TyFun a Bool -> Type) (a6989586621679178616 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((<=@#@$$) a6989586621679178615 :: TyFun a Bool -> Type) (a6989586621679178616 :: a) = a6989586621679178615 <= a6989586621679178616

type family (a6989586621679178615 :: a) <=@#@$$$ (a6989586621679178616 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679178615 <=@#@$$$ a6989586621679178616 = (<=) a6989586621679178615 a6989586621679178616 

data (>@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (>@#@$)

SuppressUnusedWarnings ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178620 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178620 :: a) = (>@#@$$) a6989586621679178620

data (>@#@$$) (a6989586621679178620 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((>@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>@#@$$) x)

(SOrd a, SingI d) => SingI ((>@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>@#@$$) d)

SuppressUnusedWarnings ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) (a6989586621679178621 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) (a6989586621679178621 :: a) = a6989586621679178620 > a6989586621679178621

type family (a6989586621679178620 :: a) >@#@$$$ (a6989586621679178621 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679178620 >@#@$$$ a6989586621679178621 = (>) a6989586621679178620 a6989586621679178621 

data (>=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #

Instances

Instances details
SOrd a => SingI ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (>=@#@$)

SuppressUnusedWarnings ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178625 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178625 :: a) = (>=@#@$$) a6989586621679178625

data (>=@#@$$) (a6989586621679178625 :: a) :: (~>) a Bool infix 4 Source #

Instances

Instances details
SOrd a => SingI1 ((>=@#@$$) :: a -> TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>=@#@$$) x)

(SOrd a, SingI d) => SingI ((>=@#@$$) d :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing ((>=@#@$$) d)

SuppressUnusedWarnings ((>=@#@$$) a6989586621679178625 :: TyFun a Bool -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$$) a6989586621679178625 :: TyFun a Bool -> Type) (a6989586621679178626 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply ((>=@#@$$) a6989586621679178625 :: TyFun a Bool -> Type) (a6989586621679178626 :: a) = a6989586621679178625 >= a6989586621679178626

type family (a6989586621679178625 :: a) >=@#@$$$ (a6989586621679178626 :: a) :: Bool where ... infix 4 Source #

Equations

a6989586621679178625 >=@#@$$$ a6989586621679178626 = (>=) a6989586621679178625 a6989586621679178626 

data MaxSym0 :: (~>) a ((~>) a a) Source #

Instances

Instances details
SOrd a => SingI (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing MaxSym0

SuppressUnusedWarnings (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178630 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178630 :: a) = MaxSym1 a6989586621679178630

data MaxSym1 (a6989586621679178630 :: a) :: (~>) a a Source #

Instances

Instances details
SOrd a => SingI1 (MaxSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MaxSym1 x)

(SOrd a, SingI d) => SingI (MaxSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MaxSym1 d)

SuppressUnusedWarnings (MaxSym1 a6989586621679178630 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym1 a6989586621679178630 :: TyFun a a -> Type) (a6989586621679178631 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MaxSym1 a6989586621679178630 :: TyFun a a -> Type) (a6989586621679178631 :: a) = Max a6989586621679178630 a6989586621679178631

type family MaxSym2 (a6989586621679178630 :: a) (a6989586621679178631 :: a) :: a where ... Source #

Equations

MaxSym2 a6989586621679178630 a6989586621679178631 = Max a6989586621679178630 a6989586621679178631 

data MinSym0 :: (~>) a ((~>) a a) Source #

Instances

Instances details
SOrd a => SingI (MinSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing MinSym0

SuppressUnusedWarnings (MinSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178635 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178635 :: a) = MinSym1 a6989586621679178635

data MinSym1 (a6989586621679178635 :: a) :: (~>) a a Source #

Instances

Instances details
SOrd a => SingI1 (MinSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MinSym1 x)

(SOrd a, SingI d) => SingI (MinSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

Methods

sing :: Sing (MinSym1 d)

SuppressUnusedWarnings (MinSym1 a6989586621679178635 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym1 a6989586621679178635 :: TyFun a a -> Type) (a6989586621679178636 :: a) Source # 
Instance details

Defined in Data.Ord.Singletons

type Apply (MinSym1 a6989586621679178635 :: TyFun a a -> Type) (a6989586621679178636 :: a) = Min a6989586621679178635 a6989586621679178636

type family MinSym2 (a6989586621679178635 :: a) (a6989586621679178636 :: a) :: a where ... Source #

Equations

MinSym2 a6989586621679178635 a6989586621679178636 = Min a6989586621679178635 a6989586621679178636 

data ToEnumSym0 :: (~>) Natural a Source #

Instances

Instances details
SEnum a => SingI (ToEnumSym0 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sing :: Sing ToEnumSym0

SuppressUnusedWarnings (ToEnumSym0 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (ToEnumSym0 :: TyFun Natural k2 -> Type) (a6989586621679606484 :: Natural) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (ToEnumSym0 :: TyFun Natural k2 -> Type) (a6989586621679606484 :: Natural) = ToEnum a6989586621679606484 :: k2

type family ToEnumSym1 (a6989586621679606484 :: Natural) :: a where ... Source #

Equations

ToEnumSym1 a6989586621679606484 = ToEnum a6989586621679606484 

data FromEnumSym0 :: (~>) a Natural Source #

Instances

Instances details
SEnum a => SingI (FromEnumSym0 :: TyFun a Natural -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SuppressUnusedWarnings (FromEnumSym0 :: TyFun a Natural -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (FromEnumSym0 :: TyFun a Natural -> Type) (a6989586621679606487 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (FromEnumSym0 :: TyFun a Natural -> Type) (a6989586621679606487 :: a) = FromEnum a6989586621679606487

type family FromEnumSym1 (a6989586621679606487 :: a) :: Natural where ... Source #

Equations

FromEnumSym1 a6989586621679606487 = FromEnum a6989586621679606487 

data EnumFromToSym0 :: (~>) a ((~>) a [a]) Source #

Instances

Instances details
SEnum a => SingI (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SuppressUnusedWarnings (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606491 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606491 :: a) = EnumFromToSym1 a6989586621679606491

data EnumFromToSym1 (a6989586621679606491 :: a) :: (~>) a [a] Source #

Instances

Instances details
SEnum a => SingI1 (EnumFromToSym1 :: a -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromToSym1 x)

(SEnum a, SingI d) => SingI (EnumFromToSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sing :: Sing (EnumFromToSym1 d)

SuppressUnusedWarnings (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) (a6989586621679606492 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) (a6989586621679606492 :: a) = EnumFromTo a6989586621679606491 a6989586621679606492

type family EnumFromToSym2 (a6989586621679606491 :: a) (a6989586621679606492 :: a) :: [a] where ... Source #

Equations

EnumFromToSym2 a6989586621679606491 a6989586621679606492 = EnumFromTo a6989586621679606491 a6989586621679606492 

data EnumFromThenToSym0 :: (~>) a ((~>) a ((~>) a [a])) Source #

Instances

Instances details
SEnum a => SingI (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SuppressUnusedWarnings (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) (a6989586621679606497 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) (a6989586621679606497 :: a) = EnumFromThenToSym1 a6989586621679606497

data EnumFromThenToSym1 (a6989586621679606497 :: a) :: (~>) a ((~>) a [a]) Source #

Instances

Instances details
SEnum a => SingI1 (EnumFromThenToSym1 :: a -> TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromThenToSym1 x)

(SEnum a, SingI d) => SingI (EnumFromThenToSym1 d :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

SuppressUnusedWarnings (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606498 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606498 :: a) = EnumFromThenToSym2 a6989586621679606497 a6989586621679606498

data EnumFromThenToSym2 (a6989586621679606497 :: a) (a6989586621679606498 :: a) :: (~>) a [a] Source #

Instances

Instances details
SEnum a => SingI2 (EnumFromThenToSym2 :: a -> a -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (EnumFromThenToSym2 x y)

(SEnum a, SingI d) => SingI1 (EnumFromThenToSym2 d :: a -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromThenToSym2 d x)

(SEnum a, SingI d1, SingI d2) => SingI (EnumFromThenToSym2 d1 d2 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

Methods

sing :: Sing (EnumFromThenToSym2 d1 d2)

SuppressUnusedWarnings (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) (a6989586621679606499 :: a) Source # 
Instance details

Defined in Data.Singletons.Base.Enum

type Apply (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) (a6989586621679606499 :: a) = EnumFromThenTo a6989586621679606497 a6989586621679606498 a6989586621679606499

type family EnumFromThenToSym3 (a6989586621679606497 :: a) (a6989586621679606498 :: a) (a6989586621679606499 :: a) :: [a] where ... Source #

Equations

EnumFromThenToSym3 a6989586621679606497 a6989586621679606498 a6989586621679606499 = EnumFromThenTo a6989586621679606497 a6989586621679606498 a6989586621679606499 

type family MinBoundSym0 :: a where ... Source #

Equations

MinBoundSym0 = MinBound 

type family MaxBoundSym0 :: a where ... Source #

Equations

MaxBoundSym0 = MaxBound 

Numbers

Numeric type classes

data (+@#@$) :: (~>) a ((~>) a a) infixl 6 Source #

Instances

Instances details
SNum a => SingI ((+@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing (+@#@$)

SuppressUnusedWarnings ((+@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((+@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582458 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((+@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582458 :: a) = (+@#@$$) a6989586621679582458

data (+@#@$$) (a6989586621679582458 :: a) :: (~>) a a infixl 6 Source #

Instances

Instances details
SNum a => SingI1 ((+@#@$$) :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((+@#@$$) x)

(SNum a, SingI d) => SingI ((+@#@$$) d :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing ((+@#@$$) d)

SuppressUnusedWarnings ((+@#@$$) a6989586621679582458 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((+@#@$$) a6989586621679582458 :: TyFun a a -> Type) (a6989586621679582459 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((+@#@$$) a6989586621679582458 :: TyFun a a -> Type) (a6989586621679582459 :: a) = a6989586621679582458 + a6989586621679582459

type family (a6989586621679582458 :: a) +@#@$$$ (a6989586621679582459 :: a) :: a where ... infixl 6 Source #

