Copyright | (C) 2013 Richard Eisenberg |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Ryan Scott |
Stability | experimental |
Portability | non-portable |
Safe Haskell | Safe-Inferred |
Language | GHC2021 |
Mimics the Haskell Prelude, but with singleton types. Includes the basic singleton definitions. Note: This is currently very incomplete!
Because many of these definitions are produced by Template Haskell, it is not possible to create proper Haddock documentation. Also, please excuse the apparent repeated variable names. This is due to an interaction between Template Haskell and Haddock.
Synopsis
- data SBool :: Bool -> Type where
- type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
- sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
- type family (a :: Bool) && (b :: Bool) :: Bool where ...
- (%&&) :: Sing a -> Sing b -> Sing (a && b)
- type family (a :: Bool) || (b :: Bool) :: Bool where ...
- (%||) :: Sing a -> Sing b -> Sing (a || b)
- type family Not (a :: Bool) = (res :: Bool) | res -> a where ...
- sNot :: Sing a -> Sing (Not a)
- type family Otherwise :: Bool where ...
- sOtherwise :: Sing (OtherwiseSym0 :: Bool)
- data SMaybe :: forall (a :: Type). Maybe a -> Type where
- maybe_ :: b -> (a -> b) -> Maybe a -> b
- type family Maybe_ (a :: b) (a :: (~>) a b) (a :: Maybe a) :: b where ...
- sMaybe_ :: forall b a (t :: b) (t :: (~>) a b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Maybe_Sym0 t) t) t :: b)
- data SEither :: forall (a :: Type) (b :: Type). Either a b -> Type where
- either_ :: (a -> c) -> (b -> c) -> Either a b -> c
- type family Either_ (a :: (~>) a c) (a :: (~>) b c) (a :: Either a b) :: c where ...
- sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c)
- data SOrdering :: Ordering -> Type where
- data SChar (c :: Char)
- data Symbol
- data SList :: forall (a :: Type). [a] -> Type where
- data STuple0 :: () -> Type where
- data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where
- data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where
- data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where
- data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where
- data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where
- STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where
- STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- type family Fst (a :: (a, b)) :: a where ...
- sFst :: forall a b (t :: (a, b)). Sing t -> Sing (Apply FstSym0 t :: a)
- type family Snd (a :: (a, b)) :: b where ...
- sSnd :: forall a b (t :: (a, b)). Sing t -> Sing (Apply SndSym0 t :: b)
- type family Curry (a :: (~>) (a, b) c) (a :: a) (a :: b) :: c where ...
- sCurry :: forall a b c (t :: (~>) (a, b) c) (t :: a) (t :: b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply CurrySym0 t) t) t :: c)
- type family Uncurry (a :: (~>) a ((~>) b c)) (a :: (a, b)) :: c where ...
- sUncurry :: forall a b c (t :: (~>) a ((~>) b c)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply UncurrySym0 t) t :: c)
- class PEq a where
- class SEq a where
- class POrd a where
- class SEq a => SOrd a where
- sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering)
- (%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool)
- (%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool)
- (%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool)
- (%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool)
- sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a)
- sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a)
- class PEnum a where
- type ToEnum (arg :: Natural) :: a
- type FromEnum (arg :: a) :: Natural
- type EnumFromTo (arg :: a) (arg :: a) :: [a]
- type EnumFromThenTo (arg :: a) (arg :: a) (arg :: a) :: [a]
- class SEnum a where
- sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a)
- sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural)
- sEnumFromTo :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a])
- sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a])
- class PBounded a where
- class SBounded a where
- sMinBound :: Sing (MinBoundSym0 :: a)
- sMaxBound :: Sing (MaxBoundSym0 :: a)
- class PNum a where
- class SNum a where
- (%+) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t :: a)
- (%-) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t :: a)
- (%*) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t :: a)
- sNegate :: forall (t :: a). Sing t -> Sing (Apply NegateSym0 t :: a)
- sAbs :: forall (t :: a). Sing t -> Sing (Apply AbsSym0 t :: a)
- sSignum :: forall (t :: a). Sing t -> Sing (Apply SignumSym0 t :: a)
- sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t :: a)
- type family Subtract (a :: a) (a :: a) :: a where ...
- sSubtract :: forall a (t :: a) (t :: a). SNum a => Sing t -> Sing t -> Sing (Apply (Apply SubtractSym0 t) t :: a)
- class PSemigroup a where
- type (arg :: a) <> (arg :: a) :: a
- class SSemigroup a where
- class PMonoid a where
- class SSemigroup a => SMonoid a where
- sMempty :: Sing (MemptySym0 :: a)
- sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a)
- sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a)
- class PFunctor f where
- class SFunctor f where
- type family (a :: (~>) a b) <$> (a :: f a) :: f b where ...
- (%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b)
- class PApplicative f where
- class SFunctor f => SApplicative f where
- sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a)
- (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b)
- (%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b)
- (%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a)
- class PMonad m where
- class SApplicative m => SMonad m where
- class PMonadFail m where
- class SMonad m => SMonadFail m where
- type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ...
- sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ())
- type family Sequence_ (a :: t (m a)) :: m () where ...
- sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ())
- type family (a :: (~>) a (m b)) =<< (a :: m a) :: m b where ...
- (%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b)
- class PFoldable t where
- type FoldMap (arg :: (~>) a m) (arg :: t a) :: m
- type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type Elem (arg :: a) (arg :: t a) :: Bool
- type Maximum (arg :: t a) :: a
- type Minimum (arg :: t a) :: a
- type Sum (arg :: t a) :: a
- type Product (arg :: t a) :: a
- class SFoldable t where
- sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m)
- sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
- sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
- sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
- sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
- sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
- sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a)
- sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a)
- sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a)
- sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a)
- class PTraversable t where
- class (SFunctor t, SFoldable t) => STraversable t where
- sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b))
- sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a))
- sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b))
- sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a))
- type family Id (a :: a) :: a where ...
- sId :: forall a (t :: a). Sing t -> Sing (Apply IdSym0 t :: a)
- type family Const (a :: a) (a :: b) :: a where ...
- sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a)
- type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
- (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
- type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ...
- sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c)
- type family (a :: (~>) a b) $ (a :: a) :: b where ...
- (%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b)
- type family Until (a :: (~>) a Bool) (a :: (~>) a a) (a :: a) :: a where ...
- sUntil :: forall a (t :: (~>) a Bool) (t :: (~>) a a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UntilSym0 t) t) t :: a)
- type family AsTypeOf (a :: a) (a :: a) :: a where ...
- sAsTypeOf :: forall a (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply AsTypeOfSym0 t) t :: a)
- type family Error (str :: k0) :: k where ...
- sError :: HasCallStack => Sing (str :: Symbol) -> a
- type family ErrorWithoutStackTrace (str :: k0) :: k where ...
- sErrorWithoutStackTrace :: Sing (str :: Symbol) -> a
- type family Undefined :: k where ...
- sUndefined :: HasCallStack => a
- type family Seq (a :: a) (a :: b) :: b where ...
- sSeq :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply SeqSym0 t) t :: b)
- type family (a :: (~>) a b) $! (a :: a) :: b where ...
- (%$!) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($!@#@$) t) t :: b)
- type family Map (a :: (~>) a b) (a :: [a]) :: [b] where ...
- sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b])
- type family (a :: [a]) ++ (a :: [a]) :: [a] where ...
- (%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a])
- type family Filter (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
- sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a])
- type family Head (a :: [a]) :: a where ...
- sHead :: forall a (t :: [a]). Sing t -> Sing (Apply HeadSym0 t :: a)
- type family Last (a :: [a]) :: a where ...
- sLast :: forall a (t :: [a]). Sing t -> Sing (Apply LastSym0 t :: a)
- type family Tail (a :: [a]) :: [a] where ...
- sTail :: forall a (t :: [a]). Sing t -> Sing (Apply TailSym0 t :: [a])
- type family Init (a :: [a]) :: [a] where ...
- sInit :: forall a (t :: [a]). Sing t -> Sing (Apply InitSym0 t :: [a])
- type family (a :: [a]) !! (a :: Natural) :: a where ...
- (%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a)
- type family Null (arg :: t a) :: Bool
- sNull :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply NullSym0 t :: Bool)
- type family Length (arg :: t a) :: Natural
- sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural)
- type family Reverse (a :: [a]) :: [a] where ...
- sReverse :: forall a (t :: [a]). Sing t -> Sing (Apply ReverseSym0 t :: [a])
- type family And (a :: t Bool) :: Bool where ...
- sAnd :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply AndSym0 t :: Bool)
- type family Or (a :: t Bool) :: Bool where ...
- sOr :: forall t (t :: t Bool). SFoldable t => Sing t -> Sing (Apply OrSym0 t :: Bool)
- type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ...
- sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool)
- type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ...
- sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool)
- type family Concat (a :: t [a]) :: [a] where ...
- sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a])
- type family ConcatMap (a :: (~>) a [b]) (a :: t a) :: [b] where ...
- sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b])
- type family Scanl (a :: (~>) b ((~>) a b)) (a :: b) (a :: [a]) :: [b] where ...
- sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b])
- type family Scanl1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
- sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a])
- type family Scanr (a :: (~>) a ((~>) b b)) (a :: b) (a :: [a]) :: [b] where ...
- sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b])
- type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ...
- sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a])
- type family Replicate (a :: Natural) (a :: a) :: [a] where ...
- sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a])
- type family Take (a :: Natural) (a :: [a]) :: [a] where ...
- sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a])
- type family Drop (a :: Natural) (a :: [a]) :: [a] where ...
- sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a])
- type family TakeWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
- sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a])
- type family DropWhile (a :: (~>) a Bool) (a :: [a]) :: [a] where ...
- sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a])
- type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
- sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a]))
- type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ...
- sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a]))
- type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ...
- sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a]))
- type family NotElem (a :: a) (a :: t a) :: Bool where ...
- sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool)
- type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ...
- sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b)
- type family Zip (a :: [a]) (a :: [b]) :: [(a, b)] where ...
- sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)])
- type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ...
- sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)])
- type family ZipWith (a :: (~>) a ((~>) b c)) (a :: [a]) (a :: [b]) :: [c] where ...
- sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c])
- type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ...
- sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d])
- type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ...
- sUnzip :: forall a b (t :: [(a, b)]). Sing t -> Sing (Apply UnzipSym0 t :: ([a], [b]))
- type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ...
- sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c]))
- type family Unlines (a :: [Symbol]) :: Symbol where ...
- sUnlines :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnlinesSym0 t :: Symbol)
- type family Unwords (a :: [Symbol]) :: Symbol where ...
- sUnwords :: forall (t :: [Symbol]). Sing t -> Sing (Apply UnwordsSym0 t :: Symbol)
- type SymbolS = Symbol -> Symbol
- show_ :: Show a => a -> String
- class PShow a where
- class SShow a where
- sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol)
- sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol)
- sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol)
- type family Shows (a :: a) (a :: Symbol) :: Symbol where ...
- sShows :: forall a (t :: a) (t :: Symbol). SShow a => Sing t -> Sing t -> Sing (Apply (Apply ShowsSym0 t) t :: Symbol)
- type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ...
- sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol)
- type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ...
- sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol)
- type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ...
- sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol)
- type family FalseSym0 :: Bool where ...
- type family TrueSym0 :: Bool where ...
- data IfSym0 :: (~>) Bool ((~>) k ((~>) k k))
- data IfSym1 (a6989586621679135270 :: Bool) :: (~>) k ((~>) k k)
- data IfSym2 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) :: (~>) k k
- type family IfSym3 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) (a6989586621679135272 :: k) :: k where ...
- data (&&@#@$) :: (~>) Bool ((~>) Bool Bool)
- data (&&@#@$$) (a6989586621679134313 :: Bool) :: (~>) Bool Bool
- type family (a6989586621679134313 :: Bool) &&@#@$$$ (a6989586621679134314 :: Bool) :: Bool where ...
- data (||@#@$) :: (~>) Bool ((~>) Bool Bool)
- data (||@#@$$) (a6989586621679134686 :: Bool) :: (~>) Bool Bool
- type family (a6989586621679134686 :: Bool) ||@#@$$$ (a6989586621679134687 :: Bool) :: Bool where ...
- data NotSym0 :: (~>) Bool Bool
- type family NotSym1 (a6989586621679135042 :: Bool) :: Bool where ...
- type family OtherwiseSym0 :: Bool where ...
- type family NothingSym0 :: Maybe (a :: Type) where ...
- data JustSym0 :: (~>) a (Maybe (a :: Type))
- type family JustSym1 (a6989586621679040342 :: a) :: Maybe (a :: Type) where ...
- data Maybe_Sym0 :: (~>) b ((~>) ((~>) a b) ((~>) (Maybe a) b))
- data Maybe_Sym1 (a6989586621679568692 :: b) :: (~>) ((~>) a b) ((~>) (Maybe a) b)
- data Maybe_Sym2 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) :: (~>) (Maybe a) b
- type family Maybe_Sym3 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) (a6989586621679568694 :: Maybe a) :: b where ...
- data LeftSym0 :: (~>) a (Either (a :: Type) (b :: Type))
- type family LeftSym1 (a6989586621679040414 :: a) :: Either (a :: Type) (b :: Type) where ...
- data RightSym0 :: (~>) b (Either (a :: Type) (b :: Type))
- type family RightSym1 (a6989586621679040416 :: b) :: Either (a :: Type) (b :: Type) where ...
- data Either_Sym0 :: (~>) ((~>) a c) ((~>) ((~>) b c) ((~>) (Either a b) c))
- data Either_Sym1 (a6989586621679314689 :: (~>) a c) :: (~>) ((~>) b c) ((~>) (Either a b) c)
- data Either_Sym2 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) :: (~>) (Either a b) c
- type family Either_Sym3 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) (a6989586621679314691 :: Either a b) :: c where ...
- type family LTSym0 :: Ordering where ...
- type family EQSym0 :: Ordering where ...
- type family GTSym0 :: Ordering where ...
- data (:@#@$) :: (~>) a ((~>) [a] [a :: Type])
- data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type]
- type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ...
- type family NilSym0 :: [a :: Type] where ...
- type family Tuple0Sym0 :: () where ...
- data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type))
- data Tuple2Sym1 (a6989586621679040855 :: a) :: (~>) b (a :: Type, b :: Type)
- type family Tuple2Sym2 (a6989586621679040855 :: a) (a6989586621679040856 :: b) :: (a :: Type, b :: Type) where ...
- data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type)))
- data Tuple3Sym1 (a6989586621679040886 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type))
- data Tuple3Sym2 (a6989586621679040886 :: a) (a6989586621679040887 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type)
- type family Tuple3Sym3 (a6989586621679040886 :: a) (a6989586621679040887 :: b) (a6989586621679040888 :: c) :: (a :: Type, b :: Type, c :: Type) where ...
- data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))))
- data Tuple4Sym1 (a6989586621679040935 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))
- data Tuple4Sym2 (a6989586621679040935 :: a) (a6989586621679040936 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))
- data Tuple4Sym3 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type)
- type family Tuple4Sym4 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) (a6989586621679040938 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ...
- data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))))
- data Tuple5Sym1 (a6989586621679041004 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))
- data Tuple5Sym2 (a6989586621679041004 :: a) (a6989586621679041005 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))
- data Tuple5Sym3 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))
- data Tuple5Sym4 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)
- type family Tuple5Sym5 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) (a6989586621679041008 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ...
- data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))))
- data Tuple6Sym1 (a6989586621679041095 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))
- data Tuple6Sym2 (a6989586621679041095 :: a) (a6989586621679041096 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))
- data Tuple6Sym3 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))
- data Tuple6Sym4 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data Tuple6Sym5 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)
- type family Tuple6Sym6 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) (a6989586621679041100 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ...
- data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))))
- data Tuple7Sym1 (a6989586621679041210 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))
- data Tuple7Sym2 (a6989586621679041210 :: a) (a6989586621679041211 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))
- data Tuple7Sym3 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))
- data Tuple7Sym4 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))
- data Tuple7Sym5 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- data Tuple7Sym6 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)
- type family Tuple7Sym7 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) (a6989586621679041216 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ...
- data FstSym0 :: (~>) (a, b) a
- type family FstSym1 (a6989586621679270958 :: (a, b)) :: a where ...
- data SndSym0 :: (~>) (a, b) b
- type family SndSym1 (a6989586621679270954 :: (a, b)) :: b where ...
- data CurrySym0 :: (~>) ((~>) (a, b) c) ((~>) a ((~>) b c))
- data CurrySym1 (a6989586621679270946 :: (~>) (a, b) c) :: (~>) a ((~>) b c)
- data CurrySym2 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) :: (~>) b c
- type family CurrySym3 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) (a6989586621679270948 :: b) :: c where ...
- data UncurrySym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (a, b) c)
- data UncurrySym1 (a6989586621679270938 :: (~>) a ((~>) b c)) :: (~>) (a, b) c
- type family UncurrySym2 (a6989586621679270938 :: (~>) a ((~>) b c)) (a6989586621679270939 :: (a, b)) :: c where ...
- data (==@#@$) :: (~>) a ((~>) a Bool)
- data (==@#@$$) (a6989586621679140205 :: a) :: (~>) a Bool
- type family (a6989586621679140205 :: a) ==@#@$$$ (a6989586621679140206 :: a) :: Bool where ...
- data (/=@#@$) :: (~>) a ((~>) a Bool)
- data (/=@#@$$) (a6989586621679140210 :: a) :: (~>) a Bool
- type family (a6989586621679140210 :: a) /=@#@$$$ (a6989586621679140211 :: a) :: Bool where ...
- data CompareSym0 :: (~>) a ((~>) a Ordering)
- data CompareSym1 (a6989586621679178605 :: a) :: (~>) a Ordering
- type family CompareSym2 (a6989586621679178605 :: a) (a6989586621679178606 :: a) :: Ordering where ...
- data (<@#@$) :: (~>) a ((~>) a Bool)
- data (<@#@$$) (a6989586621679178610 :: a) :: (~>) a Bool
- type family (a6989586621679178610 :: a) <@#@$$$ (a6989586621679178611 :: a) :: Bool where ...
- data (<=@#@$) :: (~>) a ((~>) a Bool)
- data (<=@#@$$) (a6989586621679178615 :: a) :: (~>) a Bool
- type family (a6989586621679178615 :: a) <=@#@$$$ (a6989586621679178616 :: a) :: Bool where ...
- data (>@#@$) :: (~>) a ((~>) a Bool)
- data (>@#@$$) (a6989586621679178620 :: a) :: (~>) a Bool
- type family (a6989586621679178620 :: a) >@#@$$$ (a6989586621679178621 :: a) :: Bool where ...
- data (>=@#@$) :: (~>) a ((~>) a Bool)
- data (>=@#@$$) (a6989586621679178625 :: a) :: (~>) a Bool
- type family (a6989586621679178625 :: a) >=@#@$$$ (a6989586621679178626 :: a) :: Bool where ...
- data MaxSym0 :: (~>) a ((~>) a a)
- data MaxSym1 (a6989586621679178630 :: a) :: (~>) a a
- type family MaxSym2 (a6989586621679178630 :: a) (a6989586621679178631 :: a) :: a where ...
- data MinSym0 :: (~>) a ((~>) a a)
- data MinSym1 (a6989586621679178635 :: a) :: (~>) a a
- type family MinSym2 (a6989586621679178635 :: a) (a6989586621679178636 :: a) :: a where ...
- data ToEnumSym0 :: (~>) Natural a
- type family ToEnumSym1 (a6989586621679606484 :: Natural) :: a where ...
- data FromEnumSym0 :: (~>) a Natural
- type family FromEnumSym1 (a6989586621679606487 :: a) :: Natural where ...
- data EnumFromToSym0 :: (~>) a ((~>) a [a])
- data EnumFromToSym1 (a6989586621679606491 :: a) :: (~>) a [a]
- type family EnumFromToSym2 (a6989586621679606491 :: a) (a6989586621679606492 :: a) :: [a] where ...
- data EnumFromThenToSym0 :: (~>) a ((~>) a ((~>) a [a]))
- data EnumFromThenToSym1 (a6989586621679606497 :: a) :: (~>) a ((~>) a [a])
- data EnumFromThenToSym2 (a6989586621679606497 :: a) (a6989586621679606498 :: a) :: (~>) a [a]
- type family EnumFromThenToSym3 (a6989586621679606497 :: a) (a6989586621679606498 :: a) (a6989586621679606499 :: a) :: [a] where ...
- type family MinBoundSym0 :: a where ...
- type family MaxBoundSym0 :: a where ...
- data (+@#@$) :: (~>) a ((~>) a a)
- data (+@#@$$) (a6989586621679582458 :: a) :: (~>) a a
- type family (a6989586621679582458 :: a) +@#@$$$ (a6989586621679582459 :: a) :: a where ...
- data (-@#@$) :: (~>) a ((~>) a a)
- data (-@#@$$) (a6989586621679582463 :: a) :: (~>) a a
- type family (a6989586621679582463 :: a) -@#@$$$ (a6989586621679582464 :: a) :: a where ...
- data (*@#@$) :: (~>) a ((~>) a a)
- data (*@#@$$) (a6989586621679582468 :: a) :: (~>) a a
- type family (a6989586621679582468 :: a) *@#@$$$ (a6989586621679582469 :: a) :: a where ...
- data NegateSym0 :: (~>) a a
- type family NegateSym1 (a6989586621679582472 :: a) :: a where ...
- data AbsSym0 :: (~>) a a
- type family AbsSym1 (a6989586621679582475 :: a) :: a where ...