Equations

a6989586621679582458 +@#@$$$ a6989586621679582459 = (+) a6989586621679582458 a6989586621679582459 

data (-@#@$) :: (~>) a ((~>) a a) infixl 6 Source #

Instances

Instances details
SNum a => SingI ((-@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing (-@#@$)

SuppressUnusedWarnings ((-@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((-@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582463 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((-@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582463 :: a) = (-@#@$$) a6989586621679582463

data (-@#@$$) (a6989586621679582463 :: a) :: (~>) a a infixl 6 Source #

Instances

Instances details
SNum a => SingI1 ((-@#@$$) :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((-@#@$$) x)

(SNum a, SingI d) => SingI ((-@#@$$) d :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing ((-@#@$$) d)

SuppressUnusedWarnings ((-@#@$$) a6989586621679582463 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((-@#@$$) a6989586621679582463 :: TyFun a a -> Type) (a6989586621679582464 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((-@#@$$) a6989586621679582463 :: TyFun a a -> Type) (a6989586621679582464 :: a) = a6989586621679582463 - a6989586621679582464

type family (a6989586621679582463 :: a) -@#@$$$ (a6989586621679582464 :: a) :: a where ... infixl 6 Source #

Equations

a6989586621679582463 -@#@$$$ a6989586621679582464 = (-) a6989586621679582463 a6989586621679582464 

data (*@#@$) :: (~>) a ((~>) a a) infixl 7 Source #

Instances

Instances details
SNum a => SingI ((*@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing (*@#@$)

SuppressUnusedWarnings ((*@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((*@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582468 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((*@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582468 :: a) = (*@#@$$) a6989586621679582468

data (*@#@$$) (a6989586621679582468 :: a) :: (~>) a a infixl 7 Source #

Instances

Instances details
SNum a => SingI1 ((*@#@$$) :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((*@#@$$) x)

(SNum a, SingI d) => SingI ((*@#@$$) d :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing ((*@#@$$) d)

SuppressUnusedWarnings ((*@#@$$) a6989586621679582468 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((*@#@$$) a6989586621679582468 :: TyFun a a -> Type) (a6989586621679582469 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply ((*@#@$$) a6989586621679582468 :: TyFun a a -> Type) (a6989586621679582469 :: a) = a6989586621679582468 * a6989586621679582469

type family (a6989586621679582468 :: a) *@#@$$$ (a6989586621679582469 :: a) :: a where ... infixl 7 Source #

Equations

a6989586621679582468 *@#@$$$ a6989586621679582469 = * a6989586621679582468 a6989586621679582469 

data NegateSym0 :: (~>) a a Source #

Instances

Instances details
SNum a => SingI (NegateSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing NegateSym0

SuppressUnusedWarnings (NegateSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) = Negate a6989586621679582472

type family NegateSym1 (a6989586621679582472 :: a) :: a where ... Source #

Equations

NegateSym1 a6989586621679582472 = Negate a6989586621679582472 

data AbsSym0 :: (~>) a a Source #

Instances

Instances details
SNum a => SingI (AbsSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing AbsSym0

SuppressUnusedWarnings (AbsSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (AbsSym0 :: TyFun a a -> Type) (a6989586621679582475 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (AbsSym0 :: TyFun a a -> Type) (a6989586621679582475 :: a) = Abs a6989586621679582475

type family AbsSym1 (a6989586621679582475 :: a) :: a where ... Source #

Equations

AbsSym1 a6989586621679582475 = Abs a6989586621679582475 

data SignumSym0 :: (~>) a a Source #

Instances

Instances details
SNum a => SingI (SignumSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing SignumSym0

SuppressUnusedWarnings (SignumSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SignumSym0 :: TyFun a a -> Type) (a6989586621679582478 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SignumSym0 :: TyFun a a -> Type) (a6989586621679582478 :: a) = Signum a6989586621679582478

type family SignumSym1 (a6989586621679582478 :: a) :: a where ... Source #

Equations

SignumSym1 a6989586621679582478 = Signum a6989586621679582478 

data FromIntegerSym0 :: (~>) Natural a Source #

Instances

Instances details
SNum a => SingI (FromIntegerSym0 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

SuppressUnusedWarnings (FromIntegerSym0 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) = FromInteger a6989586621679582481 :: k2

type family FromIntegerSym1 (a6989586621679582481 :: Natural) :: a where ... Source #

Equations

FromIntegerSym1 a6989586621679582481 = FromInteger a6989586621679582481 

Numeric functions

data SubtractSym0 :: (~>) a ((~>) a a) Source #

Instances

Instances details
SNum a => SingI (SubtractSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

SuppressUnusedWarnings (SubtractSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SubtractSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679582451 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SubtractSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679582451 :: a) = SubtractSym1 a6989586621679582451

data SubtractSym1 (a6989586621679582451 :: a) :: (~>) a a Source #

Instances

Instances details
SNum a => SingI1 (SubtractSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SubtractSym1 x)

(SNum a, SingI d) => SingI (SubtractSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

Methods

sing :: Sing (SubtractSym1 d)

SuppressUnusedWarnings (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) (a6989586621679582452 :: a) Source # 
Instance details

Defined in GHC.Num.Singletons

type Apply (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) (a6989586621679582452 :: a) = Subtract a6989586621679582451 a6989586621679582452

type family SubtractSym2 (a6989586621679582451 :: a) (a6989586621679582452 :: a) :: a where ... Source #

Equations

SubtractSym2 a6989586621679582451 a6989586621679582452 = Subtract a6989586621679582451 a6989586621679582452 

Semigroups and Monoids

data (<>@#@$) :: (~>) a ((~>) a a) infixr 6 Source #

Instances

Instances details
SSemigroup a => SingI ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing (<>@#@$)

SuppressUnusedWarnings ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679691601 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679691601 :: a) = (<>@#@$$) a6989586621679691601

data (<>@#@$$) (a6989586621679691601 :: a) :: (~>) a a infixr 6 Source #

Instances

Instances details
SSemigroup a => SingI1 ((<>@#@$$) :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<>@#@$$) x)

(SSemigroup a, SingI d) => SingI ((<>@#@$$) d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

Methods

sing :: Sing ((<>@#@$$) d)

SuppressUnusedWarnings ((<>@#@$$) a6989586621679691601 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$$) a6989586621679691601 :: TyFun a a -> Type) (a6989586621679691602 :: a) Source # 
Instance details

Defined in Data.Semigroup.Singletons.Internal

type Apply ((<>@#@$$) a6989586621679691601 :: TyFun a a -> Type) (a6989586621679691602 :: a) = a6989586621679691601 <> a6989586621679691602

type family (a6989586621679691601 :: a) <>@#@$$$ (a6989586621679691602 :: a) :: a where ... infixr 6 Source #

Equations

a6989586621679691601 <>@#@$$$ a6989586621679691602 = (<>) a6989586621679691601 a6989586621679691602 

type family MemptySym0 :: a where ... Source #

Equations

MemptySym0 = Mempty 

data MappendSym0 :: (~>) a ((~>) a a) Source #

Instances

Instances details
SMonoid a => SingI (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

SuppressUnusedWarnings (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) = MappendSym1 a6989586621680336631

data MappendSym1 (a6989586621680336631 :: a) :: (~>) a a Source #

Instances

Instances details
SMonoid a => SingI1 (MappendSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MappendSym1 x)

(SMonoid a, SingI d) => SingI (MappendSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

Methods

sing :: Sing (MappendSym1 d)

SuppressUnusedWarnings (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) = Mappend a6989586621680336631 a6989586621680336632

type family MappendSym2 (a6989586621680336631 :: a) (a6989586621680336632 :: a) :: a where ... Source #

Equations

MappendSym2 a6989586621680336631 a6989586621680336632 = Mappend a6989586621680336631 a6989586621680336632 

data MconcatSym0 :: (~>) [a] a Source #

Instances

Instances details
SMonoid a => SingI (MconcatSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

SuppressUnusedWarnings (MconcatSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MconcatSym0 :: TyFun [a] a -> Type) (a6989586621680336635 :: [a]) Source # 
Instance details

Defined in Data.Monoid.Singletons

type Apply (MconcatSym0 :: TyFun [a] a -> Type) (a6989586621680336635 :: [a]) = Mconcat a6989586621680336635

type family MconcatSym1 (a6989586621680336635 :: [a]) :: a where ... Source #

Equations

MconcatSym1 a6989586621680336635 = Mconcat a6989586621680336635 

Monads and functors

data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #

Instances

Instances details
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing FmapSym0

SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679329112 :: a ~> b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679329112 :: a ~> b) = FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type

data FmapSym1 (a6989586621679329112 :: (~>) a b) :: (~>) (f a) (f b) Source #

Instances

Instances details
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FmapSym1 x)

(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (FmapSym1 d)

SuppressUnusedWarnings (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) (a6989586621679329113 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) (a6989586621679329113 :: f a) = Fmap a6989586621679329112 a6989586621679329113

type family FmapSym2 (a6989586621679329112 :: (~>) a b) (a6989586621679329113 :: f a) :: f b where ... Source #

Equations

FmapSym2 a6989586621679329112 a6989586621679329113 = Fmap a6989586621679329112 a6989586621679329113 

data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<$@#@$)

SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679329117 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679329117 :: a) = (<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type

data (<$@#@$$) (a6989586621679329117 :: a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$@#@$$) x)

(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<$@#@$$) d)

SuppressUnusedWarnings ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) (a6989586621679329118 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) (a6989586621679329118 :: f b) = a6989586621679329117 <$ a6989586621679329118

type family (a6989586621679329117 :: a) <$@#@$$$ (a6989586621679329118 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679329117 <$@#@$$$ a6989586621679329118 = (<$) a6989586621679329117 a6989586621679329118 

data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing (<$>@#@$)

SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679519978 :: a ~> b) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679519978 :: a ~> b) = (<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type

data (<$>@#@$$) (a6989586621679519978 :: (~>) a b) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SFunctor f => SingI1 ((<$>@#@$$) :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<$>@#@$$) x)

(SFunctor f, SingI d) => SingI ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

Methods

sing :: Sing ((<$>@#@$$) d)

SuppressUnusedWarnings ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) (a6989586621679519979 :: f a) Source # 
Instance details

Defined in Data.Functor.Singletons

type Apply ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) (a6989586621679519979 :: f a) = a6989586621679519978 <$> a6989586621679519979

type family (a6989586621679519978 :: (~>) a b) <$>@#@$$$ (a6989586621679519979 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679519978 <$>@#@$$$ a6989586621679519979 = (<$>) a6989586621679519978 a6989586621679519979 

data PureSym0 :: (~>) a (f a) Source #

Instances

Instances details
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing PureSym0

SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679329136 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679329136 :: a) = Pure a6989586621679329136 :: f a

type family PureSym1 (a6989586621679329136 :: a) :: f a where ... Source #

Equations

PureSym1 a6989586621679329136 = Pure a6989586621679329136 

data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*>@#@$)

SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) = (<*>@#@$$) a6989586621679329140

data (<*>@#@$$) (a6989586621679329140 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x)

(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*>@#@$$) d)

SuppressUnusedWarnings ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) = a6989586621679329140 <*> a6989586621679329141

type family (a6989586621679329140 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679329141 :: f a) :: f b where ... infixl 4 Source #

Equations

a6989586621679329140 <*>@#@$$$ a6989586621679329141 = (<*>) a6989586621679329140 a6989586621679329141 

data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (*>@#@$)

SuppressUnusedWarnings ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679329152 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679329152 :: f a) = (*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type

data (*>@#@$$) (a6989586621679329152 :: f a) :: (~>) (f b) (f b) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((*>@#@$$) :: f a -> TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((*>@#@$$) x)

(SApplicative f, SingI d) => SingI ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((*>@#@$$) d)

SuppressUnusedWarnings ((*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type) (a6989586621679329153 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type) (a6989586621679329153 :: f b) = a6989586621679329152 *> a6989586621679329153

type family (a6989586621679329152 :: f a) *>@#@$$$ (a6989586621679329153 :: f b) :: f b where ... infixl 4 Source #

Equations

a6989586621679329152 *>@#@$$$ a6989586621679329153 = (*>) a6989586621679329152 a6989586621679329153 

data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a)) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (<*@#@$)

SuppressUnusedWarnings ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679329157 :: f a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679329157 :: f a) = (<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type

data (<*@#@$$) (a6989586621679329157 :: f a) :: (~>) (f b) (f a) infixl 4 Source #

Instances

Instances details
SApplicative f => SingI1 ((<*@#@$$) :: f a -> TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((<*@#@$$) x)

(SApplicative f, SingI d) => SingI ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((<*@#@$$) d)

SuppressUnusedWarnings ((<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type) (a6989586621679329158 :: f b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type) (a6989586621679329158 :: f b) = a6989586621679329157 <* a6989586621679329158

type family (a6989586621679329157 :: f a) <*@#@$$$ (a6989586621679329158 :: f b) :: f a where ... infixl 4 Source #

Equations

a6989586621679329157 <*@#@$$$ a6989586621679329158 = (<*) a6989586621679329157 a6989586621679329158 

data (>>=@#@$) :: (~>) (m a) ((~>) ((~>) a (m b)) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (>>=@#@$)

SuppressUnusedWarnings ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679329220 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679329220 :: m a) = (>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type

data (>>=@#@$$) (a6989586621679329220 :: m a) :: (~>) ((~>) a (m b)) (m b) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>=@#@$$) :: m a -> TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>>=@#@$$) x)

(SMonad m, SingI d) => SingI ((>>=@#@$$) d :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>=@#@$$) d)

SuppressUnusedWarnings ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679329221 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679329221 :: a ~> m b) = a6989586621679329220 >>= a6989586621679329221

type family (a6989586621679329220 :: m a) >>=@#@$$$ (a6989586621679329221 :: (~>) a (m b)) :: m b where ... infixl 1 Source #

Equations

a6989586621679329220 >>=@#@$$$ a6989586621679329221 = (>>=) a6989586621679329220 a6989586621679329221 

data (>>@#@$) :: (~>) (m a) ((~>) (m b) (m b)) infixl 1 Source #

Instances

Instances details
SMonad m => SingI ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (>>@#@$)

SuppressUnusedWarnings ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679329225 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679329225 :: m a) = (>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type

data (>>@#@$$) (a6989586621679329225 :: m a) :: (~>) (m b) (m b) infixl 1 Source #

Instances

Instances details
SMonad m => SingI1 ((>>@#@$$) :: m a -> TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((>>@#@$$) x)

(SMonad m, SingI d) => SingI ((>>@#@$$) d :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((>>@#@$$) d)

SuppressUnusedWarnings ((>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type) (a6989586621679329226 :: m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type) (a6989586621679329226 :: m b) = a6989586621679329225 >> a6989586621679329226

type family (a6989586621679329225 :: m a) >>@#@$$$ (a6989586621679329226 :: m b) :: m b where ... infixl 1 Source #

Equations

a6989586621679329225 >>@#@$$$ a6989586621679329226 = (>>) a6989586621679329225 a6989586621679329226 

data ReturnSym0 :: (~>) a (m a) Source #

Instances

Instances details
SMonad m => SingI (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ReturnSym0

SuppressUnusedWarnings (ReturnSym0 :: TyFun a (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679329229 :: a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679329229 :: a) = Return a6989586621679329229 :: m a

type family ReturnSym1 (a6989586621679329229 :: a) :: m a where ... Source #

Equations

ReturnSym1 a6989586621679329229 = Return a6989586621679329229 

data FailSym0 :: (~>) [Char] (m a) Source #

Instances

Instances details
SMonadFail m => SingI (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

Methods

sing :: Sing FailSym0

SuppressUnusedWarnings (FailSym0 :: TyFun [Char] (m a) -> Type) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679537251 :: [Char]) Source # 
Instance details

Defined in Control.Monad.Fail.Singletons

type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679537251 :: [Char]) = Fail a6989586621679537251 :: m a

type family FailSym1 (a6989586621679537251 :: [Char]) :: m a where ... Source #

Equations

FailSym1 a6989586621679537251 = Fail a6989586621679537251 

data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ())) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing MapM_Sym0

SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680438250 :: a ~> m b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680438250 :: a ~> m b) = MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type

data MapM_Sym1 (a6989586621680438250 :: (~>) a (m b)) :: (~>) (t a) (m ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI1 (MapM_Sym1 :: (a ~> m b) -> TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapM_Sym1 x)

(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (MapM_Sym1 d)

SuppressUnusedWarnings (MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type) (a6989586621680438251 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type) (a6989586621680438251 :: t a) = MapM_ a6989586621680438250 a6989586621680438251

type family MapM_Sym2 (a6989586621680438250 :: (~>) a (m b)) (a6989586621680438251 :: t a) :: m () where ... Source #

Equations

MapM_Sym2 a6989586621680438250 a6989586621680438251 = MapM_ a6989586621680438250 a6989586621680438251 

data Sequence_Sym0 :: (~>) (t (m a)) (m ()) Source #

Instances

Instances details
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680438226 :: t (m a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680438226 :: t (m a)) = Sequence_ a6989586621680438226

type family Sequence_Sym1 (a6989586621680438226 :: t (m a)) :: m () where ... Source #

Equations

Sequence_Sym1 a6989586621680438226 = Sequence_ a6989586621680438226 

data (=<<@#@$) :: (~>) ((~>) a (m b)) ((~>) (m a) (m b)) infixr 1 Source #

Instances

Instances details
SMonad m => SingI ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing (=<<@#@$)

SuppressUnusedWarnings ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679329065 :: a ~> m b) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679329065 :: a ~> m b) = (=<<@#@$$) a6989586621679329065

data (=<<@#@$$) (a6989586621679329065 :: (~>) a (m b)) :: (~>) (m a) (m b) infixr 1 Source #

Instances

Instances details
SMonad m => SingI1 ((=<<@#@$$) :: (a ~> m b) -> TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((=<<@#@$$) x)

(SMonad m, SingI d) => SingI ((=<<@#@$$) d :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

Methods

sing :: Sing ((=<<@#@$$) d)

SuppressUnusedWarnings ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) (a6989586621679329066 :: m a) Source # 
Instance details

Defined in Control.Monad.Singletons.Internal

type Apply ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) (a6989586621679329066 :: m a) = a6989586621679329065 =<< a6989586621679329066

type family (a6989586621679329065 :: (~>) a (m b)) =<<@#@$$$ (a6989586621679329066 :: m a) :: m b where ... infixr 1 Source #

Equations

a6989586621679329065 =<<@#@$$$ a6989586621679329066 = (=<<) a6989586621679329065 a6989586621679329066 

Folds and traversals

data ElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ElemSym0

SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438368 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438368 :: a) = ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type

data ElemSym1 (a6989586621680438368 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ElemSym1 d)

SuppressUnusedWarnings (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) (a6989586621680438369 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) (a6989586621680438369 :: t a) = Elem a6989586621680438368 a6989586621680438369

type family ElemSym2 (a6989586621680438368 :: a) (a6989586621680438369 :: t a) :: Bool where ... Source #

Equations

ElemSym2 a6989586621680438368 a6989586621680438369 = Elem a6989586621680438368 a6989586621680438369 

data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m) Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) = FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type

data FoldMapSym1 (a6989586621680438316 :: (~>) a m) :: (~>) (t a) m Source #

Instances

Instances details
(SFoldable t, SMonoid m) => SingI1 (FoldMapSym1 :: (a ~> m) -> TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldMapSym1 x)

(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldMapSym1 d)

SuppressUnusedWarnings (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) = FoldMap a6989586621680438316 a6989586621680438317

type family FoldMapSym2 (a6989586621680438316 :: (~>) a m) (a6989586621680438317 :: t a) :: m where ... Source #

Equations

FoldMapSym2 a6989586621680438316 a6989586621680438317 = FoldMap a6989586621680438316 a6989586621680438317 

data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldrSym0

SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) = FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type

data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym1 x)

(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym1 d)

SuppressUnusedWarnings (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) = FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type

data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldrSym2 d x)

SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldrSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldrSym2 d1 d2)