- data SignumSym0 :: (~>) a a
- type family SignumSym1 (a6989586621679582478 :: a) :: a where ...
- data FromIntegerSym0 :: (~>) Natural a
- type family FromIntegerSym1 (a6989586621679582481 :: Natural) :: a where ...
- data SubtractSym0 :: (~>) a ((~>) a a)
- data SubtractSym1 (a6989586621679582451 :: a) :: (~>) a a
- type family SubtractSym2 (a6989586621679582451 :: a) (a6989586621679582452 :: a) :: a where ...
- data (<>@#@$) :: (~>) a ((~>) a a)
- data (<>@#@$$) (a6989586621679691601 :: a) :: (~>) a a
- type family (a6989586621679691601 :: a) <>@#@$$$ (a6989586621679691602 :: a) :: a where ...
- type family MemptySym0 :: a where ...
- data MappendSym0 :: (~>) a ((~>) a a)
- data MappendSym1 (a6989586621680336631 :: a) :: (~>) a a
- type family MappendSym2 (a6989586621680336631 :: a) (a6989586621680336632 :: a) :: a where ...
- data MconcatSym0 :: (~>) [a] a
- type family MconcatSym1 (a6989586621680336635 :: [a]) :: a where ...
- data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b))
- data FmapSym1 (a6989586621679329112 :: (~>) a b) :: (~>) (f a) (f b)
- type family FmapSym2 (a6989586621679329112 :: (~>) a b) (a6989586621679329113 :: f a) :: f b where ...
- data (<$@#@$) :: (~>) a ((~>) (f b) (f a))
- data (<$@#@$$) (a6989586621679329117 :: a) :: (~>) (f b) (f a)
- type family (a6989586621679329117 :: a) <$@#@$$$ (a6989586621679329118 :: f b) :: f a where ...
- data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b))
- data (<$>@#@$$) (a6989586621679519978 :: (~>) a b) :: (~>) (f a) (f b)
- type family (a6989586621679519978 :: (~>) a b) <$>@#@$$$ (a6989586621679519979 :: f a) :: f b where ...
- data PureSym0 :: (~>) a (f a)
- type family PureSym1 (a6989586621679329136 :: a) :: f a where ...
- data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b))
- data (<*>@#@$$) (a6989586621679329140 :: f ((~>) a b)) :: (~>) (f a) (f b)
- type family (a6989586621679329140 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679329141 :: f a) :: f b where ...
- data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b))
- data (*>@#@$$) (a6989586621679329152 :: f a) :: (~>) (f b) (f b)
- type family (a6989586621679329152 :: f a) *>@#@$$$ (a6989586621679329153 :: f b) :: f b where ...
- data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a))
- data (<*@#@$$) (a6989586621679329157 :: f a) :: (~>) (f b) (f a)
- type family (a6989586621679329157 :: f a) <*@#@$$$ (a6989586621679329158 :: f b) :: f a where ...
- data (>>=@#@$) :: (~>) (m a) ((~>) ((~>) a (m b)) (m b))
- data (>>=@#@$$) (a6989586621679329220 :: m a) :: (~>) ((~>) a (m b)) (m b)
- type family (a6989586621679329220 :: m a) >>=@#@$$$ (a6989586621679329221 :: (~>) a (m b)) :: m b where ...
- data (>>@#@$) :: (~>) (m a) ((~>) (m b) (m b))
- data (>>@#@$$) (a6989586621679329225 :: m a) :: (~>) (m b) (m b)
- type family (a6989586621679329225 :: m a) >>@#@$$$ (a6989586621679329226 :: m b) :: m b where ...
- data ReturnSym0 :: (~>) a (m a)
- type family ReturnSym1 (a6989586621679329229 :: a) :: m a where ...
- data FailSym0 :: (~>) [Char] (m a)
- type family FailSym1 (a6989586621679537251 :: [Char]) :: m a where ...
- data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ()))
- data MapM_Sym1 (a6989586621680438250 :: (~>) a (m b)) :: (~>) (t a) (m ())
- type family MapM_Sym2 (a6989586621680438250 :: (~>) a (m b)) (a6989586621680438251 :: t a) :: m () where ...
- data Sequence_Sym0 :: (~>) (t (m a)) (m ())
- type family Sequence_Sym1 (a6989586621680438226 :: t (m a)) :: m () where ...
- data (=<<@#@$) :: (~>) ((~>) a (m b)) ((~>) (m a) (m b))
- data (=<<@#@$$) (a6989586621679329065 :: (~>) a (m b)) :: (~>) (m a) (m b)
- type family (a6989586621679329065 :: (~>) a (m b)) =<<@#@$$$ (a6989586621679329066 :: m a) :: m b where ...
- data ElemSym0 :: (~>) a ((~>) (t a) Bool)
- data ElemSym1 (a6989586621680438368 :: a) :: (~>) (t a) Bool
- type family ElemSym2 (a6989586621680438368 :: a) (a6989586621680438369 :: t a) :: Bool where ...
- data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m)
- data FoldMapSym1 (a6989586621680438316 :: (~>) a m) :: (~>) (t a) m
- type family FoldMapSym2 (a6989586621680438316 :: (~>) a m) (a6989586621680438317 :: t a) :: m where ...
- data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
- data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
- data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b
- type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ...
- data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
- data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
- data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b
- type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ...
- data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
- data Foldr1Sym1 (a6989586621680438349 :: (~>) a ((~>) a a)) :: (~>) (t a) a
- type family Foldr1Sym2 (a6989586621680438349 :: (~>) a ((~>) a a)) (a6989586621680438350 :: t a) :: a where ...
- data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a)
- data Foldl1Sym1 (a6989586621680438354 :: (~>) a ((~>) a a)) :: (~>) (t a) a
- type family Foldl1Sym2 (a6989586621680438354 :: (~>) a ((~>) a a)) (a6989586621680438355 :: t a) :: a where ...
- data MaximumSym0 :: (~>) (t a) a
- type family MaximumSym1 (a6989586621680438372 :: t a) :: a where ...
- data MinimumSym0 :: (~>) (t a) a
- type family MinimumSym1 (a6989586621680438375 :: t a) :: a where ...
- data ProductSym0 :: (~>) (t a) a
- type family ProductSym1 (a6989586621680438381 :: t a) :: a where ...
- data SumSym0 :: (~>) (t a) a
- type family SumSym1 (a6989586621680438378 :: t a) :: a where ...
- data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b)))
- data TraverseSym1 (a6989586621680796847 :: (~>) a (f b)) :: (~>) (t a) (f (t b))
- type family TraverseSym2 (a6989586621680796847 :: (~>) a (f b)) (a6989586621680796848 :: t a) :: f (t b) where ...
- data SequenceASym0 :: (~>) (t (f a)) (f (t a))
- type family SequenceASym1 (a6989586621680796851 :: t (f a)) :: f (t a) where ...
- data MapMSym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m (t b)))
- data MapMSym1 (a6989586621680796855 :: (~>) a (m b)) :: (~>) (t a) (m (t b))
- type family MapMSym2 (a6989586621680796855 :: (~>) a (m b)) (a6989586621680796856 :: t a) :: m (t b) where ...
- data SequenceSym0 :: (~>) (t (m a)) (m (t a))
- type family SequenceSym1 (a6989586621680796859 :: t (m a)) :: m (t a) where ...
- data IdSym0 :: (~>) a a
- type family IdSym1 (a6989586621679278917 :: a) :: a where ...
- data ConstSym0 :: (~>) a ((~>) b a)
- data ConstSym1 (a6989586621679278912 :: a) :: (~>) b a
- type family ConstSym2 (a6989586621679278912 :: a) (a6989586621679278913 :: b) :: a where ...
- data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c))
- data (.@#@$$) (a6989586621679278899 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c)
- data (a6989586621679278899 :: (~>) b c) .@#@$$$ (a6989586621679278900 :: (~>) a b) :: (~>) a c
- type family ((a6989586621679278899 :: (~>) b c) .@#@$$$$ (a6989586621679278900 :: (~>) a b)) (a6989586621679278901 :: a) :: c where ...
- data FlipSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) b ((~>) a c))
- data FlipSym1 (a6989586621679278887 :: (~>) a ((~>) b c)) :: (~>) b ((~>) a c)
- data FlipSym2 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) :: (~>) a c
- type family FlipSym3 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) (a6989586621679278889 :: a) :: c where ...
- data ($@#@$) :: (~>) ((~>) a b) ((~>) a b)
- data ($@#@$$) (a6989586621679278868 :: (~>) a b) :: (~>) a b
- type family (a6989586621679278868 :: (~>) a b) $@#@$$$ (a6989586621679278869 :: a) :: b where ...
- data UntilSym0 :: (~>) ((~>) a Bool) ((~>) ((~>) a a) ((~>) a a))
- data UntilSym1 (a6989586621679278841 :: (~>) a Bool) :: (~>) ((~>) a a) ((~>) a a)
- data UntilSym2 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) :: (~>) a a
- type family UntilSym3 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) (a6989586621679278843 :: a) :: a where ...
- data AsTypeOfSym0 :: (~>) a ((~>) a a)
- data AsTypeOfSym1 (a6989586621679278879 :: a) :: (~>) a a
- type family AsTypeOfSym2 (a6989586621679278879 :: a) (a6989586621679278880 :: a) :: a where ...
- data ErrorSym0 :: (~>) k0 k
- type family ErrorSym1 (a6989586621679544356 :: k0) :: k where ...
- data ErrorWithoutStackTraceSym0 :: (~>) k0 k
- type family ErrorWithoutStackTraceSym1 (a6989586621679544654 :: k0) :: k where ...
- type family UndefinedSym0 :: k where ...
- data SeqSym0 :: (~>) a ((~>) b b)
- data SeqSym1 (a6989586621679278832 :: a) :: (~>) b b
- type family SeqSym2 (a6989586621679278832 :: a) (a6989586621679278833 :: b) :: b where ...
- data ($!@#@$) :: (~>) ((~>) a b) ((~>) a b)
- data ($!@#@$$) (a6989586621679278859 :: (~>) a b) :: (~>) a b
- type family (a6989586621679278859 :: (~>) a b) $!@#@$$$ (a6989586621679278860 :: a) :: b where ...
- data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b])
- data MapSym1 (a6989586621679278931 :: (~>) a b) :: (~>) [a] [b]
- type family MapSym2 (a6989586621679278931 :: (~>) a b) (a6989586621679278932 :: [a]) :: [b] where ...
- data (++@#@$) :: (~>) [a] ((~>) [a] [a])
- data (++@#@$$) (a6989586621679278922 :: [a]) :: (~>) [a] [a]
- type family (a6989586621679278922 :: [a]) ++@#@$$$ (a6989586621679278923 :: [a]) :: [a] where ...
- data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
- data FilterSym1 (a6989586621679851556 :: (~>) a Bool) :: (~>) [a] [a]
- type family FilterSym2 (a6989586621679851556 :: (~>) a Bool) (a6989586621679851557 :: [a]) :: [a] where ...
- data HeadSym0 :: (~>) [a] a
- type family HeadSym1 (a6989586621679852326 :: [a]) :: a where ...
- data LastSym0 :: (~>) [a] a
- type family LastSym1 (a6989586621679852320 :: [a]) :: a where ...
- data TailSym0 :: (~>) [a] [a]
- type family TailSym1 (a6989586621679852316 :: [a]) :: [a] where ...
- data InitSym0 :: (~>) [a] [a]
- type family InitSym1 (a6989586621679852304 :: [a]) :: [a] where ...
- data (!!@#@$) :: (~>) [a] ((~>) Natural a)
- data (!!@#@$$) (a6989586621679851164 :: [a]) :: (~>) Natural a
- type family (a6989586621679851164 :: [a]) !!@#@$$$ (a6989586621679851165 :: Natural) :: a where ...
- data NullSym0 :: (~>) (t a) Bool
- type family NullSym1 (a6989586621680438361 :: t a) :: Bool where ...
- data LengthSym0 :: (~>) (t a) Natural
- type family LengthSym1 (a6989586621680438364 :: t a) :: Natural where ...
- data ReverseSym0 :: (~>) [a] [a]
- type family ReverseSym1 (a6989586621679852289 :: [a]) :: [a] where ...
- data AndSym0 :: (~>) (t Bool) Bool
- type family AndSym1 (a6989586621680438187 :: t Bool) :: Bool where ...
- data OrSym0 :: (~>) (t Bool) Bool
- type family OrSym1 (a6989586621680438181 :: t Bool) :: Bool where ...
- data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
- data AnySym1 (a6989586621680438173 :: (~>) a Bool) :: (~>) (t a) Bool
- type family AnySym2 (a6989586621680438173 :: (~>) a Bool) (a6989586621680438174 :: t a) :: Bool where ...
- data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool)
- data AllSym1 (a6989586621680438164 :: (~>) a Bool) :: (~>) (t a) Bool
- type family AllSym2 (a6989586621680438164 :: (~>) a Bool) (a6989586621680438165 :: t a) :: Bool where ...
- data ConcatSym0 :: (~>) (t [a]) [a]
- type family ConcatSym1 (a6989586621680438203 :: t [a]) :: [a] where ...
- data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b])
- data ConcatMapSym1 (a6989586621680438192 :: (~>) a [b]) :: (~>) (t a) [b]
- type family ConcatMapSym2 (a6989586621680438192 :: (~>) a [b]) (a6989586621680438193 :: t a) :: [b] where ...
- data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b]))
- data ScanlSym1 (a6989586621679852094 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b])
- data ScanlSym2 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) :: (~>) [a] [b]
- type family ScanlSym3 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) (a6989586621679852096 :: [a]) :: [b] where ...
- data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
- data Scanl1Sym1 (a6989586621679852085 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
- type family Scanl1Sym2 (a6989586621679852085 :: (~>) a ((~>) a a)) (a6989586621679852086 :: [a]) :: [a] where ...
- data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b]))
- data ScanrSym1 (a6989586621679852067 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b])
- data ScanrSym2 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) :: (~>) [a] [b]
- type family ScanrSym3 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) (a6989586621679852069 :: [a]) :: [b] where ...
- data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a])
- data Scanr1Sym1 (a6989586621679852047 :: (~>) a ((~>) a a)) :: (~>) [a] [a]
- type family Scanr1Sym2 (a6989586621679852047 :: (~>) a ((~>) a a)) (a6989586621679852048 :: [a]) :: [a] where ...
- data ReplicateSym0 :: (~>) Natural ((~>) a [a])
- data ReplicateSym1 (a6989586621679851184 :: Natural) :: (~>) a [a]
- type family ReplicateSym2 (a6989586621679851184 :: Natural) (a6989586621679851185 :: a) :: [a] where ...
- data TakeSym0 :: (~>) Natural ((~>) [a] [a])
- data TakeSym1 (a6989586621679851339 :: Natural) :: (~>) [a] [a]
- type family TakeSym2 (a6989586621679851339 :: Natural) (a6989586621679851340 :: [a]) :: [a] where ...
- data DropSym0 :: (~>) Natural ((~>) [a] [a])
- data DropSym1 (a6989586621679851326 :: Natural) :: (~>) [a] [a]
- type family DropSym2 (a6989586621679851326 :: Natural) (a6989586621679851327 :: [a]) :: [a] where ...
- data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
- data TakeWhileSym1 (a6989586621679851456 :: (~>) a Bool) :: (~>) [a] [a]
- type family TakeWhileSym2 (a6989586621679851456 :: (~>) a Bool) (a6989586621679851457 :: [a]) :: [a] where ...
- data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
- data DropWhileSym1 (a6989586621679851441 :: (~>) a Bool) :: (~>) [a] [a]
- type family DropWhileSym2 (a6989586621679851441 :: (~>) a Bool) (a6989586621679851442 :: [a]) :: [a] where ...
- data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a])
- data DropWhileEndSym1 (a6989586621679851424 :: (~>) a Bool) :: (~>) [a] [a]
- type family DropWhileEndSym2 (a6989586621679851424 :: (~>) a Bool) (a6989586621679851425 :: [a]) :: [a] where ...
- data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
- data SpanSym1 (a6989586621679851387 :: (~>) a Bool) :: (~>) [a] ([a], [a])
- type family SpanSym2 (a6989586621679851387 :: (~>) a Bool) (a6989586621679851388 :: [a]) :: ([a], [a]) where ...
- data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a]))
- data BreakSym1 (a6989586621679851352 :: (~>) a Bool) :: (~>) [a] ([a], [a])
- type family BreakSym2 (a6989586621679851352 :: (~>) a Bool) (a6989586621679851353 :: [a]) :: ([a], [a]) where ...
- data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a]))
- data SplitAtSym1 (a6989586621679851319 :: Natural) :: (~>) [a] ([a], [a])
- type family SplitAtSym2 (a6989586621679851319 :: Natural) (a6989586621679851320 :: [a]) :: ([a], [a]) where ...
- data NotElemSym0 :: (~>) a ((~>) (t a) Bool)
- data NotElemSym1 (a6989586621680438115 :: a) :: (~>) (t a) Bool
- type family NotElemSym2 (a6989586621680438115 :: a) (a6989586621680438116 :: t a) :: Bool where ...
- data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b))
- data LookupSym1 (a6989586621679851247 :: a) :: (~>) [(a, b)] (Maybe b)
- type family LookupSym2 (a6989586621679851247 :: a) (a6989586621679851248 :: [(a, b)]) :: Maybe b where ...
- data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)])
- data ZipSym1 (a6989586621679851874 :: [a]) :: (~>) [b] [(a, b)]
- type family ZipSym2 (a6989586621679851874 :: [a]) (a6989586621679851875 :: [b]) :: [(a, b)] where ...
- data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)]))
- data Zip3Sym1 (a6989586621679851862 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)])
- data Zip3Sym2 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) :: (~>) [c] [(a, b, c)]
- type family Zip3Sym3 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) (a6989586621679851864 :: [c]) :: [(a, b, c)] where ...
- data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c]))
- data ZipWithSym1 (a6989586621679851850 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c])
- data ZipWithSym2 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) :: (~>) [b] [c]
- type family ZipWithSym3 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) (a6989586621679851852 :: [b]) :: [c] where ...
- data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d])))
- data ZipWith3Sym1 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d]))
- data ZipWith3Sym2 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) :: (~>) [b] ((~>) [c] [d])
- data ZipWith3Sym3 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) :: (~>) [c] [d]
- data UnzipSym0 :: (~>) [(a, b)] ([a], [b])
- type family UnzipSym1 (a6989586621679851816 :: [(a, b)]) :: ([a], [b]) where ...
- data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c])
- type family Unzip3Sym1 (a6989586621679851798 :: [(a, b, c)]) :: ([a], [b], [c]) where ...
- data UnlinesSym0 :: (~>) [Symbol] Symbol
- type family UnlinesSym1 (a6989586621679851701 :: [Symbol]) :: Symbol where ...
- data UnwordsSym0 :: (~>) [Symbol] Symbol
- type family UnwordsSym1 (a6989586621679851691 :: [Symbol]) :: Symbol where ...
- data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol))
- data ShowsPrecSym1 (a6989586621680249857 :: Natural) :: (~>) a ((~>) Symbol Symbol)
- data ShowsPrecSym2 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) :: (~>) Symbol Symbol
- type family ShowsPrecSym3 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) (a6989586621680249859 :: Symbol) :: Symbol where ...
- data ShowListSym0 :: (~>) [a] ((~>) Symbol Symbol)
- data ShowListSym1 (a6989586621680249866 :: [a]) :: (~>) Symbol Symbol
- type family ShowListSym2 (a6989586621680249866 :: [a]) (a6989586621680249867 :: Symbol) :: Symbol where ...
- data Show_Sym0 :: (~>) a Symbol
- type family Show_Sym1 (a6989586621680249862 :: a) :: Symbol where ...
- data ShowsSym0 :: (~>) a ((~>) Symbol Symbol)
- data ShowsSym1 (a6989586621680249849 :: a) :: (~>) Symbol Symbol
- type family ShowsSym2 (a6989586621680249849 :: a) (a6989586621680249850 :: Symbol) :: Symbol where ...
- data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol)
- data ShowCharSym1 (a6989586621680249823 :: Char) :: (~>) Symbol Symbol
- type family ShowCharSym2 (a6989586621680249823 :: Char) (a6989586621680249824 :: Symbol) :: Symbol where ...
- data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol)
- data ShowStringSym1 (a6989586621680249812 :: Symbol) :: (~>) Symbol Symbol
- type family ShowStringSym2 (a6989586621680249812 :: Symbol) (a6989586621680249813 :: Symbol) :: Symbol where ...
- data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol))
- data ShowParenSym1 (a6989586621680249796 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)
- data ShowParenSym2 (a6989586621680249796 :: Bool) (a6989586621680249797 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol
Basic singleton definitions
Promoted and singled types, classes, and related functions
Basic data types
data SBool :: Bool -> Type where Source #
Instances
TestCoercion SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SBool z) Source # | |
type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #
Type-level If. If True a b
==> a
; If False a b
==> b
type family Not (a :: Bool) = (res :: Bool) | res -> a where ... #
Type-level "not". An injective type family since 4.10.0.0
.
Since: base-4.7.0.0
sOtherwise :: Sing (OtherwiseSym0 :: Bool) Source #
data SMaybe :: forall (a :: Type). Maybe a -> Type where Source #
SNothing :: forall (a :: Type). SMaybe ('Nothing :: Maybe (a :: Type)) | |
SJust :: forall (a :: Type) (n :: a). (Sing n) -> SMaybe ('Just n :: Maybe (a :: Type)) |
Instances
SDecide a => TestCoercion (SMaybe :: Maybe a -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SDecide a => TestEquality (SMaybe :: Maybe a -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
ShowSing a => Show (SMaybe z) Source # | |
maybe_
is a reimplementation of the maybe
function with a different
name to avoid clashing with the Maybe
data type when promoted.
sMaybe_ :: forall b a (t :: b) (t :: (~>) a b) (t :: Maybe a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Maybe_Sym0 t) t) t :: b) Source #
data SEither :: forall (a :: Type) (b :: Type). Either a b -> Type where Source #
SLeft :: forall (a :: Type) (b :: Type) (n :: a). (Sing n) -> SEither ('Left n :: Either (a :: Type) (b :: Type)) | |
SRight :: forall (a :: Type) (b :: Type) (n :: b). (Sing n) -> SEither ('Right n :: Either (a :: Type) (b :: Type)) |
Instances
either_
is a reimplementation of the either
function with a different
name to avoid clashing with the Either
data type when promoted.
sEither_ :: forall a c b (t :: (~>) a c) (t :: (~>) b c) (t :: Either a b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Either_Sym0 t) t) t :: c) Source #
data SOrdering :: Ordering -> Type where Source #
SLT :: SOrdering ('LT :: Ordering) | |
SEQ :: SOrdering ('EQ :: Ordering) | |
SGT :: SOrdering ('GT :: Ordering) |
Instances
TestCoercion SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SOrdering z) Source # | |
(Kind) This is the kind of type-level symbols. Declared here because class IP needs it
Instances
data SList :: forall (a :: Type). [a] -> Type where Source #
SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) | |
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 |
Instances
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing [a]) => Show (SList z) Source # | |
Tuples
data STuple0 :: () -> Type where Source #
Instances
TestCoercion STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (STuple0 z) Source # | |
data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where Source #
STuple2 :: forall (a :: Type) (b :: Type) (n :: a) (n :: b). (Sing n) -> (Sing n) -> STuple2 ('(n, n) :: (a :: Type, b :: Type)) |
Instances
(SDecide a, SDecide b) => TestCoercion (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b) => TestEquality (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b) => Show (STuple2 z) Source # | |
data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where Source #
STuple3 :: forall (a :: Type) (b :: Type) (c :: Type) (n :: a) (n :: b) (n :: c). (Sing n) -> (Sing n) -> (Sing n) -> STuple3 ('(n, n, n) :: (a :: Type, b :: Type, c :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c) => TestCoercion (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c) => TestEquality (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c) => Show (STuple3 z) Source # | |
data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where Source #
STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (n :: a) (n :: b) (n :: c) (n :: d). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple4 ('(n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d) => TestCoercion (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d) => TestEquality (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (STuple4 z) Source # | |
data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where Source #
STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple5 ('(n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestCoercion (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestEquality (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (STuple5 z) Source # | |
data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where Source #
STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestCoercion (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestEquality (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (STuple6 z) Source # | |
data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where Source #
STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestCoercion (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestEquality (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (STuple7 z) Source # | |
type family Curry (a :: (~>) (a, b) c) (a :: a) (a :: b) :: c where ... Source #
Curry f x y = Apply f (Apply (Apply Tuple2Sym0 x) y) |
sCurry :: forall a b c (t :: (~>) (a, b) c) (t :: a) (t :: b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply CurrySym0 t) t) t :: c) Source #
sUncurry :: forall a b c (t :: (~>) a ((~>) b c)) (t :: (a, b)). Sing t -> Sing t -> Sing (Apply (Apply UncurrySym0 t) t :: c) Source #
Basic type classes
type (arg :: a) == (arg :: a) :: Bool infix 4 Source #
type a == a = Apply (Apply TFHelper_6989586621679140225Sym0 a) a
type (arg :: a) /= (arg :: a) :: Bool infix 4 Source #
type a /= a = Apply (Apply TFHelper_6989586621679140214Sym0 a) a
Instances
PEq All Source # | |
PEq Any Source # | |
PEq Void Source # | |
PEq Ordering Source # | |
PEq Natural Source # | |
PEq () Source # | |
PEq Bool Source # | |
PEq Char Source # | |
PEq Symbol Source # | |
PEq (Identity a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Down a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Max a) Source # | |
PEq (Min a) Source # | |
PEq (WrappedMonoid m) Source # | |
PEq (Dual a) Source # | |
PEq (Product a) Source # | |
PEq (Sum a) Source # | |
PEq (NonEmpty a) Source # | |
PEq (Maybe a) Source # | |
PEq (TYPE rep) Source # | |
PEq [a] Source # | |
PEq (Either a b) Source # | |
PEq (Proxy s) Source # | |
PEq (Arg a b) Source # | |
PEq (a, b) Source # | |
PEq (Const a b) Source # | |
PEq (a, b, c) Source # | |
PEq (a, b, c, d) Source # | |
PEq (a, b, c, d, e) Source # | |
PEq (a, b, c, d, e, f) Source # | |
PEq (a, b, c, d, e, f, g) Source # | |
Nothing
(%==) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) infix 4 Source #
default (%==) :: forall (t :: a) (t :: a). (Apply (Apply (==@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679140225Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) Source #
(%/=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t :: Bool) infix 4 Source #
Instances
type Compare (arg :: a) (arg :: a) :: Ordering Source #
type Compare a a = Apply (Apply Compare_6989586621679178639Sym0 a) a
type (arg :: a) < (arg :: a) :: Bool infix 4 Source #
type a < a = Apply (Apply TFHelper_6989586621679178660Sym0 a) a
type (arg :: a) <= (arg :: a) :: Bool infix 4 Source #
type a <= a = Apply (Apply TFHelper_6989586621679178676Sym0 a) a
type (arg :: a) > (arg :: a) :: Bool infix 4 Source #
type a > a = Apply (Apply TFHelper_6989586621679178692Sym0 a) a
type (arg :: a) >= (arg :: a) :: Bool infix 4 Source #
type a >= a = Apply (Apply TFHelper_6989586621679178708Sym0 a) a
type Max (arg :: a) (arg :: a) :: a Source #
type Max a a = Apply (Apply Max_6989586621679178724Sym0 a) a
type Min (arg :: a) (arg :: a) :: a Source #
type Min a a = Apply (Apply Min_6989586621679178740Sym0 a) a
Instances
POrd All Source # | |
POrd Any Source # | |
POrd Void Source # | |
POrd Ordering Source # | |
POrd Natural Source # | |
POrd () Source # | |
POrd Bool Source # | |
POrd Char Source # | |
POrd Symbol Source # | |
POrd (Identity a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Down a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Max a) Source # | |
POrd (Min a) Source # | |
POrd (WrappedMonoid m) Source # | |
POrd (Dual a) Source # | |
POrd (Product a) Source # | |
POrd (Sum a) Source # | |
POrd (NonEmpty a) Source # | |
POrd (Maybe a) Source # | |
POrd [a] Source # | |
POrd (Either a b) Source # | |
POrd (Proxy s) Source # | |
POrd (Arg a b) Source # | |
POrd (a, b) Source # | |
POrd (Const a b) Source # | |
POrd (a, b, c) Source # | |
POrd (a, b, c, d) Source # | |
POrd (a, b, c, d, e) Source # | |
POrd (a, b, c, d, e, f) Source # | |
POrd (a, b, c, d, e, f, g) Source # | |
class SEq a => SOrd a where Source #
Nothing
sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
default sCompare :: forall (t :: a) (t :: a). (Apply (Apply CompareSym0 t) t :: Ordering) ~ Apply (Apply Compare_6989586621679178639Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
(%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) infix 4 Source #
default (%<) :: forall (t :: a) (t :: a). (Apply (Apply (<@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178660Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) Source #
(%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) infix 4 Source #
default (%<=) :: forall (t :: a) (t :: a). (Apply (Apply (<=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178676Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) Source #
(%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) infix 4 Source #
default (%>) :: forall (t :: a) (t :: a). (Apply (Apply (>@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178692Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) Source #
(%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) infix 4 Source #
default (%>=) :: forall (t :: a) (t :: a). (Apply (Apply (>=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178708Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) Source #
sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
default sMax :: forall (t :: a) (t :: a). (Apply (Apply MaxSym0 t) t :: a) ~ Apply (Apply Max_6989586621679178724Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #
Instances
SOrd Bool => SOrd All Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Bool => SOrd Any Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Void Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Ordering Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Natural Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd () Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Bool Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Char Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Symbol Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Identity a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Maybe a) => SOrd (First a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Maybe a) => SOrd (Last a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Down a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (First a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Last a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Max a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Min a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd m => SOrd (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Dual a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Product a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Sum a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Maybe a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd [a]) => SOrd [a] Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b) => SOrd (Either a b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sCompare :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sCompare :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b) => SOrd (a, b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # |
As a matter of convenience, the Prelude.Singletons does not export
promoted/singletonized succ
and pred
, due to likely conflicts with
unary numbers. Please import Data.Singletons.Base.Enum directly if
you want these.
type ToEnum (arg :: Natural) :: a Source #
type FromEnum (arg :: a) :: Natural Source #
type EnumFromTo (arg :: a) (arg :: a) :: [a] Source #
type EnumFromTo a a = Apply (Apply EnumFromTo_6989586621679606524Sym0 a) a
type EnumFromThenTo (arg :: a) (arg :: a) (arg :: a) :: [a] Source #
type EnumFromThenTo a a a = Apply (Apply (Apply EnumFromThenTo_6989586621679606536Sym0 a) a) a
Instances
PEnum Ordering Source # | |
PEnum Natural Source # | |
PEnum () Source # | |
PEnum Bool Source # | |
PEnum Char Source # | |
PEnum (Identity a) Source # | |
PEnum (First a) Source # | |
PEnum (Last a) Source # | |
PEnum (Max a) Source # | |
PEnum (Min a) Source # | |
PEnum (WrappedMonoid a) Source # | |
PEnum (Proxy s) Source # | |
PEnum (Const a b) Source # | |
sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a) Source #
sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural) Source #
sEnumFromTo :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #
default sEnumFromTo :: forall (t :: a) (t :: a). (Apply (Apply EnumFromToSym0 t) t :: [a]) ~ Apply (Apply EnumFromTo_6989586621679606524Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply EnumFromToSym0 t) t :: [a]) Source #
sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #
default sEnumFromThenTo :: forall (t :: a) (t :: a) (t :: a). (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) ~ Apply (Apply (Apply EnumFromThenTo_6989586621679606536Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t) t) t :: [a]) Source #
Instances
SEnum Ordering Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Ordering). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Ordering). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Ordering). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Ordering) (t2 :: Ordering) (t3 :: Ordering). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Natural Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Natural). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Natural). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Natural). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Natural). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum () Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: ()). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: ()). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: ()). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: ()) (t2 :: ()) (t3 :: ()). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Bool Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Bool). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Bool). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Bool). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Bool) (t2 :: Bool) (t3 :: Bool). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Char Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Char). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Char). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Char). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Char) (t2 :: Char) (t3 :: Char). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Identity a) (t2 :: Identity a) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (First a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: First a) (t2 :: First a) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Last a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Last a) (t2 :: Last a) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Max a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Max a) (t2 :: Max a) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Min a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Min a) (t2 :: Min a) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (WrappedMonoid a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a) (t3 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sSucc :: forall (t :: Proxy s). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Proxy s). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Proxy s). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Proxy s) (t2 :: Proxy s) (t3 :: Proxy s). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Const a b) (t2 :: Const a b) (t3 :: Const a b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # |
Instances
PBounded All Source # | |
PBounded Any Source # | |
PBounded Ordering Source # | |
PBounded () Source # | |
PBounded Bool Source # | |
PBounded Char Source # | |
PBounded (Identity a) Source # | |
PBounded (First a) Source # | |
PBounded (Last a) Source # | |
PBounded (Max a) Source # | |
PBounded (Min a) Source # | |
PBounded (WrappedMonoid m) Source # | |
PBounded (Dual a) Source # | |
PBounded (Product a) Source # | |
PBounded (Sum a) Source # | |
PBounded (Proxy s) Source # | |
PBounded (a, b) Source # | |
PBounded (Const a b) Source # | |
PBounded (a, b, c) Source # | |
PBounded (a, b, c, d) Source # | |
PBounded (a, b, c, d, e) Source # | |
PBounded (a, b, c, d, e, f) Source # | |
PBounded (a, b, c, d, e, f, g) Source # | |
class SBounded a where Source #
sMinBound :: Sing (MinBoundSym0 :: a) Source #
sMaxBound :: Sing (MaxBoundSym0 :: a) Source #
Instances
Numbers
Numeric type classes
type (arg :: a) + (arg :: a) :: a infixl 6 Source #
type (arg :: a) - (arg :: a) :: a infixl 6 Source #
type a - a = Apply (Apply TFHelper_6989586621679582484Sym0 a) a
type (arg :: a) * (arg :: a) :: a infixl 7 Source #
type Negate (arg :: a) :: a Source #
type Negate a = Apply Negate_6989586621679582494Sym0 a
type Abs (arg :: a) :: a Source #
type Signum (arg :: a) :: a Source #
type FromInteger (arg :: Natural) :: a Source #
(%+), (%*), sAbs, sSignum, sFromInteger
(%+) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (+@#@$) t) t :: a) infixl 6 Source #
(%-) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t :: a) infixl 6 Source #
default (%-) :: forall (t :: a) (t :: a). (Apply (Apply (-@#@$) t) t :: a) ~ Apply (Apply TFHelper_6989586621679582484Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (-@#@$) t) t :: a) Source #
(%*) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (*@#@$) t) t :: a) infixl 7 Source #
sNegate :: forall (t :: a). Sing t -> Sing (Apply NegateSym0 t :: a) Source #
default sNegate :: forall (t :: a). (Apply NegateSym0 t :: a) ~ Apply Negate_6989586621679582494Sym0 t => Sing t -> Sing (Apply NegateSym0 t :: a) Source #
sAbs :: forall (t :: a). Sing t -> Sing (Apply AbsSym0 t :: a) Source #
sSignum :: forall (t :: a). Sing t -> Sing (Apply SignumSym0 t :: a) Source #
sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t :: a) Source #
Instances
SNum Natural Source # | |
Defined in GHC.Num.Singletons (%+) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Natural). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Natural). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Natural). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons (%+) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Identity a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Identity a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Identity a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Down a) Source # | |
Defined in GHC.Num.Singletons (%+) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Down a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Down a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Down a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Max a) Source # | |
Defined in Data.Semigroup.Singletons (%+) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Max a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Max a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Max a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Min a) Source # | |
Defined in Data.Semigroup.Singletons (%+) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Min a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Min a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Min a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Product a) Source # | |
Defined in Data.Semigroup.Singletons.Internal (%+) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Product a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Product a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Product a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Sum a) Source # | |
Defined in Data.Semigroup.Singletons.Internal (%+) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Sum a). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Sum a). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Sum a). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # | |
SNum a => SNum (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons (%+) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (+@#@$) t1) t2) Source # (%-) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (-@#@$) t1) t2) Source # (%*) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*@#@$) t1) t2) Source # sNegate :: forall (t :: Const a b). Sing t -> Sing (Apply NegateSym0 t) Source # sAbs :: forall (t :: Const a b). Sing t -> Sing (Apply AbsSym0 t) Source # sSignum :: forall (t :: Const a b). Sing t -> Sing (Apply SignumSym0 t) Source # sFromInteger :: forall (t :: Natural). Sing t -> Sing (Apply FromIntegerSym0 t) Source # |
Numeric functions
sSubtract :: forall a (t :: a) (t :: a). SNum a => Sing t -> Sing t -> Sing (Apply (Apply SubtractSym0 t) t :: a) Source #
Semigroups and Monoids
class PSemigroup a Source #
Instances
PSemigroup All Source # | |
PSemigroup Any Source # | |
PSemigroup Void Source # | |
PSemigroup Ordering Source # | |
PSemigroup () Source # | |
PSemigroup Symbol Source # | |
PSemigroup (Identity a) Source # | |
PSemigroup (First a) Source # | |
PSemigroup (Last a) Source # | |
PSemigroup (Down a) Source # | |
PSemigroup (First a) Source # | |
PSemigroup (Last a) Source # | |
PSemigroup (Max a) Source # | |
PSemigroup (Min a) Source # | |
PSemigroup (WrappedMonoid m) Source # | |
PSemigroup (Dual a) Source # | |
PSemigroup (Product a) Source # | |
PSemigroup (Sum a) Source # | |
PSemigroup (NonEmpty a) Source # | |
PSemigroup (Maybe a) Source # | |
PSemigroup [a] Source # | |
PSemigroup (Either a b) Source # | |
PSemigroup (Proxy s) Source # | |
PSemigroup (a ~> b) Source # | |
PSemigroup (a, b) Source # | |
PSemigroup (Const a b) Source # | |
PSemigroup (a, b, c) Source # | |
PSemigroup (a, b, c, d) Source # | |
PSemigroup (a, b, c, d, e) Source # | |
class SSemigroup a where Source #
(%<>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<>@#@$) t) t :: a) infixr 6 Source #
Instances
type Mappend (arg :: a) (arg :: a) :: a Source #
type Mappend a a = Apply (Apply Mappend_6989586621680336638Sym0 a) a
type Mconcat (arg :: [a]) :: a Source #
type Mconcat a = Apply Mconcat_6989586621680336652Sym0 a
Instances
PMonoid All Source # | |
PMonoid Any Source # | |
PMonoid Ordering Source # | |
PMonoid () Source # | |
PMonoid Symbol Source # | |
PMonoid (Identity a) Source # | |
PMonoid (First a) Source # | |
PMonoid (Last a) Source # | |
PMonoid (Down a) Source # | |
PMonoid (Max a) Source # | |
PMonoid (Min a) Source # | |
PMonoid (WrappedMonoid m) Source # | |
PMonoid (Dual a) Source # | |
PMonoid (Product a) Source # | |
PMonoid (Sum a) Source # | |
PMonoid (Maybe a) Source # | |
PMonoid [a] Source # | |
PMonoid (Proxy s) Source # | |
PMonoid (a ~> b) Source # | |
PMonoid (a, b) Source # | |
PMonoid (Const a b) Source # | |
PMonoid (a, b, c) Source # | |
PMonoid (a, b, c, d) Source # | |
PMonoid (a, b, c, d, e) Source # | |
class SSemigroup a => SMonoid a where Source #
sMempty :: Sing (MemptySym0 :: a) Source #
sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
default sMappend :: forall (t :: a) (t :: a). (Apply (Apply MappendSym0 t) t :: a) ~ Apply (Apply Mappend_6989586621680336638Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
default sMconcat :: forall (t :: [a]). (Apply MconcatSym0 t :: a) ~ Apply Mconcat_6989586621680336652Sym0 t => Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
Instances
Monads and functors
type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #
type (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #
type a <$ a = Apply (Apply TFHelper_6989586621679329121Sym0 a) a
Instances
PFunctor Identity Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Down Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Max Source # | |
PFunctor Min Source # | |
PFunctor Dual Source # | |
PFunctor Product Source # | |
PFunctor Sum Source # | |
PFunctor NonEmpty Source # | |
PFunctor Maybe Source # | |
PFunctor [] Source # | |
PFunctor (Either a) Source # | |
PFunctor (Proxy :: Type -> Type) Source # | |
PFunctor (Arg a) Source # | |
PFunctor ((,) a) Source # | |
PFunctor (Const m :: Type -> Type) Source # | |
PFunctor (Product f g) Source # | |
PFunctor (Sum f g) Source # | |
PFunctor (Compose f g) Source # | |
class SFunctor f where Source #
sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #
(%<$) :: forall a b (t :: a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #
Instances
SFunctor Identity Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Down Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Max Source # | |
SFunctor Min Source # | |
SFunctor Dual Source # | |
SFunctor Product Source # | |
SFunctor Sum Source # | |
SFunctor NonEmpty Source # | |
SFunctor Maybe Source # | |
SFunctor [] Source # | |
SFunctor (Either a) Source # | |
SFunctor (Proxy :: Type -> Type) Source # | |
SFunctor (Arg a) Source # | |
SFunctor ((,) a) Source # | |
SFunctor (Const m :: Type -> Type) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # | |
(%<$>) :: forall a b f (t :: (~>) a b) (t :: f a). SFunctor f => Sing t -> Sing t -> Sing (Apply (Apply (<$>@#@$) t) t :: f b) infixl 4 Source #
class PApplicative f Source #
type Pure (arg :: a) :: f a Source #
type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #
type a <*> a = Apply (Apply TFHelper_6989586621679329161Sym0 a) a
type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #
type a *> a = Apply (Apply TFHelper_6989586621679329193Sym0 a) a
type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #
type a <* a = Apply (Apply TFHelper_6989586621679329204Sym0 a) a
Instances
PApplicative Identity Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Down Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Max Source # | |
PApplicative Min Source # | |
PApplicative Dual Source # | |
PApplicative Product Source # | |
PApplicative Sum Source # | |
PApplicative NonEmpty Source # | |
PApplicative Maybe Source # | |
PApplicative [] Source # | |
PApplicative (Either e) Source # | |