SuppressUnusedWarnings (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) = Foldr a6989586621680438322 a6989586621680438323 a6989586621680438324

type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ... Source #

Equations

FoldrSym3 a6989586621680438322 a6989586621680438323 a6989586621680438324 = Foldr a6989586621680438322 a6989586621680438323 a6989586621680438324 

data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #

Instances

Instances details
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing FoldlSym0

SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) = FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type

data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #

Instances

Instances details
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym1 x)

(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym1 d)

SuppressUnusedWarnings (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) = FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type

data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b Source #

Instances

Instances details
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FoldlSym2 d x)

SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FoldlSym2 x y)

(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (FoldlSym2 d1 d2)

SuppressUnusedWarnings (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) = Foldl a6989586621680438336 a6989586621680438337 a6989586621680438338

type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ... Source #

Equations

FoldlSym3 a6989586621680438336 a6989586621680438337 a6989586621680438338 = Foldl a6989586621680438336 a6989586621680438337 a6989586621680438338 

data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldr1Sym0

SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type

data Foldr1Sym1 (a6989586621680438349 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldr1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldr1Sym1 d)

SuppressUnusedWarnings (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) = Foldr1 a6989586621680438349 a6989586621680438350

type family Foldr1Sym2 (a6989586621680438349 :: (~>) a ((~>) a a)) (a6989586621680438350 :: t a) :: a where ... Source #

Equations

Foldr1Sym2 a6989586621680438349 a6989586621680438350 = Foldr1 a6989586621680438349 a6989586621680438350 

data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #

Instances

Instances details
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing Foldl1Sym0

SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type

data Foldl1Sym1 (a6989586621680438354 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #

Instances

Instances details
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1Sym1 x)

(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (Foldl1Sym1 d)

SuppressUnusedWarnings (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) = Foldl1 a6989586621680438354 a6989586621680438355

type family Foldl1Sym2 (a6989586621680438354 :: (~>) a ((~>) a a)) (a6989586621680438355 :: t a) :: a where ... Source #

Equations

Foldl1Sym2 a6989586621680438354 a6989586621680438355 = Foldl1 a6989586621680438354 a6989586621680438355 

data MaximumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) = Maximum a6989586621680438372

type family MaximumSym1 (a6989586621680438372 :: t a) :: a where ... Source #

Equations

MaximumSym1 a6989586621680438372 = Maximum a6989586621680438372 

data MinimumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) = Minimum a6989586621680438375

type family MinimumSym1 (a6989586621680438375 :: t a) :: a where ... Source #

Equations

MinimumSym1 a6989586621680438375 = Minimum a6989586621680438375 

data ProductSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) = Product a6989586621680438381

type family ProductSym1 (a6989586621680438381 :: t a) :: a where ... Source #

Equations

ProductSym1 a6989586621680438381 = Product a6989586621680438381 

data SumSym0 :: (~>) (t a) a Source #

Instances

Instances details
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing SumSym0

SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680438378 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680438378 :: t a) = Sum a6989586621680438378

type family SumSym1 (a6989586621680438378 :: t a) :: a where ... Source #

Equations

SumSym1 a6989586621680438378 = Sum a6989586621680438378 

data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b))) Source #

Instances

Instances details
(STraversable t, SApplicative f) => SingI (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) = TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type

data TraverseSym1 (a6989586621680796847 :: (~>) a (f b)) :: (~>) (t a) (f (t b)) Source #

Instances

Instances details
(STraversable t, SApplicative f) => SingI1 (TraverseSym1 :: (a ~> f b) -> TyFun (t a) (f (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TraverseSym1 x)

(STraversable t, SApplicative f, SingI d) => SingI (TraverseSym1 d :: TyFun (t a) (f (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (TraverseSym1 d)

SuppressUnusedWarnings (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) = Traverse a6989586621680796847 a6989586621680796848

type family TraverseSym2 (a6989586621680796847 :: (~>) a (f b)) (a6989586621680796848 :: t a) :: f (t b) where ... Source #

Equations

TraverseSym2 a6989586621680796847 a6989586621680796848 = Traverse a6989586621680796847 a6989586621680796848 

data SequenceASym0 :: (~>) (t (f a)) (f (t a)) Source #

Instances

Instances details
(STraversable t, SApplicative f) => SingI (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) (a6989586621680796851 :: t (f a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) (a6989586621680796851 :: t (f a)) = SequenceA a6989586621680796851

type family SequenceASym1 (a6989586621680796851 :: t (f a)) :: f (t a) where ... Source #

Equations

SequenceASym1 a6989586621680796851 = SequenceA a6989586621680796851 

data MapMSym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m (t b))) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing MapMSym0

SuppressUnusedWarnings (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680796855 :: a ~> m b) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680796855 :: a ~> m b) = MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type

data MapMSym1 (a6989586621680796855 :: (~>) a (m b)) :: (~>) (t a) (m (t b)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI1 (MapMSym1 :: (a ~> m b) -> TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapMSym1 x)

(STraversable t, SMonad m, SingI d) => SingI (MapMSym1 d :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

Methods

sing :: Sing (MapMSym1 d)

SuppressUnusedWarnings (MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680796856 :: t a) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680796856 :: t a) = MapM a6989586621680796855 a6989586621680796856

type family MapMSym2 (a6989586621680796855 :: (~>) a (m b)) (a6989586621680796856 :: t a) :: m (t b) where ... Source #

Equations

MapMSym2 a6989586621680796855 a6989586621680796856 = MapM a6989586621680796855 a6989586621680796856 

data SequenceSym0 :: (~>) (t (m a)) (m (t a)) Source #

Instances

Instances details
(STraversable t, SMonad m) => SingI (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

SuppressUnusedWarnings (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680796859 :: t (m a)) Source # 
Instance details

Defined in Data.Traversable.Singletons

type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680796859 :: t (m a)) = Sequence a6989586621680796859

type family SequenceSym1 (a6989586621680796859 :: t (m a)) :: m (t a) where ... Source #

Equations

SequenceSym1 a6989586621680796859 = Sequence a6989586621680796859 

Miscellaneous functions

data IdSym0 :: (~>) a a Source #

Instances

Instances details
SingI (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing IdSym0

SuppressUnusedWarnings (IdSym0 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679278917 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679278917 :: a) = Id a6989586621679278917

type family IdSym1 (a6989586621679278917 :: a) :: a where ... Source #

Equations

IdSym1 a6989586621679278917 = Id a6989586621679278917 

data ConstSym0 :: (~>) a ((~>) b a) Source #

Instances

Instances details
SingI (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ConstSym0

SuppressUnusedWarnings (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym0 :: TyFun a (b ~> a) -> Type) (a6989586621679278912 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym0 :: TyFun a (b ~> a) -> Type) (a6989586621679278912 :: a) = ConstSym1 a6989586621679278912 :: TyFun b a -> Type

data ConstSym1 (a6989586621679278912 :: a) :: (~>) b a Source #

Instances

Instances details
SingI1 (ConstSym1 :: a -> TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConstSym1 x)

SingI d => SingI (ConstSym1 d :: TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (ConstSym1 d)

SuppressUnusedWarnings (ConstSym1 a6989586621679278912 :: TyFun b a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym1 a6989586621679278912 :: TyFun b a -> Type) (a6989586621679278913 :: b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (ConstSym1 a6989586621679278912 :: TyFun b a -> Type) (a6989586621679278913 :: b) = Const a6989586621679278912 a6989586621679278913

type family ConstSym2 (a6989586621679278912 :: a) (a6989586621679278913 :: b) :: a where ... Source #

Equations

ConstSym2 a6989586621679278912 a6989586621679278913 = Const a6989586621679278912 a6989586621679278913 

data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c)) infixr 9 Source #

Instances

Instances details
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (.@#@$)

SuppressUnusedWarnings ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679278899 :: b ~> c) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679278899 :: b ~> c) = (.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type

data (.@#@$$) (a6989586621679278899 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c) infixr 9 Source #

Instances

Instances details
SingI1 ((.@#@$$) :: (b ~> c) -> TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((.@#@$$) x)

SingI d => SingI ((.@#@$$) d :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((.@#@$$) d)

SuppressUnusedWarnings ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679278900 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679278900 :: a ~> b) = a6989586621679278899 .@#@$$$ a6989586621679278900

data (a6989586621679278899 :: (~>) b c) .@#@$$$ (a6989586621679278900 :: (~>) a b) :: (~>) a c infixr 9 Source #

Instances

Instances details
SingI2 ((.@#@$$$) :: (b ~> c) -> (a ~> b) -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (x .@#@$$$ y)

SingI d => SingI1 ((.@#@$$$) d :: (a ~> b) -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (d .@#@$$$ x)

(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (d1 .@#@$$$ d2)

SuppressUnusedWarnings (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) (a6989586621679278901 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) (a6989586621679278901 :: a) = (a6989586621679278899 . a6989586621679278900) a6989586621679278901

type family ((a6989586621679278899 :: (~>) b c) .@#@$$$$ (a6989586621679278900 :: (~>) a b)) (a6989586621679278901 :: a) :: c where ... infixr 9 Source #

Equations

(a6989586621679278899 .@#@$$$$ a6989586621679278900) a6989586621679278901 = (.) a6989586621679278899 a6989586621679278900 a6989586621679278901 

data FlipSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) b ((~>) a c)) Source #

Instances

Instances details
SingI (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing FlipSym0

SuppressUnusedWarnings (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) (a6989586621679278887 :: a ~> (b ~> c)) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) (a6989586621679278887 :: a ~> (b ~> c)) = FlipSym1 a6989586621679278887

data FlipSym1 (a6989586621679278887 :: (~>) a ((~>) b c)) :: (~>) b ((~>) a c) Source #

Instances

Instances details
SingI1 (FlipSym1 :: (a ~> (b ~> c)) -> TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FlipSym1 x)

SingI d => SingI (FlipSym1 d :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (FlipSym1 d)

SuppressUnusedWarnings (FlipSym1 a6989586621679278887 :: TyFun b (a ~> c) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym1 a6989586621679278887 :: TyFun b (a ~> c) -> Type) (a6989586621679278888 :: b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym1 a6989586621679278887 :: TyFun b (a ~> c) -> Type) (a6989586621679278888 :: b) = FlipSym2 a6989586621679278887 a6989586621679278888

data FlipSym2 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) :: (~>) a c Source #