PApplicative (Proxy :: Type -> Type) Source # | |
PApplicative ((,) a) Source # | |
PApplicative (Const m :: Type -> Type) Source # | |
PApplicative (Product f g) Source # | |
PApplicative (Compose f g) Source # | |
class SFunctor f => SApplicative f where Source #
sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #
(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #
default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329161Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #
(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #
default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329193Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #
(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #
Instances
SApplicative Identity Source # | |
Defined in Data.Functor.Identity.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Identity (a ~> b)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Identity a) (t3 :: Identity b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative First Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Last Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Down Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative First Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Last Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Max Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Max (a ~> b)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Max a) (t3 :: Max b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Min Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Min (a ~> b)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Min a) (t3 :: Min b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Dual Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Dual (a ~> b)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Dual a) (t3 :: Dual b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Product Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Product (a ~> b)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product a) (t3 :: Product b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Sum Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Sum (a ~> b)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Sum a) (t3 :: Sum b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative NonEmpty Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: NonEmpty (a ~> b)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: NonEmpty a) (t3 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Maybe Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Maybe (a ~> b)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Maybe a) (t3 :: Maybe b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative [] Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: [a ~> b]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative (Either e) Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Either e (a ~> b)) (t2 :: Either e a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Either e a) (t3 :: Either e b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative (Proxy :: Type -> Type) Source # | |
Defined in Data.Proxy.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Proxy (a ~> b)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Proxy a) (t3 :: Proxy b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SMonoid a => SApplicative ((,) a) Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SMonoid m => SApplicative (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Compose f g (a ~> b)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Compose f g a) (t3 :: Compose f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # |
type (arg :: m a) >>= (arg :: (~>) a (m b)) :: m b infixl 1 Source #
type (arg :: m a) >> (arg :: m b) :: m b infixl 1 Source #
type a >> a = Apply (Apply TFHelper_6989586621679329232Sym0 a) a
type Return (arg :: a) :: m a Source #
type Return a = Apply Return_6989586621679329249Sym0 a
Instances
PMonad Identity Source # | |
PMonad First Source # | |
PMonad Last Source # | |
PMonad Down Source # | |
PMonad First Source # | |
PMonad Last Source # | |
PMonad Max Source # | |
PMonad Min Source # | |
PMonad Dual Source # | |
PMonad Product Source # | |
PMonad Sum Source # | |
PMonad NonEmpty Source # | |
PMonad Maybe Source # | |
PMonad [] Source # | |
PMonad (Either e) Source # | |
PMonad (Proxy :: Type -> Type) Source # | |
PMonad ((,) a) Source # | |
PMonad (Product f g) Source # | |
class SApplicative m => SMonad m where Source #
(%>>=) :: forall a b (t :: m a) (t :: (~>) a (m b)). Sing t -> Sing t -> Sing (Apply (Apply (>>=@#@$) t) t :: m b) infixl 1 Source #
(%>>) :: forall a b (t :: m a) (t :: m b). Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) infixl 1 Source #
default (%>>) :: forall a b (t :: m a) (t :: m b). (Apply (Apply (>>@#@$) t) t :: m b) ~ Apply (Apply TFHelper_6989586621679329232Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>>@#@$) t) t :: m b) Source #
sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #
default sReturn :: forall a (t :: a). (Apply ReturnSym0 t :: m a) ~ Apply Return_6989586621679329249Sym0 t => Sing t -> Sing (Apply ReturnSym0 t :: m a) Source #
Instances
SMonad Identity Source # | |
Defined in Data.Functor.Identity.Singletons (%>>=) :: forall a b (t1 :: Identity a) (t2 :: a ~> Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad First Source # | |
Defined in Data.Monoid.Singletons (%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Last Source # | |
Defined in Data.Monoid.Singletons (%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Down Source # | |
Defined in Control.Monad.Singletons (%>>=) :: forall a b (t1 :: Down a) (t2 :: a ~> Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad First Source # | |
Defined in Data.Semigroup.Singletons (%>>=) :: forall a b (t1 :: First a) (t2 :: a ~> First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Last Source # | |
Defined in Data.Semigroup.Singletons (%>>=) :: forall a b (t1 :: Last a) (t2 :: a ~> Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Max Source # | |
Defined in Data.Semigroup.Singletons (%>>=) :: forall a b (t1 :: Max a) (t2 :: a ~> Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Min Source # | |
Defined in Data.Semigroup.Singletons (%>>=) :: forall a b (t1 :: Min a) (t2 :: a ~> Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Dual Source # | |
Defined in Data.Semigroup.Singletons.Internal (%>>=) :: forall a b (t1 :: Dual a) (t2 :: a ~> Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Product Source # | |
Defined in Data.Semigroup.Singletons.Internal (%>>=) :: forall a b (t1 :: Product a) (t2 :: a ~> Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Sum Source # | |
Defined in Data.Semigroup.Singletons.Internal (%>>=) :: forall a b (t1 :: Sum a) (t2 :: a ~> Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad NonEmpty Source # | |
Defined in Control.Monad.Singletons.Internal (%>>=) :: forall a b (t1 :: NonEmpty a) (t2 :: a ~> NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad Maybe Source # | |
Defined in Control.Monad.Singletons.Internal (%>>=) :: forall a b (t1 :: Maybe a) (t2 :: a ~> Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad [] Source # | |
Defined in Control.Monad.Singletons.Internal (%>>=) :: forall a b (t1 :: [a]) (t2 :: a ~> [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad (Either e) Source # | |
Defined in Control.Monad.Singletons.Internal (%>>=) :: forall a b (t1 :: Either e a) (t2 :: a ~> Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonad (Proxy :: Type -> Type) Source # | |
Defined in Data.Proxy.Singletons (%>>=) :: forall a b (t1 :: Proxy a) (t2 :: a ~> Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
SMonoid a => SMonad ((,) a) Source # | |
Defined in Control.Monad.Singletons (%>>=) :: forall a0 b (t1 :: (a, a0)) (t2 :: a0 ~> (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a0 (t :: a0). Sing t -> Sing (Apply ReturnSym0 t) Source # | |
(SMonad f, SMonad g) => SMonad (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons (%>>=) :: forall a b (t1 :: Product f g a) (t2 :: a ~> Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>=@#@$) t1) t2) Source # (%>>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>>@#@$) t1) t2) Source # sReturn :: forall a (t :: a). Sing t -> Sing (Apply ReturnSym0 t) Source # |
class PMonadFail m Source #
Instances
PMonadFail Maybe Source # | |
Defined in Control.Monad.Fail.Singletons | |
PMonadFail [] Source # | |
Defined in Control.Monad.Fail.Singletons |
class SMonad m => SMonadFail m where Source #
type family MapM_ (a :: (~>) a (m b)) (a :: t a) :: m () where ... Source #
MapM_ f a_6989586621680438245 = Apply (Apply (Apply FoldrSym0 (Apply (Apply (.@#@$) (>>@#@$)) f)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680438245 |
sMapM_ :: forall a m b t (t :: (~>) a (m b)) (t :: t a). (SFoldable t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapM_Sym0 t) t :: m ()) Source #
type family Sequence_ (a :: t (m a)) :: m () where ... Source #
Sequence_ a_6989586621680438222 = Apply (Apply (Apply FoldrSym0 (>>@#@$)) (Apply ReturnSym0 Tuple0Sym0)) a_6989586621680438222 |
sSequence_ :: forall t m a (t :: t (m a)). (SFoldable t, SMonad m) => Sing t -> Sing (Apply Sequence_Sym0 t :: m ()) Source #
(%=<<) :: forall a m b (t :: (~>) a (m b)) (t :: m a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply (=<<@#@$) t) t :: m b) infixr 1 Source #
Folds and traversals
type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #
type FoldMap a a = Apply (Apply FoldMap_6989586621680438393Sym0 a) a
type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680438407Sym0 a) a) a
type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680438445Sym0 a) a) a
type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldr1 a a = Apply (Apply Foldr1_6989586621680438482Sym0 a) a
type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldl1 a a = Apply (Apply Foldl1_6989586621680438503Sym0 a) a
type Elem (arg :: a) (arg :: t a) :: Bool Source #
type Elem a a = Apply (Apply Elem_6989586621680438568Sym0 a) a
type Maximum (arg :: t a) :: a Source #
type Maximum a = Apply Maximum_6989586621680438582Sym0 a
type Minimum (arg :: t a) :: a Source #
type Minimum a = Apply Minimum_6989586621680438597Sym0 a
type Sum (arg :: t a) :: a Source #
type Sum a = Apply Sum_6989586621680438612Sym0 a
type Product (arg :: t a) :: a Source #
type Product a = Apply Product_6989586621680438621Sym0 a
Instances
PFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Max Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Min Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Dual Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Product Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Sum Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable [] Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # |
class SFoldable t where Source #
Nothing
sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680438393Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680438407Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680438445Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680438482Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680438503Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680438568Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680438582Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680438597Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #
default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680438612Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #
sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680438621Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
Instances
SFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons sFold :: forall m (t1 :: Identity m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Identity a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Identity a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable First Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Last Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable First Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Last Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Max Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Max m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Max a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Max a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Min Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Min m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Min a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Min a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Dual Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Dual m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Dual a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Dual a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Product Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Product m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Product a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Sum Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Sum m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Sum a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: NonEmpty m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: NonEmpty a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: NonEmpty a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Maybe m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Maybe a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Maybe a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable [] Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: [m]). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: [a]). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Either a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Either a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: Either a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Proxy m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Proxy a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Proxy a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Arg a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Arg a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: Arg a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: (a, m)). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: (a, a0)). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: (a, a0)). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sFold :: forall m0 (t1 :: Const m m0). SMonoid m0 => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m0 (t1 :: a ~> m0) (t2 :: Const m a). SMonoid m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Const m a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sFold :: forall m (t1 :: Product f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Product f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sFold :: forall m (t1 :: Sum f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Sum f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sFold :: forall m (t1 :: Compose f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Compose f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Compose f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # |
class PTraversable t Source #
type Traverse (arg :: (~>) a (f b)) (arg :: t a) :: f (t b) Source #
type Traverse a a = Apply (Apply Traverse_6989586621680796862Sym0 a) a
type SequenceA (arg :: t (f a)) :: f (t a) Source #
type SequenceA a = Apply SequenceA_6989586621680796874Sym0 a
type MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #
type MapM a a = Apply (Apply MapM_6989586621680796884Sym0 a) a
type Sequence (arg :: t (m a)) :: m (t a) Source #
type Sequence a = Apply Sequence_6989586621680796898Sym0 a
Instances
PTraversable Identity Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable Max Source # | |
PTraversable Min Source # | |
PTraversable Dual Source # | |
PTraversable Product Source # | |
PTraversable Sum Source # | |
PTraversable NonEmpty Source # | |
PTraversable Maybe Source # | |
PTraversable [] Source # | |
PTraversable (Either a) Source # | |
PTraversable (Proxy :: Type -> Type) Source # | |
PTraversable (Arg a) Source # | |
PTraversable ((,) a) Source # | |
PTraversable (Const m :: Type -> Type) Source # | |
PTraversable (Product f g) Source # | |
PTraversable (Sum f g) Source # | |
PTraversable (Compose f g) Source # | |
class (SFunctor t, SFoldable t) => STraversable t where Source #
Nothing
sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
default sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). ((Apply (Apply TraverseSym0 t) t :: f (t b)) ~ Apply (Apply Traverse_6989586621680796862Sym0 t) t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
default sSequenceA :: forall f a (t :: t (f a)). ((Apply SequenceASym0 t :: f (t a)) ~ Apply SequenceA_6989586621680796874Sym0 t, SApplicative f) => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
default sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). ((Apply (Apply MapMSym0 t) t :: m (t b)) ~ Apply (Apply MapM_6989586621680796884Sym0 t) t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
default sSequence :: forall m a (t :: t (m a)). ((Apply SequenceSym0 t :: m (t a)) ~ Apply Sequence_6989586621680796898Sym0 t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
Instances
STraversable Identity Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Identity a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Identity (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Identity a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Identity (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable First Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Last Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable First Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Last Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Max Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Max a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Max (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Max a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Max (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Min Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Min a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Min (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Min a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Min (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Dual Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Dual a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Dual (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Dual a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Dual (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Product Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Product a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Product (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Product (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Sum Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Sum a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Sum (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Sum (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable NonEmpty Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: NonEmpty a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: NonEmpty (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: NonEmpty a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: NonEmpty (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Maybe Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Maybe a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Maybe (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Maybe a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Maybe (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable [] Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: [a]). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: [f a]). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: [a]). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: [m a]). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Either a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Either a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Either a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Either a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: Either a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Proxy :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Proxy a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Proxy (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Proxy a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Proxy (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Arg a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Arg a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Arg a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: Arg a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable ((,) a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: (a, a0)). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: (a, f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: (a, a0)). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: (a, m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Const m :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Const m a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Const m (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m0 :: Type -> Type) b (t1 :: a ~> m0 b) (t2 :: Const m a). SMonad m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m0 :: Type -> Type) a (t1 :: Const m (m0 a)). SMonad m0 => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Product f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Product f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Product f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Sum f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Sum f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Sum f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Compose f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Compose f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Compose f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Compose f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # |
Miscellaneous functions
sConst :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply ConstSym0 t) t :: a) Source #
type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #
(f . g) a_6989586621679278893 = Apply (Apply (Apply (Apply Lambda_6989586621679278905Sym0 f) g) a_6989586621679278893) a_6989586621679278893 |
(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #
type family Flip (a :: (~>) a ((~>) b c)) (a :: b) (a :: a) :: c where ... Source #
Flip f x y = Apply (Apply f y) x |
sFlip :: forall a b c (t :: (~>) a ((~>) b c)) (t :: b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FlipSym0 t) t) t :: c) Source #
(%$) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($@#@$) t) t :: b) infixr 0 Source #
type family Until (a :: (~>) a Bool) (a :: (~>) a a) (a :: a) :: a where ... Source #
Until p f a_6989586621679278835 = Apply (Let6989586621679278847GoSym3 p f a_6989586621679278835) a_6989586621679278835 |
sUntil :: forall a (t :: (~>) a Bool) (t :: (~>) a a) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply UntilSym0 t) t) t :: a) Source #
sAsTypeOf :: forall a (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply AsTypeOfSym0 t) t :: a) Source #
type family Error (str :: k0) :: k where ... Source #
The promotion of error
. This version is more poly-kinded for
easier use.
type family ErrorWithoutStackTrace (str :: k0) :: k where ... Source #
The promotion of errorWithoutStackTrace
. This version is more
poly-kinded for easier use.
sErrorWithoutStackTrace :: Sing (str :: Symbol) -> a Source #
The singleton for errorWithoutStackTrace
.
sUndefined :: HasCallStack => a Source #
The singleton for undefined
.
sSeq :: forall a b (t :: a) (t :: b). Sing t -> Sing t -> Sing (Apply (Apply SeqSym0 t) t :: b) infixr 0 Source #
type family (a :: (~>) a b) $! (a :: a) :: b where ... infixr 0 Source #
f $! x = Apply f (Let6989586621679278863VxSym2 f x) |
(%$!) :: forall a b (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ($!@#@$) t) t :: b) infixr 0 Source #
List operations
sMap :: forall a b (t :: (~>) a b) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply MapSym0 t) t :: [b]) Source #
(%++) :: forall a (t :: [a]) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply (++@#@$) t) t :: [a]) infixr 5 Source #
sFilter :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply FilterSym0 t) t :: [a]) Source #
(%!!) :: forall a (t :: [a]) (t :: Natural). Sing t -> Sing t -> Sing (Apply (Apply (!!@#@$) t) t :: a) infixl 9 Source #
type family Null (arg :: t a) :: Bool Source #
Instances
type family Length (arg :: t a) :: Natural Source #
Instances
sLength :: forall a (t :: t a). SFoldable t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #
Special folds
type family And (a :: t Bool) :: Bool where ... Source #
And a_6989586621680438183 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 All_Sym0)) a_6989586621680438183 |
type family Or (a :: t Bool) :: Bool where ... Source #
Or a_6989586621680438177 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 Any_Sym0)) a_6989586621680438177 |
type family Any (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #
Any p a_6989586621680438168 = Apply (Apply (Apply (.@#@$) GetAnySym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) Any_Sym0) p))) a_6989586621680438168 |
sAny :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AnySym0 t) t :: Bool) Source #
type family All (a :: (~>) a Bool) (a :: t a) :: Bool where ... Source #
All p a_6989586621680438159 = Apply (Apply (Apply (.@#@$) GetAllSym0) (Apply FoldMapSym0 (Apply (Apply (.@#@$) All_Sym0) p))) a_6989586621680438159 |
sAll :: forall a t (t :: (~>) a Bool) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply AllSym0 t) t :: Bool) Source #
sConcat :: forall t a (t :: t [a]). SFoldable t => Sing t -> Sing (Apply ConcatSym0 t :: [a]) Source #
sConcatMap :: forall a b t (t :: (~>) a [b]) (t :: t a). SFoldable t => Sing t -> Sing t -> Sing (Apply (Apply ConcatMapSym0 t) t :: [b]) Source #
Building lists
Scans
sScanl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanlSym0 t) t) t :: [b]) Source #
sScanl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanl1Sym0 t) t :: [a]) Source #
sScanr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: [a]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ScanrSym0 t) t) t :: [b]) Source #
type family Scanr1 (a :: (~>) a ((~>) a a)) (a :: [a]) :: [a] where ... Source #
Scanr1 _ '[] = NilSym0 | |
Scanr1 _ '[x] = Apply (Apply (:@#@$) x) NilSym0 | |
Scanr1 f ('(:) x ('(:) wild_6989586621679848032 wild_6989586621679848034)) = Case_6989586621679852058 f x wild_6989586621679848032 wild_6989586621679848034 (Let6989586621679852056Scrutinee_6989586621679848026Sym4 f x wild_6989586621679848032 wild_6989586621679848034) |
sScanr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply Scanr1Sym0 t) t :: [a]) Source #
Infinite lists
type family Replicate (a :: Natural) (a :: a) :: [a] where ... Source #
Replicate n x = Case_6989586621679851190 n x (Let6989586621679851188Scrutinee_6989586621679848128Sym2 n x) |
sReplicate :: forall a (t :: Natural) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply ReplicateSym0 t) t :: [a]) Source #
Sublists
sTake :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeSym0 t) t :: [a]) Source #
sDrop :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropSym0 t) t :: [a]) Source #
sTakeWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply TakeWhileSym0 t) t :: [a]) Source #
sDropWhile :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply DropWhileSym0 t) t :: [a]) Source #
type family Span (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #
Span _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851389XsSym0) Let6989586621679851389XsSym0 | |
Span p ('(:) x xs') = Case_6989586621679851398 p x xs' (Let6989586621679851396Scrutinee_6989586621679848108Sym3 p x xs') |
sSpan :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SpanSym0 t) t :: ([a], [a])) Source #
type family Break (a :: (~>) a Bool) (a :: [a]) :: ([a], [a]) where ... Source #
Break _ '[] = Apply (Apply Tuple2Sym0 Let6989586621679851354XsSym0) Let6989586621679851354XsSym0 | |
Break p ('(:) x xs') = Case_6989586621679851363 p x xs' (Let6989586621679851361Scrutinee_6989586621679848110Sym3 p x xs') |
sBreak :: forall a (t :: (~>) a Bool) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply BreakSym0 t) t :: ([a], [a])) Source #
type family SplitAt (a :: Natural) (a :: [a]) :: ([a], [a]) where ... Source #
SplitAt n xs = Apply (Apply Tuple2Sym0 (Apply (Apply TakeSym0 n) xs)) (Apply (Apply DropSym0 n) xs) |
sSplitAt :: forall a (t :: Natural) (t :: [a]). Sing t -> Sing t -> Sing (Apply (Apply SplitAtSym0 t) t :: ([a], [a])) Source #
Searching lists
sNotElem :: forall a t (t :: a) (t :: t a). (SFoldable t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply NotElemSym0 t) t :: Bool) Source #
type family Lookup (a :: a) (a :: [(a, b)]) :: Maybe b where ... Source #
Lookup _key '[] = NothingSym0 | |
Lookup key ('(:) '(x, y) xys) = Case_6989586621679851256 key x y xys (Let6989586621679851254Scrutinee_6989586621679848124Sym4 key x y xys) |
sLookup :: forall a b (t :: a) (t :: [(a, b)]). SEq a => Sing t -> Sing t -> Sing (Apply (Apply LookupSym0 t) t :: Maybe b) Source #
Zipping and unzipping lists
sZip :: forall a b (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing (Apply (Apply ZipSym0 t) t :: [(a, b)]) Source #
type family Zip3 (a :: [a]) (a :: [b]) (a :: [c]) :: [(a, b, c)] where ... Source #
Zip3 ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply Tuple3Sym0 a) b) c)) (Apply (Apply (Apply Zip3Sym0 as) bs) cs) | |
Zip3 '[] '[] '[] = NilSym0 | |
Zip3 '[] '[] ('(:) _ _) = NilSym0 | |
Zip3 '[] ('(:) _ _) '[] = NilSym0 | |
Zip3 '[] ('(:) _ _) ('(:) _ _) = NilSym0 | |
Zip3 ('(:) _ _) '[] '[] = NilSym0 | |
Zip3 ('(:) _ _) '[] ('(:) _ _) = NilSym0 | |
Zip3 ('(:) _ _) ('(:) _ _) '[] = NilSym0 |
sZip3 :: forall a b c (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Zip3Sym0 t) t) t :: [(a, b, c)]) Source #
sZipWith :: forall a b c (t :: (~>) a ((~>) b c)) (t :: [a]) (t :: [b]). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ZipWithSym0 t) t) t :: [c]) Source #
type family ZipWith3 (a :: (~>) a ((~>) b ((~>) c d))) (a :: [a]) (a :: [b]) (a :: [c]) :: [d] where ... Source #
ZipWith3 z ('(:) a as) ('(:) b bs) ('(:) c cs) = Apply (Apply (:@#@$) (Apply (Apply (Apply z a) b) c)) (Apply (Apply (Apply (Apply ZipWith3Sym0 z) as) bs) cs) | |
ZipWith3 _ '[] '[] '[] = NilSym0 | |
ZipWith3 _ '[] '[] ('(:) _ _) = NilSym0 | |
ZipWith3 _ '[] ('(:) _ _) '[] = NilSym0 | |
ZipWith3 _ '[] ('(:) _ _) ('(:) _ _) = NilSym0 | |
ZipWith3 _ ('(:) _ _) '[] '[] = NilSym0 | |
ZipWith3 _ ('(:) _ _) '[] ('(:) _ _) = NilSym0 | |
ZipWith3 _ ('(:) _ _) ('(:) _ _) '[] = NilSym0 |
sZipWith3 :: forall a b c d (t :: (~>) a ((~>) b ((~>) c d))) (t :: [a]) (t :: [b]) (t :: [c]). Sing t -> Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (Apply ZipWith3Sym0 t) t) t) t :: [d]) Source #
type family Unzip (a :: [(a, b)]) :: ([a], [b]) where ... Source #
Unzip xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851818Sym0 xs)) (Apply (Apply Tuple2Sym0 NilSym0) NilSym0)) xs |
type family Unzip3 (a :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #
Unzip3 xs = Apply (Apply (Apply FoldrSym0 (Apply Lambda_6989586621679851800Sym0 xs)) (Apply (Apply (Apply Tuple3Sym0 NilSym0) NilSym0) NilSym0)) xs |
sUnzip3 :: forall a b c (t :: [(a, b, c)]). Sing t -> Sing (Apply Unzip3Sym0 t :: ([a], [b], [c])) Source #
Functions on Symbol
s
type family Unlines (a :: [Symbol]) :: Symbol where ... Source #
Unlines '[] = "" | |
Unlines ('(:) l ls) = Apply (Apply (<>@#@$) l) (Apply (Apply (<>@#@$) "\n") (Apply UnlinesSym0 ls)) |
Converting to and from Symbol
Converting to Symbol
type ShowsPrec (arg :: Natural) (arg :: a) (arg :: Symbol) :: Symbol Source #
type ShowsPrec a a a = Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 a) a) a
type Show_ (arg :: a) :: Symbol Source #
type Show_ a = Apply Show__6989586621680249883Sym0 a
type ShowList (arg :: [a]) (arg :: Symbol) :: Symbol Source #
type ShowList a a = Apply (Apply ShowList_6989586621680249891Sym0 a) a
Instances
PShow All Source # | |
PShow Any Source # | |
PShow Void Source # | |
PShow Ordering Source # | |
PShow Natural Source # | |
PShow () Source # | |
PShow Bool Source # | |
PShow Char Source # | |
PShow Symbol Source # | |
PShow (Identity a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (Max a) Source # | |
PShow (Min a) Source # | |
PShow (WrappedMonoid m) Source # | |
PShow (Dual a) Source # | |
PShow (Product a) Source # | |
PShow (Sum a) Source # | |
PShow (NonEmpty a) Source # | |
PShow (Maybe a) Source # | |
PShow [a] Source # | |
PShow (Either a b) Source # | |
PShow (Proxy s) Source # | |
PShow (Arg a b) Source # | |
PShow (a, b) Source # | |
PShow (Const a b) Source # | |
PShow (a, b, c) Source # | |
PShow (a, b, c, d) Source # | |
PShow (a, b, c, d, e) Source # | |
PShow (a, b, c, d, e, f) Source # | |
PShow (a, b, c, d, e, f, g) Source # | |
Nothing
sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
default sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) ~ Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
default sShow_ :: forall (t :: a). (Apply Show_Sym0 t :: Symbol) ~ Apply Show__6989586621680249883Sym0 t => Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol) Source #
Instances
SShow Bool => SShow All Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: All) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: All). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [All]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Bool => SShow Any Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Any) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Any). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Any]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Void Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Void) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Void]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Ordering Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Ordering) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Ordering). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Ordering]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Natural Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Natural). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Natural]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow () Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: ()) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: ()). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [()]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Bool Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Bool) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Bool). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Bool]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Char Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Char) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Char). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Char]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Symbol Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Symbol) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Symbol). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Symbol]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Identity a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Identity a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Identity a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Maybe a) => SShow (First a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Maybe a) => SShow (Last a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (First a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Last a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Max a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Max a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Max a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Max a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Min a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Min a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Min a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Min a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow m => SShow (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: WrappedMonoid m) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: WrappedMonoid m). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [WrappedMonoid m]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Dual a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Dual a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Dual a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Dual a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Product a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Product a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Product a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Product a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Sum a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Sum a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Sum a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Sum a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow [a]) => SShow (NonEmpty a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: NonEmpty a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: NonEmpty a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [NonEmpty a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Maybe a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Maybe a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Maybe a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Maybe a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow [a] Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: [a]) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: [a]). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [[a]]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (Either a b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Either a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Either a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Either a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Proxy s) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Proxy s). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Proxy s]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Arg a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Arg a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Arg a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (a, b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Const a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Const a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c) => SShow (a, b, c) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d) => SShow (a, b, c, d) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e) => SShow (a, b, c, d, e) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f) => SShow (a, b, c, d, e, f) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e, f)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e, f)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f, SShow g) => SShow (a, b, c, d, e, f, g) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f, g)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e, f, g)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e, f, g)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # |
type family Shows (a :: a) (a :: Symbol) :: Symbol where ... Source #
Shows s a_6989586621680249844 = Apply (Apply (Apply ShowsPrecSym0 (FromInteger 0)) s) a_6989586621680249844 |
sShows :: forall a (t :: a) (t :: Symbol). SShow a => Sing t -> Sing t -> Sing (Apply (Apply ShowsSym0 t) t :: Symbol) Source #
type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ... Source #
ShowChar a_6989586621680249816 a_6989586621680249818 = Apply (Apply ConsSymbolSym0 a_6989586621680249816) a_6989586621680249818 |
sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol) Source #
type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowString a_6989586621680249805 a_6989586621680249807 = Apply (Apply (<>@#@$) a_6989586621680249805) a_6989586621680249807 |
sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol) Source #
type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowParen b p a_6989586621680249790 = Apply (Case_6989586621680249802 b p a_6989586621680249790 b) a_6989586621680249790 |
sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol) Source #
Defunctionalization symbols
Basic data types
data IfSym0 :: (~>) Bool ((~>) k ((~>) k k)) Source #
Instances
SingI (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) (a6989586621679135270 :: Bool) Source # | |
data IfSym1 (a6989586621679135270 :: Bool) :: (~>) k ((~>) k k) Source #
Instances
SingI1 (IfSym1 :: Bool -> TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SingI c => SingI (IfSym1 c :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) (a6989586621679135271 :: k) Source # | |
Defined in Data.Bool.Singletons |
data IfSym2 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) :: (~>) k k Source #
Instances
SingI2 (IfSym2 :: Bool -> k2 -> TyFun k2 k2 -> Type) Source # | |
SingI c => SingI1 (IfSym2 c :: k1 -> TyFun k1 k1 -> Type) Source # | |
Defined in Data.Bool.Singletons | |
(SingI c, SingI t) => SingI (IfSym2 c t :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) (a6989586621679135272 :: k) Source # | |
Defined in Data.Bool.Singletons |
type family IfSym3 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) (a6989586621679135272 :: k) :: k where ... Source #
data (&&@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 3 Source #
Instances
SingI (&&@#@$) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (&&@#@$) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (&&@#@$) (a6989586621679134313 :: Bool) Source # | |
Defined in Data.Bool.Singletons |
data (&&@#@$$) (a6989586621679134313 :: Bool) :: (~>) Bool Bool infixr 3 Source #
Instances
SingI x => SingI ((&&@#@$$) x :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) (a6989586621679134314 :: Bool) Source # | |
type family (a6989586621679134313 :: Bool) &&@#@$$$ (a6989586621679134314 :: Bool) :: Bool where ... infixr 3 Source #
data (||@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 2 Source #
Instances
SingI (||@#@$) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (||@#@$) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (||@#@$) (a6989586621679134686 :: Bool) Source # | |
Defined in Data.Bool.Singletons |
data (||@#@$$) (a6989586621679134686 :: Bool) :: (~>) Bool Bool infixr 2 Source #
Instances
SingI x => SingI ((||@#@$$) x :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings ((||@#@$$) a6989586621679134686 :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply ((||@#@$$) a6989586621679134686 :: TyFun Bool Bool -> Type) (a6989586621679134687 :: Bool) Source # | |
type family (a6989586621679134686 :: Bool) ||@#@$$$ (a6989586621679134687 :: Bool) :: Bool where ... infixr 2 Source #
data NotSym0 :: (~>) Bool Bool Source #
Instances
SingI NotSym0 Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings NotSym0 Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply NotSym0 (a6989586621679135042 :: Bool) Source # | |
Defined in Data.Bool.Singletons |
type family OtherwiseSym0 :: Bool where ... Source #
type family NothingSym0 :: Maybe (a :: Type) where ... Source #
data JustSym0 :: (~>) a (Maybe (a :: Type)) Source #
Instances
SingI (JustSym0 :: TyFun a (Maybe a) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings (JustSym0 :: TyFun a (Maybe a) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (JustSym0 :: TyFun a (Maybe a) -> Type) (a6989586621679040342 :: a) Source # | |
Defined in Data.Singletons.Base.Instances |
data Maybe_Sym0 :: (~>) b ((~>) ((~>) a b) ((~>) (Maybe a) b)) Source #
Instances
SingI (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) Source # | |
Defined in Data.Maybe.Singletons sing :: Sing Maybe_Sym0 | |
SuppressUnusedWarnings (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) Source # | |
Defined in Data.Maybe.Singletons suppressUnusedWarnings :: () # | |
type Apply (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) (a6989586621679568692 :: b) Source # | |
Defined in Data.Maybe.Singletons type Apply (Maybe_Sym0 :: TyFun b ((a ~> b) ~> (Maybe a ~> b)) -> Type) (a6989586621679568692 :: b) = Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type |
data Maybe_Sym1 (a6989586621679568692 :: b) :: (~>) ((~>) a b) ((~>) (Maybe a) b) Source #
Instances
SingI1 (Maybe_Sym1 :: b -> TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # | |
Defined in Data.Maybe.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Maybe_Sym1 x) | |
SingI d => SingI (Maybe_Sym1 d :: TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # | |
Defined in Data.Maybe.Singletons sing :: Sing (Maybe_Sym1 d) | |
SuppressUnusedWarnings (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) Source # | |
Defined in Data.Maybe.Singletons suppressUnusedWarnings :: () # | |
type Apply (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) (a6989586621679568693 :: a ~> b) Source # | |
Defined in Data.Maybe.Singletons type Apply (Maybe_Sym1 a6989586621679568692 :: TyFun (a ~> b) (Maybe a ~> b) -> Type) (a6989586621679568693 :: a ~> b) = Maybe_Sym2 a6989586621679568692 a6989586621679568693 |
data Maybe_Sym2 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) :: (~>) (Maybe a) b Source #
Instances
SingI2 (Maybe_Sym2 :: b -> (a ~> b) -> TyFun (Maybe a) b -> Type) Source # | |
Defined in Data.Maybe.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Maybe_Sym2 x y) | |
SingI d => SingI1 (Maybe_Sym2 d :: (a ~> b) -> TyFun (Maybe a) b -> Type) Source # | |
Defined in Data.Maybe.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Maybe_Sym2 d x) | |
(SingI d1, SingI d2) => SingI (Maybe_Sym2 d1 d2 :: TyFun (Maybe a) b -> Type) Source # | |
Defined in Data.Maybe.Singletons sing :: Sing (Maybe_Sym2 d1 d2) | |
SuppressUnusedWarnings (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) Source # | |
Defined in Data.Maybe.Singletons suppressUnusedWarnings :: () # | |
type Apply (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) (a6989586621679568694 :: Maybe a) Source # | |
Defined in Data.Maybe.Singletons type Apply (Maybe_Sym2 a6989586621679568692 a6989586621679568693 :: TyFun (Maybe a) b -> Type) (a6989586621679568694 :: Maybe a) = Maybe_ a6989586621679568692 a6989586621679568693 a6989586621679568694 |
type family Maybe_Sym3 (a6989586621679568692 :: b) (a6989586621679568693 :: (~>) a b) (a6989586621679568694 :: Maybe a) :: b where ... Source #
Maybe_Sym3 a6989586621679568692 a6989586621679568693 a6989586621679568694 = Maybe_ a6989586621679568692 a6989586621679568693 a6989586621679568694 |
data LeftSym0 :: (~>) a (Either (a :: Type) (b :: Type)) Source #
Instances
SingI (LeftSym0 :: TyFun a (Either a b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings (LeftSym0 :: TyFun a (Either a b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (LeftSym0 :: TyFun a (Either a b) -> Type) (a6989586621679040414 :: a) Source # | |
type family LeftSym1 (a6989586621679040414 :: a) :: Either (a :: Type) (b :: Type) where ... Source #
data RightSym0 :: (~>) b (Either (a :: Type) (b :: Type)) Source #
Instances
SingI (RightSym0 :: TyFun b (Either a b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings (RightSym0 :: TyFun b (Either a b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (RightSym0 :: TyFun b (Either a b) -> Type) (a6989586621679040416 :: b) Source # | |
type family RightSym1 (a6989586621679040416 :: b) :: Either (a :: Type) (b :: Type) where ... Source #
data Either_Sym0 :: (~>) ((~>) a c) ((~>) ((~>) b c) ((~>) (Either a b) c)) Source #
Instances
SingI (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # | |
Defined in Data.Either.Singletons sing :: Sing Either_Sym0 | |
SuppressUnusedWarnings (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) Source # | |
Defined in Data.Either.Singletons suppressUnusedWarnings :: () # | |
type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679314689 :: a ~> c) Source # | |
Defined in Data.Either.Singletons type Apply (Either_Sym0 :: TyFun (a ~> c) ((b ~> c) ~> (Either a b ~> c)) -> Type) (a6989586621679314689 :: a ~> c) = Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type |
data Either_Sym1 (a6989586621679314689 :: (~>) a c) :: (~>) ((~>) b c) ((~>) (Either a b) c) Source #
Instances
SingI1 (Either_Sym1 :: (a ~> c) -> TyFun (b ~> c) (Either a b ~> c) -> Type) Source # | |
Defined in Data.Either.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym1 x) | |
SingI d => SingI (Either_Sym1 d :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # | |
Defined in Data.Either.Singletons sing :: Sing (Either_Sym1 d) | |
SuppressUnusedWarnings (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) Source # | |
Defined in Data.Either.Singletons suppressUnusedWarnings :: () # | |
type Apply (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679314690 :: b ~> c) Source # | |
Defined in Data.Either.Singletons type Apply (Either_Sym1 a6989586621679314689 :: TyFun (b ~> c) (Either a b ~> c) -> Type) (a6989586621679314690 :: b ~> c) = Either_Sym2 a6989586621679314689 a6989586621679314690 |
data Either_Sym2 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) :: (~>) (Either a b) c Source #
Instances
SingI2 (Either_Sym2 :: (a ~> c) -> (b ~> c) -> TyFun (Either a b) c -> Type) Source # | |
Defined in Data.Either.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Either_Sym2 x y) | |
SingI d => SingI1 (Either_Sym2 d :: (b ~> c) -> TyFun (Either a b) c -> Type) Source # | |
Defined in Data.Either.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Either_Sym2 d x) | |
(SingI d1, SingI d2) => SingI (Either_Sym2 d1 d2 :: TyFun (Either a b) c -> Type) Source # | |
Defined in Data.Either.Singletons sing :: Sing (Either_Sym2 d1 d2) | |
SuppressUnusedWarnings (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) Source # | |
Defined in Data.Either.Singletons suppressUnusedWarnings :: () # | |
type Apply (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) (a6989586621679314691 :: Either a b) Source # | |
Defined in Data.Either.Singletons type Apply (Either_Sym2 a6989586621679314689 a6989586621679314690 :: TyFun (Either a b) c -> Type) (a6989586621679314691 :: Either a b) = Either_ a6989586621679314689 a6989586621679314690 a6989586621679314691 |
type family Either_Sym3 (a6989586621679314689 :: (~>) a c) (a6989586621679314690 :: (~>) b c) (a6989586621679314691 :: Either a b) :: c where ... Source #
Either_Sym3 a6989586621679314689 a6989586621679314690 a6989586621679314691 = Either_ a6989586621679314689 a6989586621679314690 a6989586621679314691 |
data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #
Instances
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) Source # | |
Defined in Data.Singletons.Base.Instances |
data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #
Instances
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) Source # | |
Defined in Data.Singletons.Base.Instances |
type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ... infixr 5 Source #
a6989586621679040366 :@#@$$$ a6989586621679040367 = '(:) a6989586621679040366 a6989586621679040367 |
Tuples
type family Tuple0Sym0 :: () where ... Source #
Tuple0Sym0 = '() |
data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type)) Source #
Instances
SingI (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple2Sym0 | |
SuppressUnusedWarnings (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) = Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type |
data Tuple2Sym1 (a6989586621679040855 :: a) :: (~>) b (a :: Type, b :: Type) Source #
Instances
SingI1 (Tuple2Sym1 :: a -> TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple2Sym1 x) | |