Instances

Instances details
SingI d => SingI1 (FlipSym2 d :: b -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FlipSym2 d x)

SingI2 (FlipSym2 :: (a ~> (b ~> c)) -> b -> TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (FlipSym2 x y)

(SingI d1, SingI d2) => SingI (FlipSym2 d1 d2 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (FlipSym2 d1 d2)

SuppressUnusedWarnings (FlipSym2 a6989586621679278887 a6989586621679278888 :: TyFun a c -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym2 a6989586621679278887 a6989586621679278888 :: TyFun a c -> Type) (a6989586621679278889 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (FlipSym2 a6989586621679278887 a6989586621679278888 :: TyFun a c -> Type) (a6989586621679278889 :: a) = Flip a6989586621679278887 a6989586621679278888 a6989586621679278889

type family FlipSym3 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) (a6989586621679278889 :: a) :: c where ... Source #

Equations

FlipSym3 a6989586621679278887 a6989586621679278888 a6989586621679278889 = Flip a6989586621679278887 a6989586621679278888 a6989586621679278889 

data ($@#@$) :: (~>) ((~>) a b) ((~>) a b) infixr 0 Source #

Instances

Instances details
SingI (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ($@#@$)

SuppressUnusedWarnings (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278868 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278868 :: a ~> b) = ($@#@$$) a6989586621679278868

data ($@#@$$) (a6989586621679278868 :: (~>) a b) :: (~>) a b infixr 0 Source #

Instances

Instances details
SingI1 (($@#@$$) :: (a ~> b) -> TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (($@#@$$) x)

SingI d => SingI (($@#@$$) d :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (($@#@$$) d)

SuppressUnusedWarnings (($@#@$$) a6989586621679278868 :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$$) a6989586621679278868 :: TyFun a b -> Type) (a6989586621679278869 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($@#@$$) a6989586621679278868 :: TyFun a b -> Type) (a6989586621679278869 :: a) = a6989586621679278868 $ a6989586621679278869

type family (a6989586621679278868 :: (~>) a b) $@#@$$$ (a6989586621679278869 :: a) :: b where ... infixr 0 Source #

Equations

a6989586621679278868 $@#@$$$ a6989586621679278869 = ($) a6989586621679278868 a6989586621679278869 

data UntilSym0 :: (~>) ((~>) a Bool) ((~>) ((~>) a a) ((~>) a a)) Source #

Instances

Instances details
SingI (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing UntilSym0

SuppressUnusedWarnings (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) (a6989586621679278841 :: a ~> Bool) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) (a6989586621679278841 :: a ~> Bool) = UntilSym1 a6989586621679278841

data UntilSym1 (a6989586621679278841 :: (~>) a Bool) :: (~>) ((~>) a a) ((~>) a a) Source #

Instances

Instances details
SingI d => SingI (UntilSym1 d :: TyFun (a ~> a) (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (UntilSym1 d)

SuppressUnusedWarnings (UntilSym1 a6989586621679278841 :: TyFun (a ~> a) (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

SingI1 (UntilSym1 :: (a ~> Bool) -> TyFun (a ~> a) (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UntilSym1 x)

type Apply (UntilSym1 a6989586621679278841 :: TyFun (a ~> a) (a ~> a) -> Type) (a6989586621679278842 :: a ~> a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (UntilSym1 a6989586621679278841 :: TyFun (a ~> a) (a ~> a) -> Type) (a6989586621679278842 :: a ~> a) = UntilSym2 a6989586621679278841 a6989586621679278842

data UntilSym2 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) :: (~>) a a Source #

Instances

Instances details
SingI d => SingI1 (UntilSym2 d :: (a ~> a) -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (UntilSym2 d x)

SingI2 (UntilSym2 :: (a ~> Bool) -> (a ~> a) -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (UntilSym2 x y)

(SingI d1, SingI d2) => SingI (UntilSym2 d1 d2 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (UntilSym2 d1 d2)

SuppressUnusedWarnings (UntilSym2 a6989586621679278841 a6989586621679278842 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (UntilSym2 a6989586621679278841 a6989586621679278842 :: TyFun a a -> Type) (a6989586621679278843 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (UntilSym2 a6989586621679278841 a6989586621679278842 :: TyFun a a -> Type) (a6989586621679278843 :: a) = Until a6989586621679278841 a6989586621679278842 a6989586621679278843

type family UntilSym3 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) (a6989586621679278843 :: a) :: a where ... Source #

Equations

UntilSym3 a6989586621679278841 a6989586621679278842 a6989586621679278843 = Until a6989586621679278841 a6989586621679278842 a6989586621679278843 

data AsTypeOfSym0 :: (~>) a ((~>) a a) Source #

Instances

Instances details
SingI (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

SuppressUnusedWarnings (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679278879 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679278879 :: a) = AsTypeOfSym1 a6989586621679278879

data AsTypeOfSym1 (a6989586621679278879 :: a) :: (~>) a a Source #

Instances

Instances details
SingI1 (AsTypeOfSym1 :: a -> TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AsTypeOfSym1 x)

SingI d => SingI (AsTypeOfSym1 d :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (AsTypeOfSym1 d)

SuppressUnusedWarnings (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) (a6989586621679278880 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) (a6989586621679278880 :: a) = AsTypeOf a6989586621679278879 a6989586621679278880

type family AsTypeOfSym2 (a6989586621679278879 :: a) (a6989586621679278880 :: a) :: a where ... Source #

Equations

AsTypeOfSym2 a6989586621679278879 a6989586621679278880 = AsTypeOf a6989586621679278879 a6989586621679278880 

data ErrorSym0 :: (~>) k0 k Source #

Instances

Instances details
SingI (ErrorSym0 :: TyFun Symbol a -> Type) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

Methods

sing :: Sing ErrorSym0

SuppressUnusedWarnings (ErrorSym0 :: TyFun k0 k -> Type) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Apply (ErrorSym0 :: TyFun k0 k2 -> Type) (a6989586621679544356 :: k0) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Apply (ErrorSym0 :: TyFun k0 k2 -> Type) (a6989586621679544356 :: k0) = Error a6989586621679544356 :: k2

type family ErrorSym1 (a6989586621679544356 :: k0) :: k where ... Source #

Equations

ErrorSym1 a6989586621679544356 = Error a6989586621679544356 

data ErrorWithoutStackTraceSym0 :: (~>) k0 k Source #

Instances

Instances details
SingI (ErrorWithoutStackTraceSym0 :: TyFun Symbol a -> Type) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

SuppressUnusedWarnings (ErrorWithoutStackTraceSym0 :: TyFun k0 k -> Type) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Apply (ErrorWithoutStackTraceSym0 :: TyFun k0 k2 -> Type) (a6989586621679544654 :: k0) Source # 
Instance details

Defined in GHC.TypeLits.Singletons.Internal

type Apply (ErrorWithoutStackTraceSym0 :: TyFun k0 k2 -> Type) (a6989586621679544654 :: k0) = ErrorWithoutStackTrace a6989586621679544654 :: k2

type family ErrorWithoutStackTraceSym1 (a6989586621679544654 :: k0) :: k where ... Source #

Equations

ErrorWithoutStackTraceSym1 a6989586621679544654 = ErrorWithoutStackTrace a6989586621679544654 

type family UndefinedSym0 :: k where ... Source #

data SeqSym0 :: (~>) a ((~>) b b) infixr 0 Source #

Instances

Instances details
SingI (SeqSym0 :: TyFun a (b ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing SeqSym0

SuppressUnusedWarnings (SeqSym0 :: TyFun a (b ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (SeqSym0 :: TyFun a (b ~> b) -> Type) (a6989586621679278832 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (SeqSym0 :: TyFun a (b ~> b) -> Type) (a6989586621679278832 :: a) = SeqSym1 a6989586621679278832 :: TyFun b b -> Type

data SeqSym1 (a6989586621679278832 :: a) :: (~>) b b infixr 0 Source #

Instances

Instances details
SingI1 (SeqSym1 :: a -> TyFun b b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SeqSym1 x)

SingI d => SingI (SeqSym1 d :: TyFun b b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (SeqSym1 d)

SuppressUnusedWarnings (SeqSym1 a6989586621679278832 :: TyFun b b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (SeqSym1 a6989586621679278832 :: TyFun b b -> Type) (a6989586621679278833 :: b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (SeqSym1 a6989586621679278832 :: TyFun b b -> Type) (a6989586621679278833 :: b) = Seq a6989586621679278832 a6989586621679278833

type family SeqSym2 (a6989586621679278832 :: a) (a6989586621679278833 :: b) :: b where ... infixr 0 Source #

Equations

SeqSym2 a6989586621679278832 a6989586621679278833 = Seq a6989586621679278832 a6989586621679278833 

data ($!@#@$) :: (~>) ((~>) a b) ((~>) a b) infixr 0 Source #

Instances

Instances details
SingI (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ($!@#@$)

SuppressUnusedWarnings (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278859 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278859 :: a ~> b) = ($!@#@$$) a6989586621679278859

data ($!@#@$$) (a6989586621679278859 :: (~>) a b) :: (~>) a b infixr 0 Source #

Instances

Instances details
SingI1 (($!@#@$$) :: (a ~> b) -> TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (($!@#@$$) x)

SingI d => SingI (($!@#@$$) d :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (($!@#@$$) d)

SuppressUnusedWarnings (($!@#@$$) a6989586621679278859 :: TyFun a b -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($!@#@$$) a6989586621679278859 :: TyFun a b -> Type) (a6989586621679278860 :: a) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (($!@#@$$) a6989586621679278859 :: TyFun a b -> Type) (a6989586621679278860 :: a) = a6989586621679278859 $! a6989586621679278860

type family (a6989586621679278859 :: (~>) a b) $!@#@$$$ (a6989586621679278860 :: a) :: b where ... infixr 0 Source #

Equations

a6989586621679278859 $!@#@$$$ a6989586621679278860 = ($!) a6989586621679278859 a6989586621679278860 