SingI d => SingI (Tuple2Sym1 d :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple2Sym1 d) | |
SuppressUnusedWarnings (Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) = '(a6989586621679040855, a6989586621679040856) |
type family Tuple2Sym2 (a6989586621679040855 :: a) (a6989586621679040856 :: b) :: (a :: Type, b :: Type) where ... Source #
Tuple2Sym2 a6989586621679040855 a6989586621679040856 = '(a6989586621679040855, a6989586621679040856) |
data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type))) Source #
Instances
SingI (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple3Sym0 | |
SuppressUnusedWarnings (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) = Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type |
data Tuple3Sym1 (a6989586621679040886 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type)) Source #
Instances
SingI1 (Tuple3Sym1 :: a -> TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym1 x) | |
SingI d => SingI (Tuple3Sym1 d :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym1 d) | |
SuppressUnusedWarnings (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) = Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type |
data Tuple3Sym2 (a6989586621679040886 :: a) (a6989586621679040887 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type) Source #
Instances
SingI2 (Tuple3Sym2 :: a -> b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple3Sym2 x y) | |
SingI d => SingI1 (Tuple3Sym2 d :: b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym2 d x) | |
(SingI d1, SingI d2) => SingI (Tuple3Sym2 d1 d2 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) = '(a6989586621679040886, a6989586621679040887, a6989586621679040888) |
type family Tuple3Sym3 (a6989586621679040886 :: a) (a6989586621679040887 :: b) (a6989586621679040888 :: c) :: (a :: Type, b :: Type, c :: Type) where ... Source #
Tuple3Sym3 a6989586621679040886 a6989586621679040887 a6989586621679040888 = '(a6989586621679040886, a6989586621679040887, a6989586621679040888) |
data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))) Source #
Instances
SingI (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple4Sym0 | |
SuppressUnusedWarnings (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) = Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type |
data Tuple4Sym1 (a6989586621679040935 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))) Source #
Instances
SingI1 (Tuple4Sym1 :: a -> TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym1 x) | |
SingI d1 => SingI (Tuple4Sym1 d1 :: TyFun b (c ~> (d2 ~> (a, b, c, d2))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym1 d1) | |
SuppressUnusedWarnings (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) = Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type |
data Tuple4Sym2 (a6989586621679040935 :: a) (a6989586621679040936 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)) Source #
Instances
SingI2 (Tuple4Sym2 :: a -> b -> TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym2 x y) | |
SingI d1 => SingI1 (Tuple4Sym2 d1 :: b -> TyFun c (d2 ~> (a, b, c, d2)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple4Sym2 d1 d2 :: TyFun c (d3 ~> (a, b, c, d3)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) = Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type |
data Tuple4Sym3 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type) Source #
Instances
SingI d1 => SingI2 (Tuple4Sym3 d1 :: b -> c -> TyFun d2 (a, b, c, d2) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple4Sym3 d1 d2 :: c -> TyFun d3 (a, b, c, d3) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple4Sym3 d1 d2 d3 :: TyFun d4 (a, b, c, d4) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938) |
type family Tuple4Sym4 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) (a6989586621679040938 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ... Source #
Tuple4Sym4 a6989586621679040935 a6989586621679040936 a6989586621679040937 a6989586621679040938 = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938) |
data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))) Source #
Instances
SingI (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple5Sym0 | |
SuppressUnusedWarnings (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) = Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type |
data Tuple5Sym1 (a6989586621679041004 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))) Source #
Instances
SingI1 (Tuple5Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym1 x) | |
SingI d1 => SingI (Tuple5Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (a, b, c, d2, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym1 d1) | |
SuppressUnusedWarnings (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) = Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type |
data Tuple5Sym2 (a6989586621679041004 :: a) (a6989586621679041005 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))) Source #
Instances
SingI2 (Tuple5Sym2 :: a -> b -> TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym2 x y) | |
SingI d1 => SingI1 (Tuple5Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (a, b, c, d2, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple5Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (a, b, c, d3, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) = Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type |
data Tuple5Sym3 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) Source #
Instances
SingI d1 => SingI2 (Tuple5Sym3 d1 :: b -> c -> TyFun d2 (e ~> (a, b, c, d2, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple5Sym3 d1 d2 :: c -> TyFun d3 (e ~> (a, b, c, d3, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple5Sym3 d1 d2 d3 :: TyFun d4 (e ~> (a, b, c, d4, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) = Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type |
data Tuple5Sym4 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple5Sym4 d1 d2 :: c -> d3 -> TyFun e (a, b, c, d3, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple5Sym4 d1 d2 d3 :: d4 -> TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple5Sym4 d1 d2 d3 d5 :: TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008) |
type family Tuple5Sym5 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) (a6989586621679041008 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ... Source #
Tuple5Sym5 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 a6989586621679041008 = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008) |
data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))) Source #
Instances
SingI (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple6Sym0 | |
SuppressUnusedWarnings (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) = Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type |
data Tuple6Sym1 (a6989586621679041095 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))) Source #
Instances
SingI1 (Tuple6Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym1 x) | |
SingI d1 => SingI (Tuple6Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym1 d1) | |
SuppressUnusedWarnings (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) = Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type |
data Tuple6Sym2 (a6989586621679041095 :: a) (a6989586621679041096 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))) Source #
Instances
SingI2 (Tuple6Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym2 x y) | |
SingI d1 => SingI1 (Tuple6Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple6Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (a, b, c, d3, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) = Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type |
data Tuple6Sym3 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))) Source #
Instances
SingI d1 => SingI2 (Tuple6Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (a, b, c, d2, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple6Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (a, b, c, d3, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple6Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (a, b, c, d4, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) = Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type |
data Tuple6Sym4 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple6Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (a, b, c, d3, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple6Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple6Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) = Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type |
data Tuple6Sym5 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple6Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple6Sym5 d1 d2 d3 d5 :: e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple6Sym5 d1 d2 d3 d5 d6 :: TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100) |
type family Tuple6Sym6 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) (a6989586621679041100 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ... Source #
Tuple6Sym6 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 a6989586621679041100 = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100) |
data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))) Source #
Instances
SingI (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple7Sym0 | |
SuppressUnusedWarnings (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) = Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type |
data Tuple7Sym1 (a6989586621679041210 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))) Source #
Instances
SingI1 (Tuple7Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym1 x) | |
SingI d1 => SingI (Tuple7Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym1 d1) | |
SuppressUnusedWarnings (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) = Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type |
data Tuple7Sym2 (a6989586621679041210 :: a) (a6989586621679041211 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))) Source #
Instances
SingI2 (Tuple7Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym2 x y) | |
SingI d1 => SingI1 (Tuple7Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple7Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) = Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type |
data Tuple7Sym3 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))) Source #
Instances
SingI d1 => SingI2 (Tuple7Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple7Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple7Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (g ~> (a, b, c, d4, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) = Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type |
data Tuple7Sym4 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple7Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (g ~> (a, b, c, d3, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple7Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple7Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) = Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type |
data Tuple7Sym5 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple7Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple7Sym5 d1 d2 d3 d5 :: e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple7Sym5 d1 d2 d3 d5 d6 :: TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) = Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type |
data Tuple7Sym6 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI2 (Tuple7Sym6 d1 d2 d3 d5 :: e -> f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym6 d1 d2 d3 d5 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI1 (Tuple7Sym6 d1 d2 d3 d5 d6 :: f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym6 d1 d2 d3 d5 d6 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6, SingI d7) => SingI (Tuple7Sym6 d1 d2 d3 d5 d6 d7 :: TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym6 d1 d2 d3 d5 d6 d7) | |
SuppressUnusedWarnings (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216) |
type family Tuple7Sym7 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) (a6989586621679041216 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ... Source #
Tuple7Sym7 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 a6989586621679041216 = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216) |
data FstSym0 :: (~>) (a, b) a Source #
Instances
SingI (FstSym0 :: TyFun (a, b) a -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SuppressUnusedWarnings (FstSym0 :: TyFun (a, b) a -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (FstSym0 :: TyFun (a, b) a -> Type) (a6989586621679270958 :: (a, b)) Source # | |
Defined in Data.Tuple.Singletons |
data SndSym0 :: (~>) (a, b) b Source #
Instances
SingI (SndSym0 :: TyFun (a, b) b -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SuppressUnusedWarnings (SndSym0 :: TyFun (a, b) b -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (SndSym0 :: TyFun (a, b) b -> Type) (a6989586621679270954 :: (a, b)) Source # | |
Defined in Data.Tuple.Singletons |
data CurrySym0 :: (~>) ((~>) (a, b) c) ((~>) a ((~>) b c)) Source #
Instances
SingI (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SuppressUnusedWarnings (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (CurrySym0 :: TyFun ((a, b) ~> c) (a ~> (b ~> c)) -> Type) (a6989586621679270946 :: (a, b) ~> c) Source # | |
Defined in Data.Tuple.Singletons |
data CurrySym1 (a6989586621679270946 :: (~>) (a, b) c) :: (~>) a ((~>) b c) Source #
Instances
SingI1 (CurrySym1 :: ((a, b) ~> c) -> TyFun a (b ~> c) -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SingI d => SingI (CurrySym1 d :: TyFun a (b ~> c) -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SuppressUnusedWarnings (CurrySym1 a6989586621679270946 :: TyFun a (b ~> c) -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (CurrySym1 a6989586621679270946 :: TyFun a (b ~> c) -> Type) (a6989586621679270947 :: a) Source # | |
Defined in Data.Tuple.Singletons |
data CurrySym2 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) :: (~>) b c Source #
Instances
SingI d => SingI1 (CurrySym2 d :: a -> TyFun b c -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SingI2 (CurrySym2 :: ((a, b) ~> c) -> a -> TyFun b c -> Type) Source # | |
(SingI d1, SingI d2) => SingI (CurrySym2 d1 d2 :: TyFun b c -> Type) Source # | |
Defined in Data.Tuple.Singletons | |
SuppressUnusedWarnings (CurrySym2 a6989586621679270946 a6989586621679270947 :: TyFun b c -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (CurrySym2 a6989586621679270946 a6989586621679270947 :: TyFun b c -> Type) (a6989586621679270948 :: b) Source # | |
Defined in Data.Tuple.Singletons |
type family CurrySym3 (a6989586621679270946 :: (~>) (a, b) c) (a6989586621679270947 :: a) (a6989586621679270948 :: b) :: c where ... Source #
data UncurrySym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (a, b) c) Source #
Instances
SingI (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) Source # | |
Defined in Data.Tuple.Singletons sing :: Sing UncurrySym0 | |
SuppressUnusedWarnings (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) (a6989586621679270938 :: a ~> (b ~> c)) Source # | |
Defined in Data.Tuple.Singletons type Apply (UncurrySym0 :: TyFun (a ~> (b ~> c)) ((a, b) ~> c) -> Type) (a6989586621679270938 :: a ~> (b ~> c)) = UncurrySym1 a6989586621679270938 |
data UncurrySym1 (a6989586621679270938 :: (~>) a ((~>) b c)) :: (~>) (a, b) c Source #
Instances
SingI1 (UncurrySym1 :: (a ~> (b ~> c)) -> TyFun (a, b) c -> Type) Source # | |
Defined in Data.Tuple.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (UncurrySym1 x) | |
SingI d => SingI (UncurrySym1 d :: TyFun (a, b) c -> Type) Source # | |
Defined in Data.Tuple.Singletons sing :: Sing (UncurrySym1 d) | |
SuppressUnusedWarnings (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) Source # | |
Defined in Data.Tuple.Singletons suppressUnusedWarnings :: () # | |
type Apply (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) (a6989586621679270939 :: (a, b)) Source # | |
Defined in Data.Tuple.Singletons type Apply (UncurrySym1 a6989586621679270938 :: TyFun (a, b) c -> Type) (a6989586621679270939 :: (a, b)) = Uncurry a6989586621679270938 a6989586621679270939 |
type family UncurrySym2 (a6989586621679270938 :: (~>) a ((~>) b c)) (a6989586621679270939 :: (a, b)) :: c where ... Source #
UncurrySym2 a6989586621679270938 a6989586621679270939 = Uncurry a6989586621679270938 a6989586621679270939 |
Basic type classes
data (==@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140205 :: a) Source # | |
Defined in Data.Eq.Singletons |
data (==@#@$$) (a6989586621679140205 :: a) :: (~>) a Bool infix 4 Source #
Instances
SEq a => SingI1 ((==@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
(SEq a, SingI d) => SingI ((==@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) (a6989586621679140206 :: a) Source # | |
Defined in Data.Eq.Singletons |
type family (a6989586621679140205 :: a) ==@#@$$$ (a6989586621679140206 :: a) :: Bool where ... infix 4 Source #
data (/=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SEq a => SingI ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((/=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140210 :: a) Source # | |
Defined in Data.Eq.Singletons |
data (/=@#@$$) (a6989586621679140210 :: a) :: (~>) a Bool infix 4 Source #
Instances
SEq a => SingI1 ((/=@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
(SEq a, SingI d) => SingI ((/=@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((/=@#@$$) a6989586621679140210 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((/=@#@$$) a6989586621679140210 :: TyFun a Bool -> Type) (a6989586621679140211 :: a) Source # | |
Defined in Data.Eq.Singletons |
type family (a6989586621679140210 :: a) /=@#@$$$ (a6989586621679140211 :: a) :: Bool where ... infix 4 Source #
data CompareSym0 :: (~>) a ((~>) a Ordering) Source #
Instances
SOrd a => SingI (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing CompareSym0 | |
SuppressUnusedWarnings (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) = CompareSym1 a6989586621679178605 |
data CompareSym1 (a6989586621679178605 :: a) :: (~>) a Ordering Source #
Instances
SOrd a => SingI1 (CompareSym1 :: a -> TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (CompareSym1 x) | |
(SOrd a, SingI d) => SingI (CompareSym1 d :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing (CompareSym1 d) | |
SuppressUnusedWarnings (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) = Compare a6989586621679178605 a6989586621679178606 |
type family CompareSym2 (a6989586621679178605 :: a) (a6989586621679178606 :: a) :: Ordering where ... Source #
CompareSym2 a6989586621679178605 a6989586621679178606 = Compare a6989586621679178605 a6989586621679178606 |
data (<@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((<@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178610 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (<@#@$$) (a6989586621679178610 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((<@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((<@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((<@#@$$) a6989586621679178610 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<@#@$$) a6989586621679178610 :: TyFun a Bool -> Type) (a6989586621679178611 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679178610 :: a) <@#@$$$ (a6989586621679178611 :: a) :: Bool where ... infix 4 Source #
data (<=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178615 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (<=@#@$$) (a6989586621679178615 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((<=@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((<=@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((<=@#@$$) a6989586621679178615 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<=@#@$$) a6989586621679178615 :: TyFun a Bool -> Type) (a6989586621679178616 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679178615 :: a) <=@#@$$$ (a6989586621679178616 :: a) :: Bool where ... infix 4 Source #
data (>@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178620 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (>@#@$$) (a6989586621679178620 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((>@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((>@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) (a6989586621679178621 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679178620 :: a) >@#@$$$ (a6989586621679178621 :: a) :: Bool where ... infix 4 Source #
data (>=@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>=@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178625 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (>=@#@$$) (a6989586621679178625 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((>=@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((>=@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>=@#@$$) a6989586621679178625 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>=@#@$$) a6989586621679178625 :: TyFun a Bool -> Type) (a6989586621679178626 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679178625 :: a) >=@#@$$$ (a6989586621679178626 :: a) :: Bool where ... infix 4 Source #
data MaxSym0 :: (~>) a ((~>) a a) Source #
Instances
SOrd a => SingI (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings (MaxSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaxSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178630 :: a) Source # | |
Defined in Data.Ord.Singletons |
data MaxSym1 (a6989586621679178630 :: a) :: (~>) a a Source #
Instances
SOrd a => SingI1 (MaxSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI (MaxSym1 d :: TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings (MaxSym1 a6989586621679178630 :: TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaxSym1 a6989586621679178630 :: TyFun a a -> Type) (a6989586621679178631 :: a) Source # | |
Defined in Data.Ord.Singletons |
data MinSym0 :: (~>) a ((~>) a a) Source #
Instances
SOrd a => SingI (MinSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings (MinSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679178635 :: a) Source # | |
Defined in Data.Ord.Singletons |
data MinSym1 (a6989586621679178635 :: a) :: (~>) a a Source #
Instances
SOrd a => SingI1 (MinSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI (MinSym1 d :: TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings (MinSym1 a6989586621679178635 :: TyFun a a -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinSym1 a6989586621679178635 :: TyFun a a -> Type) (a6989586621679178636 :: a) Source # | |
Defined in Data.Ord.Singletons |
data ToEnumSym0 :: (~>) Natural a Source #
Instances
SEnum a => SingI (ToEnumSym0 :: TyFun Natural a -> Type) Source # | |
Defined in Data.Singletons.Base.Enum sing :: Sing ToEnumSym0 | |
SuppressUnusedWarnings (ToEnumSym0 :: TyFun Natural a -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (ToEnumSym0 :: TyFun Natural k2 -> Type) (a6989586621679606484 :: Natural) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (ToEnumSym0 :: TyFun Natural k2 -> Type) (a6989586621679606484 :: Natural) = ToEnum a6989586621679606484 :: k2 |
type family ToEnumSym1 (a6989586621679606484 :: Natural) :: a where ... Source #
ToEnumSym1 a6989586621679606484 = ToEnum a6989586621679606484 |
data FromEnumSym0 :: (~>) a Natural Source #
Instances
SEnum a => SingI (FromEnumSym0 :: TyFun a Natural -> Type) Source # | |
Defined in Data.Singletons.Base.Enum sing :: Sing FromEnumSym0 | |
SuppressUnusedWarnings (FromEnumSym0 :: TyFun a Natural -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (FromEnumSym0 :: TyFun a Natural -> Type) (a6989586621679606487 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (FromEnumSym0 :: TyFun a Natural -> Type) (a6989586621679606487 :: a) = FromEnum a6989586621679606487 |
type family FromEnumSym1 (a6989586621679606487 :: a) :: Natural where ... Source #
FromEnumSym1 a6989586621679606487 = FromEnum a6989586621679606487 |
data EnumFromToSym0 :: (~>) a ((~>) a [a]) Source #
Instances
SEnum a => SingI (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum | |
SuppressUnusedWarnings (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606491 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (EnumFromToSym0 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606491 :: a) = EnumFromToSym1 a6989586621679606491 |
data EnumFromToSym1 (a6989586621679606491 :: a) :: (~>) a [a] Source #
Instances
SEnum a => SingI1 (EnumFromToSym1 :: a -> TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromToSym1 x) | |
(SEnum a, SingI d) => SingI (EnumFromToSym1 d :: TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum sing :: Sing (EnumFromToSym1 d) | |
SuppressUnusedWarnings (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) (a6989586621679606492 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (EnumFromToSym1 a6989586621679606491 :: TyFun a [a] -> Type) (a6989586621679606492 :: a) = EnumFromTo a6989586621679606491 a6989586621679606492 |
type family EnumFromToSym2 (a6989586621679606491 :: a) (a6989586621679606492 :: a) :: [a] where ... Source #
EnumFromToSym2 a6989586621679606491 a6989586621679606492 = EnumFromTo a6989586621679606491 a6989586621679606492 |
data EnumFromThenToSym0 :: (~>) a ((~>) a ((~>) a [a])) Source #
Instances
SEnum a => SingI (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum | |
SuppressUnusedWarnings (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) (a6989586621679606497 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (EnumFromThenToSym0 :: TyFun a (a ~> (a ~> [a])) -> Type) (a6989586621679606497 :: a) = EnumFromThenToSym1 a6989586621679606497 |
data EnumFromThenToSym1 (a6989586621679606497 :: a) :: (~>) a ((~>) a [a]) Source #
Instances
SEnum a => SingI1 (EnumFromThenToSym1 :: a -> TyFun a (a ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromThenToSym1 x) | |
(SEnum a, SingI d) => SingI (EnumFromThenToSym1 d :: TyFun a (a ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum sing :: Sing (EnumFromThenToSym1 d) | |