List operations

data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b]) Source #

Instances

Instances details
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing MapSym0

SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679278931 :: a ~> b) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679278931 :: a ~> b) = MapSym1 a6989586621679278931

data MapSym1 (a6989586621679278931 :: (~>) a b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (MapSym1 x)

SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (MapSym1 d)

SuppressUnusedWarnings (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) (a6989586621679278932 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) (a6989586621679278932 :: [a]) = Map a6989586621679278931 a6989586621679278932

type family MapSym2 (a6989586621679278931 :: (~>) a b) (a6989586621679278932 :: [a]) :: [b] where ... Source #

Equations

MapSym2 a6989586621679278931 a6989586621679278932 = Map a6989586621679278931 a6989586621679278932 

data (++@#@$) :: (~>) [a] ((~>) [a] [a]) infixr 5 Source #

Instances

Instances details
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing (++@#@$)

SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679278922 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679278922 :: [a]) = (++@#@$$) a6989586621679278922

data (++@#@$$) (a6989586621679278922 :: [a]) :: (~>) [a] [a] infixr 5 Source #

Instances

Instances details
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((++@#@$$) x)

SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

Methods

sing :: Sing ((++@#@$$) d)

SuppressUnusedWarnings ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) (a6989586621679278923 :: [a]) Source # 
Instance details

Defined in GHC.Base.Singletons

type Apply ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) (a6989586621679278923 :: [a]) = a6989586621679278922 ++ a6989586621679278923

type family (a6989586621679278922 :: [a]) ++@#@$$$ (a6989586621679278923 :: [a]) :: [a] where ... infixr 5 Source #

Equations

a6989586621679278922 ++@#@$$$ a6989586621679278923 = (++) a6989586621679278922 a6989586621679278923 

data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing FilterSym0

SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) = FilterSym1 a6989586621679851556

data FilterSym1 (a6989586621679851556 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (FilterSym1 d)

SuppressUnusedWarnings (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (FilterSym1 x)

type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) = Filter a6989586621679851556 a6989586621679851557

type family FilterSym2 (a6989586621679851556 :: (~>) a Bool) (a6989586621679851557 :: [a]) :: [a] where ... Source #

Equations

FilterSym2 a6989586621679851556 a6989586621679851557 = Filter a6989586621679851556 a6989586621679851557 

data HeadSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing HeadSym0

SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679852326 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679852326 :: [a]) = Head a6989586621679852326

type family HeadSym1 (a6989586621679852326 :: [a]) :: a where ... Source #

Equations

HeadSym1 a6989586621679852326 = Head a6989586621679852326 

data LastSym0 :: (~>) [a] a Source #

Instances

Instances details
SingI (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LastSym0

SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679852320 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679852320 :: [a]) = Last a6989586621679852320

type family LastSym1 (a6989586621679852320 :: [a]) :: a where ... Source #

Equations

LastSym1 a6989586621679852320 = Last a6989586621679852320 

data TailSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TailSym0

SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679852316 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679852316 :: [a]) = Tail a6989586621679852316

type family TailSym1 (a6989586621679852316 :: [a]) :: [a] where ... Source #

Equations

TailSym1 a6989586621679852316 = Tail a6989586621679852316 

data InitSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing InitSym0

SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679852304 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679852304 :: [a]) = Init a6989586621679852304

type family InitSym1 (a6989586621679852304 :: [a]) :: [a] where ... Source #

Equations

InitSym1 a6989586621679852304 = Init a6989586621679852304 

data (!!@#@$) :: (~>) [a] ((~>) Natural a) infixl 9 Source #

Instances

Instances details
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (!!@#@$)

SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679851164 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679851164 :: [a]) = (!!@#@$$) a6989586621679851164

data (!!@#@$$) (a6989586621679851164 :: [a]) :: (~>) Natural a infixl 9 Source #

Instances

Instances details
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing ((!!@#@$$) x)

SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ((!!@#@$$) d)

SuppressUnusedWarnings ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) (a6989586621679851165 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) (a6989586621679851165 :: Natural) = a6989586621679851164 !! a6989586621679851165

type family (a6989586621679851164 :: [a]) !!@#@$$$ (a6989586621679851165 :: Natural) :: a where ... infixl 9 Source #

Equations

a6989586621679851164 !!@#@$$$ a6989586621679851165 = (!!) a6989586621679851164 a6989586621679851165 

data NullSym0 :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing NullSym0

SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680438361 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680438361 :: t a) = Null a6989586621680438361

type family NullSym1 (a6989586621680438361 :: t a) :: Bool where ... Source #

Equations

NullSym1 a6989586621680438361 = Null a6989586621680438361 

data LengthSym0 :: (~>) (t a) Natural Source #

Instances

Instances details
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing LengthSym0

SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) = Length a6989586621680438364

type family LengthSym1 (a6989586621680438364 :: t a) :: Natural where ... Source #

Equations

LengthSym1 a6989586621680438364 = Length a6989586621680438364 

data ReverseSym0 :: (~>) [a] [a] Source #

Instances

Instances details
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) = Reverse a6989586621679852289

type family ReverseSym1 (a6989586621679852289 :: [a]) :: [a] where ... Source #

Equations

ReverseSym1 a6989586621679852289 = Reverse a6989586621679852289 

Special folds

data AndSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AndSym0

SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438187 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438187 :: t Bool) = And a6989586621680438187

type family AndSym1 (a6989586621680438187 :: t Bool) :: Bool where ... Source #

Equations

AndSym1 a6989586621680438187 = And a6989586621680438187 

data OrSym0 :: (~>) (t Bool) Bool Source #

Instances

Instances details
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing OrSym0

SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438181 :: t Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438181 :: t Bool) = Or a6989586621680438181

type family OrSym1 (a6989586621680438181 :: t Bool) :: Bool where ... Source #

Equations

OrSym1 a6989586621680438181 = Or a6989586621680438181 

data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AnySym0

SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438173 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438173 :: a ~> Bool) = AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type

data AnySym1 (a6989586621680438173 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AnySym1 x)

(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AnySym1 d)

SuppressUnusedWarnings (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) (a6989586621680438174 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) (a6989586621680438174 :: t a) = Any a6989586621680438173 a6989586621680438174

type family AnySym2 (a6989586621680438173 :: (~>) a Bool) (a6989586621680438174 :: t a) :: Bool where ... Source #

Equations

AnySym2 a6989586621680438173 a6989586621680438174 = Any a6989586621680438173 a6989586621680438174 

data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #

Instances

Instances details
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing AllSym0

SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438164 :: a ~> Bool) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438164 :: a ~> Bool) = AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type

data AllSym1 (a6989586621680438164 :: (~>) a Bool) :: (~>) (t a) Bool Source #

Instances

Instances details
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (AllSym1 x)

(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (AllSym1 d)

SuppressUnusedWarnings (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) (a6989586621680438165 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) (a6989586621680438165 :: t a) = All a6989586621680438164 a6989586621680438165

type family AllSym2 (a6989586621680438164 :: (~>) a Bool) (a6989586621680438165 :: t a) :: Bool where ... Source #

Equations

AllSym2 a6989586621680438164 a6989586621680438165 = All a6989586621680438164 a6989586621680438165 

data ConcatSym0 :: (~>) (t [a]) [a] Source #

Instances

Instances details
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing ConcatSym0

SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) = Concat a6989586621680438203

type family ConcatSym1 (a6989586621680438203 :: t [a]) :: [a] where ... Source #

Equations

ConcatSym1 a6989586621680438203 = Concat a6989586621680438203 

data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b]) Source #

Instances

Instances details
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) = ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type

data ConcatMapSym1 (a6989586621680438192 :: (~>) a [b]) :: (~>) (t a) [b] Source #

Instances

Instances details
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ConcatMapSym1 x)

(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (ConcatMapSym1 d)

SuppressUnusedWarnings (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) = ConcatMap a6989586621680438192 a6989586621680438193

type family ConcatMapSym2 (a6989586621680438192 :: (~>) a [b]) (a6989586621680438193 :: t a) :: [b] where ... Source #

Equations

ConcatMapSym2 a6989586621680438192 a6989586621680438193 = ConcatMap a6989586621680438192 a6989586621680438193 

Building lists

Scans

data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanlSym0

SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852094 :: b ~> (a ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852094 :: b ~> (a ~> b)) = ScanlSym1 a6989586621679852094

data ScanlSym1 (a6989586621679852094 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym1 x)

SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym1 d)

SuppressUnusedWarnings (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852095 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852095 :: b) = ScanlSym2 a6989586621679852094 a6989586621679852095

data ScanlSym2 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanlSym2 d x)

SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanlSym2 x y)

(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanlSym2 d1 d2)

SuppressUnusedWarnings (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) (a6989586621679852096 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) (a6989586621679852096 :: [a]) = Scanl a6989586621679852094 a6989586621679852095 a6989586621679852096

type family ScanlSym3 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) (a6989586621679852096 :: [a]) :: [b] where ... Source #

Equations

ScanlSym3 a6989586621679852094 a6989586621679852095 a6989586621679852096 = Scanl a6989586621679852094 a6989586621679852095 a6989586621679852096 

data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanl1Sym0

SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679852085

data Scanl1Sym1 (a6989586621679852085 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanl1Sym1 d)

SuppressUnusedWarnings (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanl1Sym1 x)

type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) = Scanl1 a6989586621679852085 a6989586621679852086

type family Scanl1Sym2 (a6989586621679852085 :: (~>) a ((~>) a a)) (a6989586621679852086 :: [a]) :: [a] where ... Source #

Equations

Scanl1Sym2 a6989586621679852085 a6989586621679852086 = Scanl1 a6989586621679852085 a6989586621679852086 

data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b])) Source #

Instances

Instances details
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ScanrSym0

SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852067 :: a ~> (b ~> b)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852067 :: a ~> (b ~> b)) = ScanrSym1 a6989586621679852067

data ScanrSym1 (a6989586621679852067 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b]) Source #

Instances

Instances details
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym1 x)

SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym1 d)

SuppressUnusedWarnings (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852068 :: b) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852068 :: b) = ScanrSym2 a6989586621679852067 a6989586621679852068

data ScanrSym2 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) :: (~>) [a] [b] Source #