SuppressUnusedWarnings (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606498 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (EnumFromThenToSym1 a6989586621679606497 :: TyFun a (a ~> [a]) -> Type) (a6989586621679606498 :: a) = EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 |
data EnumFromThenToSym2 (a6989586621679606497 :: a) (a6989586621679606498 :: a) :: (~>) a [a] Source #
Instances
SEnum a => SingI2 (EnumFromThenToSym2 :: a -> a -> TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (EnumFromThenToSym2 x y) | |
(SEnum a, SingI d) => SingI1 (EnumFromThenToSym2 d :: a -> TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum liftSing :: forall (x :: k1). Sing x -> Sing (EnumFromThenToSym2 d x) | |
(SEnum a, SingI d1, SingI d2) => SingI (EnumFromThenToSym2 d1 d2 :: TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum sing :: Sing (EnumFromThenToSym2 d1 d2) | |
SuppressUnusedWarnings (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Enum suppressUnusedWarnings :: () # | |
type Apply (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) (a6989586621679606499 :: a) Source # | |
Defined in Data.Singletons.Base.Enum type Apply (EnumFromThenToSym2 a6989586621679606497 a6989586621679606498 :: TyFun a [a] -> Type) (a6989586621679606499 :: a) = EnumFromThenTo a6989586621679606497 a6989586621679606498 a6989586621679606499 |
type family EnumFromThenToSym3 (a6989586621679606497 :: a) (a6989586621679606498 :: a) (a6989586621679606499 :: a) :: [a] where ... Source #
EnumFromThenToSym3 a6989586621679606497 a6989586621679606498 a6989586621679606499 = EnumFromThenTo a6989586621679606497 a6989586621679606498 a6989586621679606499 |
type family MinBoundSym0 :: a where ... Source #
type family MaxBoundSym0 :: a where ... Source #
Numbers
Numeric type classes
data (+@#@$) :: (~>) a ((~>) a a) infixl 6 Source #
Instances
SNum a => SingI ((+@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((+@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((+@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582458 :: a) Source # | |
Defined in GHC.Num.Singletons |
data (+@#@$$) (a6989586621679582458 :: a) :: (~>) a a infixl 6 Source #
Instances
SNum a => SingI1 ((+@#@$$) :: a -> TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
(SNum a, SingI d) => SingI ((+@#@$$) d :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((+@#@$$) a6989586621679582458 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((+@#@$$) a6989586621679582458 :: TyFun a a -> Type) (a6989586621679582459 :: a) Source # | |
Defined in GHC.Num.Singletons |
type family (a6989586621679582458 :: a) +@#@$$$ (a6989586621679582459 :: a) :: a where ... infixl 6 Source #
data (-@#@$) :: (~>) a ((~>) a a) infixl 6 Source #
Instances
SNum a => SingI ((-@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((-@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((-@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582463 :: a) Source # | |
Defined in GHC.Num.Singletons |
data (-@#@$$) (a6989586621679582463 :: a) :: (~>) a a infixl 6 Source #
Instances
SNum a => SingI1 ((-@#@$$) :: a -> TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
(SNum a, SingI d) => SingI ((-@#@$$) d :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((-@#@$$) a6989586621679582463 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((-@#@$$) a6989586621679582463 :: TyFun a a -> Type) (a6989586621679582464 :: a) Source # | |
Defined in GHC.Num.Singletons |
type family (a6989586621679582463 :: a) -@#@$$$ (a6989586621679582464 :: a) :: a where ... infixl 6 Source #
data (*@#@$) :: (~>) a ((~>) a a) infixl 7 Source #
Instances
SNum a => SingI ((*@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((*@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((*@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679582468 :: a) Source # | |
Defined in GHC.Num.Singletons |
data (*@#@$$) (a6989586621679582468 :: a) :: (~>) a a infixl 7 Source #
Instances
SNum a => SingI1 ((*@#@$$) :: a -> TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
(SNum a, SingI d) => SingI ((*@#@$$) d :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings ((*@#@$$) a6989586621679582468 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply ((*@#@$$) a6989586621679582468 :: TyFun a a -> Type) (a6989586621679582469 :: a) Source # | |
Defined in GHC.Num.Singletons |
type family (a6989586621679582468 :: a) *@#@$$$ (a6989586621679582469 :: a) :: a where ... infixl 7 Source #
data NegateSym0 :: (~>) a a Source #
Instances
SNum a => SingI (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing NegateSym0 | |
SuppressUnusedWarnings (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) = Negate a6989586621679582472 |
type family NegateSym1 (a6989586621679582472 :: a) :: a where ... Source #
NegateSym1 a6989586621679582472 = Negate a6989586621679582472 |
data AbsSym0 :: (~>) a a Source #
Instances
SNum a => SingI (AbsSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings (AbsSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (AbsSym0 :: TyFun a a -> Type) (a6989586621679582475 :: a) Source # | |
Defined in GHC.Num.Singletons |
data SignumSym0 :: (~>) a a Source #
Instances
SNum a => SingI (SignumSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing SignumSym0 | |
SuppressUnusedWarnings (SignumSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (SignumSym0 :: TyFun a a -> Type) (a6989586621679582478 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (SignumSym0 :: TyFun a a -> Type) (a6989586621679582478 :: a) = Signum a6989586621679582478 |
type family SignumSym1 (a6989586621679582478 :: a) :: a where ... Source #
SignumSym1 a6989586621679582478 = Signum a6989586621679582478 |
data FromIntegerSym0 :: (~>) Natural a Source #
Instances
SNum a => SingI (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) Source # | |
Defined in GHC.Num.Singletons type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) = FromInteger a6989586621679582481 :: k2 |
type family FromIntegerSym1 (a6989586621679582481 :: Natural) :: a where ... Source #
FromIntegerSym1 a6989586621679582481 = FromInteger a6989586621679582481 |
Numeric functions
data SubtractSym0 :: (~>) a ((~>) a a) Source #
Instances
SNum a => SingI (SubtractSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing SubtractSym0 | |
SuppressUnusedWarnings (SubtractSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (SubtractSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679582451 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (SubtractSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679582451 :: a) = SubtractSym1 a6989586621679582451 |
data SubtractSym1 (a6989586621679582451 :: a) :: (~>) a a Source #
Instances
SNum a => SingI1 (SubtractSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (SubtractSym1 x) | |
(SNum a, SingI d) => SingI (SubtractSym1 d :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing (SubtractSym1 d) | |
SuppressUnusedWarnings (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) (a6989586621679582452 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (SubtractSym1 a6989586621679582451 :: TyFun a a -> Type) (a6989586621679582452 :: a) = Subtract a6989586621679582451 a6989586621679582452 |
type family SubtractSym2 (a6989586621679582451 :: a) (a6989586621679582452 :: a) :: a where ... Source #
SubtractSym2 a6989586621679582451 a6989586621679582452 = Subtract a6989586621679582451 a6989586621679582452 |
Semigroups and Monoids
data (<>@#@$) :: (~>) a ((~>) a a) infixr 6 Source #
Instances
SSemigroup a => SingI ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
SuppressUnusedWarnings ((<>@#@$) :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Semigroup.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<>@#@$) :: TyFun a (a ~> a) -> Type) (a6989586621679691601 :: a) Source # | |
Defined in Data.Semigroup.Singletons.Internal |
data (<>@#@$$) (a6989586621679691601 :: a) :: (~>) a a infixr 6 Source #
Instances
SSemigroup a => SingI1 ((<>@#@$$) :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
(SSemigroup a, SingI d) => SingI ((<>@#@$$) d :: TyFun a a -> Type) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
SuppressUnusedWarnings ((<>@#@$$) a6989586621679691601 :: TyFun a a -> Type) Source # | |
Defined in Data.Semigroup.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<>@#@$$) a6989586621679691601 :: TyFun a a -> Type) (a6989586621679691602 :: a) Source # | |
Defined in Data.Semigroup.Singletons.Internal |
type family (a6989586621679691601 :: a) <>@#@$$$ (a6989586621679691602 :: a) :: a where ... infixr 6 Source #
type family MemptySym0 :: a where ... Source #
data MappendSym0 :: (~>) a ((~>) a a) Source #
Instances
SMonoid a => SingI (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing MappendSym0 | |
SuppressUnusedWarnings (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) = MappendSym1 a6989586621680336631 |
data MappendSym1 (a6989586621680336631 :: a) :: (~>) a a Source #
Instances
SMonoid a => SingI1 (MappendSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (MappendSym1 x) | |
(SMonoid a, SingI d) => SingI (MappendSym1 d :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing (MappendSym1 d) | |
SuppressUnusedWarnings (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) = Mappend a6989586621680336631 a6989586621680336632 |
type family MappendSym2 (a6989586621680336631 :: a) (a6989586621680336632 :: a) :: a where ... Source #
MappendSym2 a6989586621680336631 a6989586621680336632 = Mappend a6989586621680336631 a6989586621680336632 |
data MconcatSym0 :: (~>) [a] a Source #
Instances
SMonoid a => SingI (MconcatSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing MconcatSym0 | |
SuppressUnusedWarnings (MconcatSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MconcatSym0 :: TyFun [a] a -> Type) (a6989586621680336635 :: [a]) Source # | |
Defined in Data.Monoid.Singletons type Apply (MconcatSym0 :: TyFun [a] a -> Type) (a6989586621680336635 :: [a]) = Mconcat a6989586621680336635 |
type family MconcatSym1 (a6989586621680336635 :: [a]) :: a where ... Source #
MconcatSym1 a6989586621680336635 = Mconcat a6989586621680336635 |
Monads and functors
data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #
Instances
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679329112 :: a ~> b) Source # | |
Defined in Control.Monad.Singletons.Internal |
data FmapSym1 (a6989586621679329112 :: (~>) a b) :: (~>) (f a) (f b) Source #
Instances
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) (a6989586621679329113 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family FmapSym2 (a6989586621679329112 :: (~>) a b) (a6989586621679329113 :: f a) :: f b where ... Source #
data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #
Instances
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679329117 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<$@#@$$) (a6989586621679329117 :: a) :: (~>) (f b) (f a) infixl 4 Source #
Instances
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) (a6989586621679329118 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679329117 :: a) <$@#@$$$ (a6989586621679329118 :: f b) :: f a where ... infixl 4 Source #
data (<$>@#@$) :: (~>) ((~>) a b) ((~>) (f a) (f b)) infixl 4 Source #
Instances
SFunctor f => SingI ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Data.Functor.Singletons | |
SuppressUnusedWarnings ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Data.Functor.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679519978 :: a ~> b) Source # | |
Defined in Data.Functor.Singletons type Apply ((<$>@#@$) :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679519978 :: a ~> b) = (<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type |
data (<$>@#@$$) (a6989586621679519978 :: (~>) a b) :: (~>) (f a) (f b) infixl 4 Source #
Instances
SFunctor f => SingI1 ((<$>@#@$$) :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Data.Functor.Singletons liftSing :: forall (x :: k1). Sing x -> Sing ((<$>@#@$$) x) | |
(SFunctor f, SingI d) => SingI ((<$>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Data.Functor.Singletons sing :: Sing ((<$>@#@$$) d) | |
SuppressUnusedWarnings ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Data.Functor.Singletons suppressUnusedWarnings :: () # | |
type Apply ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) (a6989586621679519979 :: f a) Source # | |
Defined in Data.Functor.Singletons type Apply ((<$>@#@$$) a6989586621679519978 :: TyFun (f a) (f b) -> Type) (a6989586621679519979 :: f a) = a6989586621679519978 <$> a6989586621679519979 |
type family (a6989586621679519978 :: (~>) a b) <$>@#@$$$ (a6989586621679519979 :: f a) :: f b where ... infixl 4 Source #
data PureSym0 :: (~>) a (f a) Source #
Instances
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679329136 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #
Instances
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) = (<*>@#@$$) a6989586621679329140 |
data (<*>@#@$$) (a6989586621679329140 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #
Instances
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x) | |
(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ((<*>@#@$$) d) | |
SuppressUnusedWarnings ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) = a6989586621679329140 <*> a6989586621679329141 |
type family (a6989586621679329140 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679329141 :: f a) :: f b where ... infixl 4 Source #
data (*>@#@$) :: (~>) (f a) ((~>) (f b) (f b)) infixl 4 Source #
Instances
SApplicative f => SingI ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((*>@#@$) :: TyFun (f a) (f b ~> f b) -> Type) (a6989586621679329152 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (*>@#@$$) (a6989586621679329152 :: f a) :: (~>) (f b) (f b) infixl 4 Source #
Instances
SApplicative f => SingI1 ((*>@#@$$) :: f a -> TyFun (f b) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SApplicative f, SingI d) => SingI ((*>@#@$$) d :: TyFun (f b) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((*>@#@$$) a6989586621679329152 :: TyFun (f b) (f b) -> Type) (a6989586621679329153 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679329152 :: f a) *>@#@$$$ (a6989586621679329153 :: f b) :: f b where ... infixl 4 Source #
data (<*@#@$) :: (~>) (f a) ((~>) (f b) (f a)) infixl 4 Source #
Instances
SApplicative f => SingI ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*@#@$) :: TyFun (f a) (f b ~> f a) -> Type) (a6989586621679329157 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<*@#@$$) (a6989586621679329157 :: f a) :: (~>) (f b) (f a) infixl 4 Source #
Instances
SApplicative f => SingI1 ((<*@#@$$) :: f a -> TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SApplicative f, SingI d) => SingI ((<*@#@$$) d :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*@#@$$) a6989586621679329157 :: TyFun (f b) (f a) -> Type) (a6989586621679329158 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679329157 :: f a) <*@#@$$$ (a6989586621679329158 :: f b) :: f a where ... infixl 4 Source #
data (>>=@#@$) :: (~>) (m a) ((~>) ((~>) a (m b)) (m b)) infixl 1 Source #
Instances
SMonad m => SingI ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679329220 :: m a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((>>=@#@$) :: TyFun (m a) ((a ~> m b) ~> m b) -> Type) (a6989586621679329220 :: m a) = (>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type |
data (>>=@#@$$) (a6989586621679329220 :: m a) :: (~>) ((~>) a (m b)) (m b) infixl 1 Source #
Instances
SMonad m => SingI1 ((>>=@#@$$) :: m a -> TyFun (a ~> m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing ((>>=@#@$$) x) | |
(SMonad m, SingI d) => SingI ((>>=@#@$$) d :: TyFun (a ~> m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ((>>=@#@$$) d) | |
SuppressUnusedWarnings ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679329221 :: a ~> m b) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((>>=@#@$$) a6989586621679329220 :: TyFun (a ~> m b) (m b) -> Type) (a6989586621679329221 :: a ~> m b) = a6989586621679329220 >>= a6989586621679329221 |
type family (a6989586621679329220 :: m a) >>=@#@$$$ (a6989586621679329221 :: (~>) a (m b)) :: m b where ... infixl 1 Source #
data (>>@#@$) :: (~>) (m a) ((~>) (m b) (m b)) infixl 1 Source #
Instances
SMonad m => SingI ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((>>@#@$) :: TyFun (m a) (m b ~> m b) -> Type) (a6989586621679329225 :: m a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (>>@#@$$) (a6989586621679329225 :: m a) :: (~>) (m b) (m b) infixl 1 Source #
Instances
SMonad m => SingI1 ((>>@#@$$) :: m a -> TyFun (m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SMonad m, SingI d) => SingI ((>>@#@$$) d :: TyFun (m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((>>@#@$$) a6989586621679329225 :: TyFun (m b) (m b) -> Type) (a6989586621679329226 :: m b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679329225 :: m a) >>@#@$$$ (a6989586621679329226 :: m b) :: m b where ... infixl 1 Source #
data ReturnSym0 :: (~>) a (m a) Source #
Instances
SMonad m => SingI (ReturnSym0 :: TyFun a (m a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ReturnSym0 | |
SuppressUnusedWarnings (ReturnSym0 :: TyFun a (m a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679329229 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (ReturnSym0 :: TyFun a (m a) -> Type) (a6989586621679329229 :: a) = Return a6989586621679329229 :: m a |
type family ReturnSym1 (a6989586621679329229 :: a) :: m a where ... Source #
ReturnSym1 a6989586621679329229 = Return a6989586621679329229 |
data FailSym0 :: (~>) [Char] (m a) Source #
Instances
SMonadFail m => SingI (FailSym0 :: TyFun [Char] (m a) -> Type) Source # | |
Defined in Control.Monad.Fail.Singletons | |
SuppressUnusedWarnings (FailSym0 :: TyFun [Char] (m a) -> Type) Source # | |
Defined in Control.Monad.Fail.Singletons suppressUnusedWarnings :: () # | |
type Apply (FailSym0 :: TyFun [Char] (m a) -> Type) (a6989586621679537251 :: [Char]) Source # | |
data MapM_Sym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m ())) Source #
Instances
(SFoldable t, SMonad m) => SingI (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapM_Sym0 :: TyFun (a ~> m b) (t a ~> m ()) -> Type) (a6989586621680438250 :: a ~> m b) Source # | |
Defined in Data.Foldable.Singletons |
data MapM_Sym1 (a6989586621680438250 :: (~>) a (m b)) :: (~>) (t a) (m ()) Source #
Instances
(SFoldable t, SMonad m) => SingI1 (MapM_Sym1 :: (a ~> m b) -> TyFun (t a) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SMonad m, SingI d) => SingI (MapM_Sym1 d :: TyFun (t a) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapM_Sym1 a6989586621680438250 :: TyFun (t a) (m ()) -> Type) (a6989586621680438251 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family MapM_Sym2 (a6989586621680438250 :: (~>) a (m b)) (a6989586621680438251 :: t a) :: m () where ... Source #
data Sequence_Sym0 :: (~>) (t (m a)) (m ()) Source #
Instances
(SFoldable t, SMonad m) => SingI (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680438226 :: t (m a)) Source # | |
Defined in Data.Foldable.Singletons type Apply (Sequence_Sym0 :: TyFun (t (m a)) (m ()) -> Type) (a6989586621680438226 :: t (m a)) = Sequence_ a6989586621680438226 |
type family Sequence_Sym1 (a6989586621680438226 :: t (m a)) :: m () where ... Source #
Sequence_Sym1 a6989586621680438226 = Sequence_ a6989586621680438226 |
data (=<<@#@$) :: (~>) ((~>) a (m b)) ((~>) (m a) (m b)) infixr 1 Source #
Instances
SMonad m => SingI ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679329065 :: a ~> m b) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((=<<@#@$) :: TyFun (a ~> m b) (m a ~> m b) -> Type) (a6989586621679329065 :: a ~> m b) = (=<<@#@$$) a6989586621679329065 |
data (=<<@#@$$) (a6989586621679329065 :: (~>) a (m b)) :: (~>) (m a) (m b) infixr 1 Source #
Instances
SMonad m => SingI1 ((=<<@#@$$) :: (a ~> m b) -> TyFun (m a) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing ((=<<@#@$$) x) | |
(SMonad m, SingI d) => SingI ((=<<@#@$$) d :: TyFun (m a) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ((=<<@#@$$) d) | |
SuppressUnusedWarnings ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) (a6989586621679329066 :: m a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((=<<@#@$$) a6989586621679329065 :: TyFun (m a) (m b) -> Type) (a6989586621679329066 :: m a) = a6989586621679329065 =<< a6989586621679329066 |
type family (a6989586621679329065 :: (~>) a (m b)) =<<@#@$$$ (a6989586621679329066 :: m a) :: m b where ... infixr 1 Source #
Folds and traversals
data ElemSym0 :: (~>) a ((~>) (t a) Bool) Source #
Instances
(SFoldable t, SEq a) => SingI (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438368 :: a) Source # | |
data ElemSym1 (a6989586621680438368 :: a) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SEq a) => SingI1 (ElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SEq a, SingI d) => SingI (ElemSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ElemSym1 a6989586621680438368 :: TyFun (t a) Bool -> Type) (a6989586621680438369 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family ElemSym2 (a6989586621680438368 :: a) (a6989586621680438369 :: t a) :: Bool where ... Source #
data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m) Source #
Instances
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldMapSym0 | |
SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) = FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type |
data FoldMapSym1 (a6989586621680438316 :: (~>) a m) :: (~>) (t a) m Source #
Instances
(SFoldable t, SMonoid m) => SingI1 (FoldMapSym1 :: (a ~> m) -> TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (FoldMapSym1 x) | |
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldMapSym1 d) | |
SuppressUnusedWarnings (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) = FoldMap a6989586621680438316 a6989586621680438317 |
type family FoldMapSym2 (a6989586621680438316 :: (~>) a m) (a6989586621680438317 :: t a) :: m where ... Source #
FoldMapSym2 a6989586621680438316 a6989586621680438317 = FoldMap a6989586621680438316 a6989586621680438317 |
data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ... Source #
data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ... Source #
data Foldr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldr1Sym0 | |
SuppressUnusedWarnings (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldr1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438349 :: a ~> (a ~> a)) = Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type |
data Foldr1Sym1 (a6989586621680438349 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #
Instances
SFoldable t => SingI1 (Foldr1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Foldr1Sym1 x) | |
(SFoldable t, SingI d) => SingI (Foldr1Sym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldr1Sym1 d) | |
SuppressUnusedWarnings (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldr1Sym1 a6989586621680438349 :: TyFun (t a) a -> Type) (a6989586621680438350 :: t a) = Foldr1 a6989586621680438349 a6989586621680438350 |
type family Foldr1Sym2 (a6989586621680438349 :: (~>) a ((~>) a a)) (a6989586621680438350 :: t a) :: a where ... Source #
Foldr1Sym2 a6989586621680438349 a6989586621680438350 = Foldr1 a6989586621680438349 a6989586621680438350 |
data Foldl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) (t a) a) Source #
Instances
SFoldable t => SingI (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing Foldl1Sym0 | |
SuppressUnusedWarnings (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldl1Sym0 :: TyFun (a ~> (a ~> a)) (t a ~> a) -> Type) (a6989586621680438354 :: a ~> (a ~> a)) = Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type |
data Foldl1Sym1 (a6989586621680438354 :: (~>) a ((~>) a a)) :: (~>) (t a) a Source #
Instances
SFoldable t => SingI1 (Foldl1Sym1 :: (a ~> (a ~> a)) -> TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (Foldl1Sym1 x) | |
(SFoldable t, SingI d) => SingI (Foldl1Sym1 d :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (Foldl1Sym1 d) | |
SuppressUnusedWarnings (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (Foldl1Sym1 a6989586621680438354 :: TyFun (t a) a -> Type) (a6989586621680438355 :: t a) = Foldl1 a6989586621680438354 a6989586621680438355 |
type family Foldl1Sym2 (a6989586621680438354 :: (~>) a ((~>) a a)) (a6989586621680438355 :: t a) :: a where ... Source #
Foldl1Sym2 a6989586621680438354 a6989586621680438355 = Foldl1 a6989586621680438354 a6989586621680438355 |
data MaximumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SOrd a) => SingI (MaximumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MaximumSym0 | |
SuppressUnusedWarnings (MaximumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MaximumSym0 :: TyFun (t a) a -> Type) (a6989586621680438372 :: t a) = Maximum a6989586621680438372 |
type family MaximumSym1 (a6989586621680438372 :: t a) :: a where ... Source #
MaximumSym1 a6989586621680438372 = Maximum a6989586621680438372 |
data MinimumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SOrd a) => SingI (MinimumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing MinimumSym0 | |
SuppressUnusedWarnings (MinimumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (MinimumSym0 :: TyFun (t a) a -> Type) (a6989586621680438375 :: t a) = Minimum a6989586621680438375 |
type family MinimumSym1 (a6989586621680438375 :: t a) :: a where ... Source #
MinimumSym1 a6989586621680438375 = Minimum a6989586621680438375 |
data ProductSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SNum a) => SingI (ProductSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ProductSym0 | |
SuppressUnusedWarnings (ProductSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (ProductSym0 :: TyFun (t a) a -> Type) (a6989586621680438381 :: t a) = Product a6989586621680438381 |
type family ProductSym1 (a6989586621680438381 :: t a) :: a where ... Source #
ProductSym1 a6989586621680438381 = Product a6989586621680438381 |
data SumSym0 :: (~>) (t a) a Source #
Instances
(SFoldable t, SNum a) => SingI (SumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (SumSym0 :: TyFun (t a) a -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (SumSym0 :: TyFun (t a) a -> Type) (a6989586621680438378 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b))) Source #