Instances

Instances details
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ScanrSym2 d x)

SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ScanrSym2 x y)

(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ScanrSym2 d1 d2)

SuppressUnusedWarnings (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) (a6989586621679852069 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) (a6989586621679852069 :: [a]) = Scanr a6989586621679852067 a6989586621679852068 a6989586621679852069

type family ScanrSym3 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) (a6989586621679852069 :: [a]) :: [b] where ... Source #

Equations

ScanrSym3 a6989586621679852067 a6989586621679852068 a6989586621679852069 = Scanr a6989586621679852067 a6989586621679852068 a6989586621679852069 

data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Scanr1Sym0

SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679852047

data Scanr1Sym1 (a6989586621679852047 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Scanr1Sym1 d)

SuppressUnusedWarnings (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Scanr1Sym1 x)

type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) = Scanr1 a6989586621679852047 a6989586621679852048

type family Scanr1Sym2 (a6989586621679852047 :: (~>) a ((~>) a a)) (a6989586621679852048 :: [a]) :: [a] where ... Source #

Equations

Scanr1Sym2 a6989586621679852047 a6989586621679852048 = Scanr1 a6989586621679852047 a6989586621679852048 

Infinite lists

data ReplicateSym0 :: (~>) Natural ((~>) a [a]) Source #

Instances

Instances details
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) = ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type

data ReplicateSym1 (a6989586621679851184 :: Natural) :: (~>) a [a] Source #

Instances

Instances details
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateSym1 x)

SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ReplicateSym1 d)

SuppressUnusedWarnings (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) = Replicate a6989586621679851184 a6989586621679851185

type family ReplicateSym2 (a6989586621679851184 :: Natural) (a6989586621679851185 :: a) :: [a] where ... Source #

Equations

ReplicateSym2 a6989586621679851184 a6989586621679851185 = Replicate a6989586621679851184 a6989586621679851185 

Sublists

data TakeSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing TakeSym0

SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851339 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851339 :: Natural) = TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type

data TakeSym1 (a6989586621679851339 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeSym1 x)

SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeSym1 d)

SuppressUnusedWarnings (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) (a6989586621679851340 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) (a6989586621679851340 :: [a]) = Take a6989586621679851339 a6989586621679851340

type family TakeSym2 (a6989586621679851339 :: Natural) (a6989586621679851340 :: [a]) :: [a] where ... Source #

Equations

TakeSym2 a6989586621679851339 a6989586621679851340 = Take a6989586621679851339 a6989586621679851340 

data DropSym0 :: (~>) Natural ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing DropSym0

SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851326 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851326 :: Natural) = DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type

data DropSym1 (a6989586621679851326 :: Natural) :: (~>) [a] [a] Source #

Instances

Instances details
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropSym1 x)

SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropSym1 d)

SuppressUnusedWarnings (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) (a6989586621679851327 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) (a6989586621679851327 :: [a]) = Drop a6989586621679851326 a6989586621679851327

type family DropSym2 (a6989586621679851326 :: Natural) (a6989586621679851327 :: [a]) :: [a] where ... Source #

Equations

DropSym2 a6989586621679851326 a6989586621679851327 = Drop a6989586621679851326 a6989586621679851327 

data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) = TakeWhileSym1 a6989586621679851456

data TakeWhileSym1 (a6989586621679851456 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (TakeWhileSym1 d)

SuppressUnusedWarnings (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (TakeWhileSym1 x)

type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) = TakeWhile a6989586621679851456 a6989586621679851457

type family TakeWhileSym2 (a6989586621679851456 :: (~>) a Bool) (a6989586621679851457 :: [a]) :: [a] where ... Source #

Equations

TakeWhileSym2 a6989586621679851456 a6989586621679851457 = TakeWhile a6989586621679851456 a6989586621679851457 

data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) = DropWhileSym1 a6989586621679851441

data DropWhileSym1 (a6989586621679851441 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileSym1 d)

SuppressUnusedWarnings (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileSym1 x)

type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) = DropWhile a6989586621679851441 a6989586621679851442

type family DropWhileSym2 (a6989586621679851441 :: (~>) a Bool) (a6989586621679851442 :: [a]) :: [a] where ... Source #

Equations

DropWhileSym2 a6989586621679851441 a6989586621679851442 = DropWhile a6989586621679851441 a6989586621679851442 

data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #

Instances

Instances details
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) = DropWhileEndSym1 a6989586621679851424

data DropWhileEndSym1 (a6989586621679851424 :: (~>) a Bool) :: (~>) [a] [a] Source #

Instances

Instances details
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (DropWhileEndSym1 d)

SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileEndSym1 x)

type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) = DropWhileEnd a6989586621679851424 a6989586621679851425

type family DropWhileEndSym2 (a6989586621679851424 :: (~>) a Bool) (a6989586621679851425 :: [a]) :: [a] where ... Source #

Equations

DropWhileEndSym2 a6989586621679851424 a6989586621679851425 = DropWhileEnd a6989586621679851424 a6989586621679851425 

data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing SpanSym0

SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851387 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851387 :: a ~> Bool) = SpanSym1 a6989586621679851387

data SpanSym1 (a6989586621679851387 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SpanSym1 d)

SuppressUnusedWarnings (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SpanSym1 x)

type Apply (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851388 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851388 :: [a]) = Span a6989586621679851387 a6989586621679851388

type family SpanSym2 (a6989586621679851387 :: (~>) a Bool) (a6989586621679851388 :: [a]) :: ([a], [a]) where ... Source #

Equations

SpanSym2 a6989586621679851387 a6989586621679851388 = Span a6989586621679851387 a6989586621679851388 

data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing BreakSym0

SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851352 :: a ~> Bool) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851352 :: a ~> Bool) = BreakSym1 a6989586621679851352

data BreakSym1 (a6989586621679851352 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (BreakSym1 d)

SuppressUnusedWarnings (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (BreakSym1 x)

type Apply (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851353 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851353 :: [a]) = Break a6989586621679851352 a6989586621679851353

type family BreakSym2 (a6989586621679851352 :: (~>) a Bool) (a6989586621679851353 :: [a]) :: ([a], [a]) where ... Source #

Equations

BreakSym2 a6989586621679851352 a6989586621679851353 = Break a6989586621679851352 a6989586621679851353 

data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a])) Source #

Instances

Instances details
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) = SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type

data SplitAtSym1 (a6989586621679851319 :: Natural) :: (~>) [a] ([a], [a]) Source #

Instances

Instances details
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (SplitAtSym1 x)

SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (SplitAtSym1 d)

SuppressUnusedWarnings (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) = SplitAt a6989586621679851319 a6989586621679851320

type family SplitAtSym2 (a6989586621679851319 :: Natural) (a6989586621679851320 :: [a]) :: ([a], [a]) where ... Source #

Equations

SplitAtSym2 a6989586621679851319 a6989586621679851320 = SplitAt a6989586621679851319 a6989586621679851320 

Searching lists

data NotElemSym0 :: (~>) a ((~>) (t a) Bool) Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) = NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type

data NotElemSym1 (a6989586621680438115 :: a) :: (~>) (t a) Bool Source #

Instances

Instances details
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (NotElemSym1 x)

(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

Methods

sing :: Sing (NotElemSym1 d)

SuppressUnusedWarnings (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) Source # 
Instance details

Defined in Data.Foldable.Singletons

type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) = NotElem a6989586621680438115 a6989586621680438116

type family NotElemSym2 (a6989586621680438115 :: a) (a6989586621680438116 :: t a) :: Bool where ... Source #

Equations

NotElemSym2 a6989586621680438115 a6989586621680438116 = NotElem a6989586621680438115 a6989586621680438116 

data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b)) Source #

Instances

Instances details
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing LookupSym0

SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) = LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type

data LookupSym1 (a6989586621679851247 :: a) :: (~>) [(a, b)] (Maybe b) Source #

Instances

Instances details
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (LookupSym1 x)

(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (LookupSym1 d)

SuppressUnusedWarnings (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) = Lookup a6989586621679851247 a6989586621679851248

type family LookupSym2 (a6989586621679851247 :: a) (a6989586621679851248 :: [(a, b)]) :: Maybe b where ... Source #

Equations

LookupSym2 a6989586621679851247 a6989586621679851248 = Lookup a6989586621679851247 a6989586621679851248 

Zipping and unzipping lists

data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)]) Source #

Instances

Instances details
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing ZipSym0

SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679851874 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679851874 :: [a]) = ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type

data ZipSym1 (a6989586621679851874 :: [a]) :: (~>) [b] [(a, b)] Source #

Instances

Instances details
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipSym1 x)

SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipSym1 d)

SuppressUnusedWarnings (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) (a6989586621679851875 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) (a6989586621679851875 :: [b]) = Zip a6989586621679851874 a6989586621679851875

type family ZipSym2 (a6989586621679851874 :: [a]) (a6989586621679851875 :: [b]) :: [(a, b)] where ... Source #

Equations

ZipSym2 a6989586621679851874 a6989586621679851875 = Zip a6989586621679851874 a6989586621679851875 

data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)])) Source #

Instances

Instances details
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Zip3Sym0

SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679851862 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679851862 :: [a]) = Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type

data Zip3Sym1 (a6989586621679851862 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)]) Source #

Instances

Instances details
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym1 x)

SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym1 d)

SuppressUnusedWarnings (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679851863 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679851863 :: [b]) = Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type

data Zip3Sym2 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) :: (~>) [c] [(a, b, c)] Source #

Instances

Instances details
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Zip3Sym2 x y)

SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (Zip3Sym2 d x)

(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (Zip3Sym2 d1 d2)

SuppressUnusedWarnings (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679851864 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679851864 :: [c]) = Zip3 a6989586621679851862 a6989586621679851863 a6989586621679851864

type family Zip3Sym3 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) (a6989586621679851864 :: [c]) :: [(a, b, c)] where ... Source #

Equations

Zip3Sym3 a6989586621679851862 a6989586621679851863 a6989586621679851864 = Zip3 a6989586621679851862 a6989586621679851863 a6989586621679851864 

data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c])) Source #

Instances

Instances details
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679851850

data ZipWithSym1 (a6989586621679851850 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c]) Source #

Instances

Instances details
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym1 x)

SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym1 d)

SuppressUnusedWarnings (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) = ZipWithSym2 a6989586621679851850 a6989586621679851851

data ZipWithSym2 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) :: (~>) [b] [c] Source #

Instances

Instances details
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym2 d x)

SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithSym2 x y)

(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWithSym2 d1 d2)

SuppressUnusedWarnings (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852

type family ZipWithSym3 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) (a6989586621679851852 :: [b]) :: [c] where ... Source #

Equations

ZipWithSym3 a6989586621679851850 a6989586621679851851 a6989586621679851852 = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852 

data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d]))) Source #

Instances

Instances details
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679851835

data ZipWith3Sym1 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d])) Source #

Instances

Instances details
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym1 x)

SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym1 d2)

SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) = ZipWith3Sym2 a6989586621679851835 a6989586621679851836

data ZipWith3Sym2 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) :: (~>) [b] ((~>) [c] [d]) Source #

Instances

Instances details
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym2 d2 x)

SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y)

(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym2 d2 d3)

SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) = ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837

data ZipWith3Sym3 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) :: (~>) [c] [d] Source #

Instances

Instances details
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y)

(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym3 d2 d3 x)

(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing (ZipWith3Sym3 d2 d3 d4)

SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) = ZipWith3 a6989586621679851835 a6989586621679851836 a6989586621679851837 a6989586621679851838

data UnzipSym0 :: (~>) [(a, b)] ([a], [b]) Source #

Instances

Instances details
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing UnzipSym0

SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679851816 :: [(a, b)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679851816 :: [(a, b)]) = Unzip a6989586621679851816

type family UnzipSym1 (a6989586621679851816 :: [(a, b)]) :: ([a], [b]) where ... Source #

Equations

UnzipSym1 a6989586621679851816 = Unzip a6989586621679851816 

data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c]) Source #

Instances

Instances details
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

Methods

sing :: Sing Unzip3Sym0

SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) = Unzip3 a6989586621679851798

type family Unzip3Sym1 (a6989586621679851798 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #

Equations

Unzip3Sym1 a6989586621679851798 = Unzip3 a6989586621679851798 

Functions on Symbols

data UnlinesSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnlinesSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) = Unlines a6989586621679851701

type family UnlinesSym1 (a6989586621679851701 :: [Symbol]) :: Symbol where ... Source #

Equations

UnlinesSym1 a6989586621679851701 = Unlines a6989586621679851701 

data UnwordsSym0 :: (~>) [Symbol] Symbol Source #

Instances

Instances details
SingI UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

SuppressUnusedWarnings UnwordsSym0 Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) Source # 
Instance details

Defined in Data.List.Singletons.Internal

type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) = Unwords a6989586621679851691

type family UnwordsSym1 (a6989586621679851691 :: [Symbol]) :: Symbol where ... Source #

Equations

UnwordsSym1 a6989586621679851691 = Unwords a6989586621679851691 

Converting to and from Symbol

Converting to Symbol

data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol)) Source #

Instances

Instances details
SShow a => SingI (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) = ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type

data ShowsPrecSym1 (a6989586621680249857 :: Natural) :: (~>) a ((~>) Symbol Symbol) Source #

Instances

Instances details
SShow a => SingI1 (ShowsPrecSym1 :: Natural -> TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym1 x)

(SShow a, SingI d) => SingI (ShowsPrecSym1 d :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsPrecSym1 d)

SuppressUnusedWarnings (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) = ShowsPrecSym2 a6989586621680249857 a6989586621680249858

data ShowsPrecSym2 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) :: (~>) Symbol Symbol Source #

Instances

Instances details
SShow a => SingI2 (ShowsPrecSym2 :: Natural -> a -> TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowsPrecSym2 x y)

(SShow a, SingI d) => SingI1 (ShowsPrecSym2 d :: a -> TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym2 d x)

(SShow a, SingI d1, SingI d2) => SingI (ShowsPrecSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsPrecSym2 d1 d2)

SuppressUnusedWarnings (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) = ShowsPrec a6989586621680249857 a6989586621680249858 a6989586621680249859

type family ShowsPrecSym3 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) (a6989586621680249859 :: Symbol) :: Symbol where ... Source #

Equations

ShowsPrecSym3 a6989586621680249857 a6989586621680249858 a6989586621680249859 = ShowsPrec a6989586621680249857 a6989586621680249858 a6989586621680249859 

data ShowListSym0 :: (~>) [a] ((~>) Symbol Symbol) Source #

Instances

Instances details
SShow a => SingI (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) = ShowListSym1 a6989586621680249866

data ShowListSym1 (a6989586621680249866 :: [a]) :: (~>) Symbol Symbol Source #

Instances

Instances details
SShow a => SingI1 (ShowListSym1 :: [a] -> TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowListSym1 x)

(SShow a, SingI d) => SingI (ShowListSym1 d :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowListSym1 d)

SuppressUnusedWarnings (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) (a6989586621680249867 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) (a6989586621680249867 :: Symbol) = ShowList a6989586621680249866 a6989586621680249867

type family ShowListSym2 (a6989586621680249866 :: [a]) (a6989586621680249867 :: Symbol) :: Symbol where ... Source #

Equations

ShowListSym2 a6989586621680249866 a6989586621680249867 = ShowList a6989586621680249866 a6989586621680249867 

data Show_Sym0 :: (~>) a Symbol Source #

Instances

Instances details
SShow a => SingI (Show_Sym0 :: TyFun a Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing Show_Sym0

SuppressUnusedWarnings (Show_Sym0 :: TyFun a Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (Show_Sym0 :: TyFun a Symbol -> Type) (a6989586621680249862 :: a) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (Show_Sym0 :: TyFun a Symbol -> Type) (a6989586621680249862 :: a) = Show_ a6989586621680249862

type family Show_Sym1 (a6989586621680249862 :: a) :: Symbol where ... Source #

Equations

Show_Sym1 a6989586621680249862 = Show_ a6989586621680249862 

data ShowsSym0 :: (~>) a ((~>) Symbol Symbol) Source #

Instances

Instances details
SShow a => SingI (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing ShowsSym0

SuppressUnusedWarnings (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249849 :: a) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249849 :: a) = ShowsSym1 a6989586621680249849

data ShowsSym1 (a6989586621680249849 :: a) :: (~>) Symbol Symbol Source #

Instances

Instances details
SShow a => SingI1 (ShowsSym1 :: a -> TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowsSym1 x)

(SShow a, SingI d) => SingI (ShowsSym1 d :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowsSym1 d)

SuppressUnusedWarnings (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) (a6989586621680249850 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) (a6989586621680249850 :: Symbol) = Shows a6989586621680249849 a6989586621680249850

type family ShowsSym2 (a6989586621680249849 :: a) (a6989586621680249850 :: Symbol) :: Symbol where ... Source #

Equations

ShowsSym2 a6989586621680249849 a6989586621680249850 = Shows a6989586621680249849 a6989586621680249850 

data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol) Source #

Instances

Instances details
SingI ShowCharSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ShowCharSym0 Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowCharSym0 (a6989586621680249823 :: Char) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowCharSym0 (a6989586621680249823 :: Char) = ShowCharSym1 a6989586621680249823

data ShowCharSym1 (a6989586621680249823 :: Char) :: (~>) Symbol Symbol Source #

Instances

Instances details
SingI1 ShowCharSym1 Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowCharSym1 x)

SingI d => SingI (ShowCharSym1 d :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowCharSym1 d)

SuppressUnusedWarnings (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) = ShowChar a6989586621680249823 a6989586621680249824

type family ShowCharSym2 (a6989586621680249823 :: Char) (a6989586621680249824 :: Symbol) :: Symbol where ... Source #

Equations

ShowCharSym2 a6989586621680249823 a6989586621680249824 = ShowChar a6989586621680249823 a6989586621680249824 

data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol) Source #

Instances

Instances details
SingI ShowStringSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ShowStringSym0 Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) = ShowStringSym1 a6989586621680249812

data ShowStringSym1 (a6989586621680249812 :: Symbol) :: (~>) Symbol Symbol Source #

Instances

Instances details
SingI1 ShowStringSym1 Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowStringSym1 x)

SingI d => SingI (ShowStringSym1 d :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowStringSym1 d)

SuppressUnusedWarnings (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) = ShowString a6989586621680249812 a6989586621680249813

type family ShowStringSym2 (a6989586621680249812 :: Symbol) (a6989586621680249813 :: Symbol) :: Symbol where ... Source #

Equations

ShowStringSym2 a6989586621680249812 a6989586621680249813 = ShowString a6989586621680249812 a6989586621680249813 

data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)) Source #

Instances

Instances details
SingI ShowParenSym0 Source # 
Instance details

Defined in Text.Show.Singletons

SuppressUnusedWarnings ShowParenSym0 Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowParenSym0 (a6989586621680249796 :: Bool) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply ShowParenSym0 (a6989586621680249796 :: Bool) = ShowParenSym1 a6989586621680249796

data ShowParenSym1 (a6989586621680249796 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol) Source #

Instances

Instances details
SingI1 ShowParenSym1 Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym1 x)

SingI d => SingI (ShowParenSym1 d :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowParenSym1 d)

SuppressUnusedWarnings (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) = ShowParenSym2 a6989586621680249796 a6989586621680249797

data ShowParenSym2 (a6989586621680249796 :: Bool) (a6989586621680249797 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol Source #

Instances

Instances details
SingI2 ShowParenSym2 Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowParenSym2 x y)

(SingI d1, SingI d2) => SingI (ShowParenSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

sing :: Sing (ShowParenSym2 d1 d2)

SuppressUnusedWarnings (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

SingI d => SingI1 (ShowParenSym2 d :: (Symbol ~> Symbol) -> TyFun Symbol Symbol -> Type) Source # 
Instance details

Defined in Text.Show.Singletons

Methods

liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym2 d x)

type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) Source # 
Instance details

Defined in Text.Show.Singletons

type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) = ShowParen a6989586621680249796 a6989586621680249797 a6989586621680249798