Instances
(STraversable t, SApplicative f) => SingI (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing TraverseSym0 | |
SuppressUnusedWarnings (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) = TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type |
data TraverseSym1 (a6989586621680796847 :: (~>) a (f b)) :: (~>) (t a) (f (t b)) Source #
Instances
(STraversable t, SApplicative f) => SingI1 (TraverseSym1 :: (a ~> f b) -> TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (TraverseSym1 x) | |
(STraversable t, SApplicative f, SingI d) => SingI (TraverseSym1 d :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing (TraverseSym1 d) | |
SuppressUnusedWarnings (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) = Traverse a6989586621680796847 a6989586621680796848 |
type family TraverseSym2 (a6989586621680796847 :: (~>) a (f b)) (a6989586621680796848 :: t a) :: f (t b) where ... Source #
TraverseSym2 a6989586621680796847 a6989586621680796848 = Traverse a6989586621680796847 a6989586621680796848 |
data SequenceASym0 :: (~>) (t (f a)) (f (t a)) Source #
Instances
(STraversable t, SApplicative f) => SingI (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) Source # | |
Defined in Data.Traversable.Singletons | |
SuppressUnusedWarnings (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) (a6989586621680796851 :: t (f a)) Source # | |
Defined in Data.Traversable.Singletons type Apply (SequenceASym0 :: TyFun (t (f a)) (f (t a)) -> Type) (a6989586621680796851 :: t (f a)) = SequenceA a6989586621680796851 |
type family SequenceASym1 (a6989586621680796851 :: t (f a)) :: f (t a) where ... Source #
SequenceASym1 a6989586621680796851 = SequenceA a6989586621680796851 |
data MapMSym0 :: (~>) ((~>) a (m b)) ((~>) (t a) (m (t b))) Source #
Instances
(STraversable t, SMonad m) => SingI (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons | |
SuppressUnusedWarnings (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapMSym0 :: TyFun (a ~> m b) (t a ~> m (t b)) -> Type) (a6989586621680796855 :: a ~> m b) Source # | |
Defined in Data.Traversable.Singletons |
data MapMSym1 (a6989586621680796855 :: (~>) a (m b)) :: (~>) (t a) (m (t b)) Source #
Instances
(STraversable t, SMonad m) => SingI1 (MapMSym1 :: (a ~> m b) -> TyFun (t a) (m (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons | |
(STraversable t, SMonad m, SingI d) => SingI (MapMSym1 d :: TyFun (t a) (m (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons | |
SuppressUnusedWarnings (MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapMSym1 a6989586621680796855 :: TyFun (t a) (m (t b)) -> Type) (a6989586621680796856 :: t a) Source # | |
Defined in Data.Traversable.Singletons |
type family MapMSym2 (a6989586621680796855 :: (~>) a (m b)) (a6989586621680796856 :: t a) :: m (t b) where ... Source #
data SequenceSym0 :: (~>) (t (m a)) (m (t a)) Source #
Instances
(STraversable t, SMonad m) => SingI (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing SequenceSym0 | |
SuppressUnusedWarnings (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680796859 :: t (m a)) Source # | |
Defined in Data.Traversable.Singletons type Apply (SequenceSym0 :: TyFun (t (m a)) (m (t a)) -> Type) (a6989586621680796859 :: t (m a)) = Sequence a6989586621680796859 |
type family SequenceSym1 (a6989586621680796859 :: t (m a)) :: m (t a) where ... Source #
SequenceSym1 a6989586621680796859 = Sequence a6989586621680796859 |
Miscellaneous functions
data IdSym0 :: (~>) a a Source #
Instances
SingI (IdSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (IdSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (IdSym0 :: TyFun a a -> Type) (a6989586621679278917 :: a) Source # | |
Defined in GHC.Base.Singletons |
data ConstSym0 :: (~>) a ((~>) b a) Source #
Instances
SingI (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (ConstSym0 :: TyFun a (b ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConstSym0 :: TyFun a (b ~> a) -> Type) (a6989586621679278912 :: a) Source # | |
Defined in GHC.Base.Singletons |
data ConstSym1 (a6989586621679278912 :: a) :: (~>) b a Source #
Instances
SingI1 (ConstSym1 :: a -> TyFun b a -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (ConstSym1 d :: TyFun b a -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (ConstSym1 a6989586621679278912 :: TyFun b a -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConstSym1 a6989586621679278912 :: TyFun b a -> Type) (a6989586621679278913 :: b) Source # | |
Defined in GHC.Base.Singletons |
type family ConstSym2 (a6989586621679278912 :: a) (a6989586621679278913 :: b) :: a where ... Source #
data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c)) infixr 9 Source #
Instances
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679278899 :: b ~> c) Source # | |
Defined in GHC.Base.Singletons |
data (.@#@$$) (a6989586621679278899 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c) infixr 9 Source #
Instances
SingI1 ((.@#@$$) :: (b ~> c) -> TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI ((.@#@$$) d :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679278900 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data (a6989586621679278899 :: (~>) b c) .@#@$$$ (a6989586621679278900 :: (~>) a b) :: (~>) a c infixr 9 Source #
Instances
SingI2 ((.@#@$$$) :: (b ~> c) -> (a ~> b) -> TyFun a c -> Type) Source # | |
SingI d => SingI1 ((.@#@$$$) d :: (a ~> b) -> TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) (a6989586621679278901 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family ((a6989586621679278899 :: (~>) b c) .@#@$$$$ (a6989586621679278900 :: (~>) a b)) (a6989586621679278901 :: a) :: c where ... infixr 9 Source #
data FlipSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) b ((~>) a c)) Source #
Instances
SingI (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (FlipSym0 :: TyFun (a ~> (b ~> c)) (b ~> (a ~> c)) -> Type) (a6989586621679278887 :: a ~> (b ~> c)) Source # | |
Defined in GHC.Base.Singletons |
data FlipSym1 (a6989586621679278887 :: (~>) a ((~>) b c)) :: (~>) b ((~>) a c) Source #
Instances
SingI1 (FlipSym1 :: (a ~> (b ~> c)) -> TyFun b (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (FlipSym1 d :: TyFun b (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (FlipSym1 a6989586621679278887 :: TyFun b (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (FlipSym1 a6989586621679278887 :: TyFun b (a ~> c) -> Type) (a6989586621679278888 :: b) Source # | |
Defined in GHC.Base.Singletons |
data FlipSym2 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) :: (~>) a c Source #
Instances
SingI d => SingI1 (FlipSym2 d :: b -> TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI2 (FlipSym2 :: (a ~> (b ~> c)) -> b -> TyFun a c -> Type) Source # | |
(SingI d1, SingI d2) => SingI (FlipSym2 d1 d2 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (FlipSym2 a6989586621679278887 a6989586621679278888 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (FlipSym2 a6989586621679278887 a6989586621679278888 :: TyFun a c -> Type) (a6989586621679278889 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family FlipSym3 (a6989586621679278887 :: (~>) a ((~>) b c)) (a6989586621679278888 :: b) (a6989586621679278889 :: a) :: c where ... Source #
data ($@#@$) :: (~>) ((~>) a b) ((~>) a b) infixr 0 Source #
Instances
SingI (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (($@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278868 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data ($@#@$$) (a6989586621679278868 :: (~>) a b) :: (~>) a b infixr 0 Source #
Instances
SingI1 (($@#@$$) :: (a ~> b) -> TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (($@#@$$) d :: TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (($@#@$$) a6989586621679278868 :: TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (($@#@$$) a6989586621679278868 :: TyFun a b -> Type) (a6989586621679278869 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family (a6989586621679278868 :: (~>) a b) $@#@$$$ (a6989586621679278869 :: a) :: b where ... infixr 0 Source #
data UntilSym0 :: (~>) ((~>) a Bool) ((~>) ((~>) a a) ((~>) a a)) Source #
Instances
SingI (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (UntilSym0 :: TyFun (a ~> Bool) ((a ~> a) ~> (a ~> a)) -> Type) (a6989586621679278841 :: a ~> Bool) Source # | |
data UntilSym1 (a6989586621679278841 :: (~>) a Bool) :: (~>) ((~>) a a) ((~>) a a) Source #
Instances
SingI d => SingI (UntilSym1 d :: TyFun (a ~> a) (a ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (UntilSym1 a6989586621679278841 :: TyFun (a ~> a) (a ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
SingI1 (UntilSym1 :: (a ~> Bool) -> TyFun (a ~> a) (a ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
type Apply (UntilSym1 a6989586621679278841 :: TyFun (a ~> a) (a ~> a) -> Type) (a6989586621679278842 :: a ~> a) Source # | |
Defined in GHC.Base.Singletons |
data UntilSym2 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) :: (~>) a a Source #
Instances
SingI d => SingI1 (UntilSym2 d :: (a ~> a) -> TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI2 (UntilSym2 :: (a ~> Bool) -> (a ~> a) -> TyFun a a -> Type) Source # | |
(SingI d1, SingI d2) => SingI (UntilSym2 d1 d2 :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (UntilSym2 a6989586621679278841 a6989586621679278842 :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (UntilSym2 a6989586621679278841 a6989586621679278842 :: TyFun a a -> Type) (a6989586621679278843 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family UntilSym3 (a6989586621679278841 :: (~>) a Bool) (a6989586621679278842 :: (~>) a a) (a6989586621679278843 :: a) :: a where ... Source #
data AsTypeOfSym0 :: (~>) a ((~>) a a) Source #
Instances
SingI (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons sing :: Sing AsTypeOfSym0 | |
SuppressUnusedWarnings (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679278879 :: a) Source # | |
Defined in GHC.Base.Singletons type Apply (AsTypeOfSym0 :: TyFun a (a ~> a) -> Type) (a6989586621679278879 :: a) = AsTypeOfSym1 a6989586621679278879 |
data AsTypeOfSym1 (a6989586621679278879 :: a) :: (~>) a a Source #
Instances
SingI1 (AsTypeOfSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (AsTypeOfSym1 x) | |
SingI d => SingI (AsTypeOfSym1 d :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons sing :: Sing (AsTypeOfSym1 d) | |
SuppressUnusedWarnings (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) (a6989586621679278880 :: a) Source # | |
Defined in GHC.Base.Singletons type Apply (AsTypeOfSym1 a6989586621679278879 :: TyFun a a -> Type) (a6989586621679278880 :: a) = AsTypeOf a6989586621679278879 a6989586621679278880 |
type family AsTypeOfSym2 (a6989586621679278879 :: a) (a6989586621679278880 :: a) :: a where ... Source #
AsTypeOfSym2 a6989586621679278879 a6989586621679278880 = AsTypeOf a6989586621679278879 a6989586621679278880 |
data ErrorSym0 :: (~>) k0 k Source #
Instances
SingI (ErrorSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal | |
SuppressUnusedWarnings (ErrorSym0 :: TyFun k0 k -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ErrorSym0 :: TyFun k0 k2 -> Type) (a6989586621679544356 :: k0) Source # | |
Defined in GHC.TypeLits.Singletons.Internal |
data ErrorWithoutStackTraceSym0 :: (~>) k0 k Source #
Instances
SingI (ErrorWithoutStackTraceSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal | |
SuppressUnusedWarnings (ErrorWithoutStackTraceSym0 :: TyFun k0 k -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ErrorWithoutStackTraceSym0 :: TyFun k0 k2 -> Type) (a6989586621679544654 :: k0) Source # | |
Defined in GHC.TypeLits.Singletons.Internal type Apply (ErrorWithoutStackTraceSym0 :: TyFun k0 k2 -> Type) (a6989586621679544654 :: k0) = ErrorWithoutStackTrace a6989586621679544654 :: k2 |
type family ErrorWithoutStackTraceSym1 (a6989586621679544654 :: k0) :: k where ... Source #
ErrorWithoutStackTraceSym1 a6989586621679544654 = ErrorWithoutStackTrace a6989586621679544654 |
type family UndefinedSym0 :: k where ... Source #
data SeqSym0 :: (~>) a ((~>) b b) infixr 0 Source #
Instances
SingI (SeqSym0 :: TyFun a (b ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (SeqSym0 :: TyFun a (b ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (SeqSym0 :: TyFun a (b ~> b) -> Type) (a6989586621679278832 :: a) Source # | |
Defined in GHC.Base.Singletons |
data SeqSym1 (a6989586621679278832 :: a) :: (~>) b b infixr 0 Source #
Instances
SingI1 (SeqSym1 :: a -> TyFun b b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (SeqSym1 d :: TyFun b b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (SeqSym1 a6989586621679278832 :: TyFun b b -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (SeqSym1 a6989586621679278832 :: TyFun b b -> Type) (a6989586621679278833 :: b) Source # | |
Defined in GHC.Base.Singletons |
type family SeqSym2 (a6989586621679278832 :: a) (a6989586621679278833 :: b) :: b where ... infixr 0 Source #
data ($!@#@$) :: (~>) ((~>) a b) ((~>) a b) infixr 0 Source #
Instances
SingI (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (($!@#@$) :: TyFun (a ~> b) (a ~> b) -> Type) (a6989586621679278859 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data ($!@#@$$) (a6989586621679278859 :: (~>) a b) :: (~>) a b infixr 0 Source #
Instances
SingI1 (($!@#@$$) :: (a ~> b) -> TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (($!@#@$$) d :: TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (($!@#@$$) a6989586621679278859 :: TyFun a b -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (($!@#@$$) a6989586621679278859 :: TyFun a b -> Type) (a6989586621679278860 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family (a6989586621679278859 :: (~>) a b) $!@#@$$$ (a6989586621679278860 :: a) :: b where ... infixr 0 Source #
List operations
data MapSym0 :: (~>) ((~>) a b) ((~>) [a] [b]) Source #
Instances
SingI (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapSym0 :: TyFun (a ~> b) ([a] ~> [b]) -> Type) (a6989586621679278931 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data MapSym1 (a6989586621679278931 :: (~>) a b) :: (~>) [a] [b] Source #
Instances
SingI1 (MapSym1 :: (a ~> b) -> TyFun [a] [b] -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI (MapSym1 d :: TyFun [a] [b] -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (MapSym1 a6989586621679278931 :: TyFun [a] [b] -> Type) (a6989586621679278932 :: [a]) Source # | |
Defined in GHC.Base.Singletons |
type family MapSym2 (a6989586621679278931 :: (~>) a b) (a6989586621679278932 :: [a]) :: [b] where ... Source #
data (++@#@$) :: (~>) [a] ((~>) [a] [a]) infixr 5 Source #
Instances
SingI ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((++@#@$) :: TyFun [a] ([a] ~> [a]) -> Type) (a6989586621679278922 :: [a]) Source # | |
Defined in GHC.Base.Singletons |
data (++@#@$$) (a6989586621679278922 :: [a]) :: (~>) [a] [a] infixr 5 Source #
Instances
SingI1 ((++@#@$$) :: [a] -> TyFun [a] [a] -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI ((++@#@$$) d :: TyFun [a] [a] -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((++@#@$$) a6989586621679278922 :: TyFun [a] [a] -> Type) (a6989586621679278923 :: [a]) Source # | |
Defined in GHC.Base.Singletons |
type family (a6989586621679278922 :: [a]) ++@#@$$$ (a6989586621679278923 :: [a]) :: [a] where ... infixr 5 Source #
data FilterSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #
Instances
SingI (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing FilterSym0 | |
SuppressUnusedWarnings (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) Source # | |
Defined in Data.List.Singletons.Internal type Apply (FilterSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851556 :: a ~> Bool) = FilterSym1 a6989586621679851556 |
data FilterSym1 (a6989586621679851556 :: (~>) a Bool) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (FilterSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (FilterSym1 d) | |
SuppressUnusedWarnings (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (FilterSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (FilterSym1 x) | |
type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (FilterSym1 a6989586621679851556 :: TyFun [a] [a] -> Type) (a6989586621679851557 :: [a]) = Filter a6989586621679851556 a6989586621679851557 |
type family FilterSym2 (a6989586621679851556 :: (~>) a Bool) (a6989586621679851557 :: [a]) :: [a] where ... Source #
FilterSym2 a6989586621679851556 a6989586621679851557 = Filter a6989586621679851556 a6989586621679851557 |
data HeadSym0 :: (~>) [a] a Source #
Instances
SingI (HeadSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (HeadSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (HeadSym0 :: TyFun [a] a -> Type) (a6989586621679852326 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data LastSym0 :: (~>) [a] a Source #
Instances
SingI (LastSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (LastSym0 :: TyFun [a] a -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LastSym0 :: TyFun [a] a -> Type) (a6989586621679852320 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data TailSym0 :: (~>) [a] [a] Source #
Instances
SingI (TailSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (TailSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (TailSym0 :: TyFun [a] [a] -> Type) (a6989586621679852316 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data InitSym0 :: (~>) [a] [a] Source #
Instances
SingI (InitSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (InitSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (InitSym0 :: TyFun [a] [a] -> Type) (a6989586621679852304 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data (!!@#@$) :: (~>) [a] ((~>) Natural a) infixl 9 Source #
Instances
SingI ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((!!@#@$) :: TyFun [a] (Natural ~> a) -> Type) (a6989586621679851164 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data (!!@#@$$) (a6989586621679851164 :: [a]) :: (~>) Natural a infixl 9 Source #
Instances
SingI1 ((!!@#@$$) :: [a] -> TyFun Natural a -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI ((!!@#@$$) d :: TyFun Natural a -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((!!@#@$$) a6989586621679851164 :: TyFun Natural a -> Type) (a6989586621679851165 :: Natural) Source # | |
type family (a6989586621679851164 :: [a]) !!@#@$$$ (a6989586621679851165 :: Natural) :: a where ... infixl 9 Source #
data NullSym0 :: (~>) (t a) Bool Source #
Instances
SFoldable t => SingI (NullSym0 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (NullSym0 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NullSym0 :: TyFun (t a) Bool -> Type) (a6989586621680438361 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
data LengthSym0 :: (~>) (t a) Natural Source #
Instances
SFoldable t => SingI (LengthSym0 :: TyFun (t a) Natural -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing LengthSym0 | |
SuppressUnusedWarnings (LengthSym0 :: TyFun (t a) Natural -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (LengthSym0 :: TyFun (t a) Natural -> Type) (a6989586621680438364 :: t a) = Length a6989586621680438364 |
type family LengthSym1 (a6989586621680438364 :: t a) :: Natural where ... Source #
LengthSym1 a6989586621680438364 = Length a6989586621680438364 |
data ReverseSym0 :: (~>) [a] [a] Source #
Instances
SingI (ReverseSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing ReverseSym0 | |
SuppressUnusedWarnings (ReverseSym0 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ReverseSym0 :: TyFun [a] [a] -> Type) (a6989586621679852289 :: [a]) = Reverse a6989586621679852289 |
type family ReverseSym1 (a6989586621679852289 :: [a]) :: [a] where ... Source #
ReverseSym1 a6989586621679852289 = Reverse a6989586621679852289 |
Special folds
data AndSym0 :: (~>) (t Bool) Bool Source #
Instances
SFoldable t => SingI (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AndSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AndSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438187 :: t Bool) Source # | |
data OrSym0 :: (~>) (t Bool) Bool Source #
Instances
SFoldable t => SingI (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (OrSym0 :: TyFun (t Bool) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (OrSym0 :: TyFun (t Bool) Bool -> Type) (a6989586621680438181 :: t Bool) Source # | |
data AnySym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #
Instances
SFoldable t => SingI (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AnySym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438173 :: a ~> Bool) Source # | |
data AnySym1 (a6989586621680438173 :: (~>) a Bool) :: (~>) (t a) Bool Source #
Instances
SFoldable t => SingI1 (AnySym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (AnySym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AnySym1 a6989586621680438173 :: TyFun (t a) Bool -> Type) (a6989586621680438174 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family AnySym2 (a6989586621680438173 :: (~>) a Bool) (a6989586621680438174 :: t a) :: Bool where ... Source #
data AllSym0 :: (~>) ((~>) a Bool) ((~>) (t a) Bool) Source #
Instances
SFoldable t => SingI (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AllSym0 :: TyFun (a ~> Bool) (t a ~> Bool) -> Type) (a6989586621680438164 :: a ~> Bool) Source # | |
data AllSym1 (a6989586621680438164 :: (~>) a Bool) :: (~>) (t a) Bool Source #
Instances
SFoldable t => SingI1 (AllSym1 :: (a ~> Bool) -> TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (AllSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (AllSym1 a6989586621680438164 :: TyFun (t a) Bool -> Type) (a6989586621680438165 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family AllSym2 (a6989586621680438164 :: (~>) a Bool) (a6989586621680438165 :: t a) :: Bool where ... Source #
data ConcatSym0 :: (~>) (t [a]) [a] Source #
Instances
SFoldable t => SingI (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing ConcatSym0 | |
SuppressUnusedWarnings (ConcatSym0 :: TyFun (t [a]) [a] -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatSym0 :: TyFun (t [a]) [a] -> Type) (a6989586621680438203 :: t [a]) = Concat a6989586621680438203 |
type family ConcatSym1 (a6989586621680438203 :: t [a]) :: [a] where ... Source #
ConcatSym1 a6989586621680438203 = Concat a6989586621680438203 |
data ConcatMapSym0 :: (~>) ((~>) a [b]) ((~>) (t a) [b]) Source #
Instances
SFoldable t => SingI (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatMapSym0 :: TyFun (a ~> [b]) (t a ~> [b]) -> Type) (a6989586621680438192 :: a ~> [b]) = ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type |
data ConcatMapSym1 (a6989586621680438192 :: (~>) a [b]) :: (~>) (t a) [b] Source #
Instances
SFoldable t => SingI1 (ConcatMapSym1 :: (a ~> [b]) -> TyFun (t a) [b] -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ConcatMapSym1 x) | |
(SFoldable t, SingI d) => SingI (ConcatMapSym1 d :: TyFun (t a) [b] -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (ConcatMapSym1 d) | |
SuppressUnusedWarnings (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (ConcatMapSym1 a6989586621680438192 :: TyFun (t a) [b] -> Type) (a6989586621680438193 :: t a) = ConcatMap a6989586621680438192 a6989586621680438193 |
type family ConcatMapSym2 (a6989586621680438192 :: (~>) a [b]) (a6989586621680438193 :: t a) :: [b] where ... Source #
ConcatMapSym2 a6989586621680438192 a6989586621680438193 = ConcatMap a6989586621680438192 a6989586621680438193 |
Building lists
Scans
data ScanlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) [a] [b])) Source #
Instances
SingI (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanlSym0 :: TyFun (b ~> (a ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852094 :: b ~> (a ~> b)) Source # | |
Defined in Data.List.Singletons.Internal |
data ScanlSym1 (a6989586621679852094 :: (~>) b ((~>) a b)) :: (~>) b ((~>) [a] [b]) Source #
Instances
SingI1 (ScanlSym1 :: (b ~> (a ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (ScanlSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanlSym1 a6989586621679852094 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852095 :: b) Source # | |
Defined in Data.List.Singletons.Internal |
data ScanlSym2 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) :: (~>) [a] [b] Source #
Instances
SingI d => SingI1 (ScanlSym2 d :: b -> TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI2 (ScanlSym2 :: (b ~> (a ~> b)) -> b -> TyFun [a] [b] -> Type) Source # | |
(SingI d1, SingI d2) => SingI (ScanlSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanlSym2 a6989586621679852094 a6989586621679852095 :: TyFun [a] [b] -> Type) (a6989586621679852096 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family ScanlSym3 (a6989586621679852094 :: (~>) b ((~>) a b)) (a6989586621679852095 :: b) (a6989586621679852096 :: [a]) :: [b] where ... Source #
data Scanl1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #
Instances
SingI (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing Scanl1Sym0 | |
SuppressUnusedWarnings (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) Source # | |
Defined in Data.List.Singletons.Internal type Apply (Scanl1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852085 :: a ~> (a ~> a)) = Scanl1Sym1 a6989586621679852085 |
data Scanl1Sym1 (a6989586621679852085 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (Scanl1Sym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (Scanl1Sym1 d) | |
SuppressUnusedWarnings (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (Scanl1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (Scanl1Sym1 x) | |
type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (Scanl1Sym1 a6989586621679852085 :: TyFun [a] [a] -> Type) (a6989586621679852086 :: [a]) = Scanl1 a6989586621679852085 a6989586621679852086 |
type family Scanl1Sym2 (a6989586621679852085 :: (~>) a ((~>) a a)) (a6989586621679852086 :: [a]) :: [a] where ... Source #
Scanl1Sym2 a6989586621679852085 a6989586621679852086 = Scanl1 a6989586621679852085 a6989586621679852086 |
data ScanrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) [a] [b])) Source #
Instances
SingI (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanrSym0 :: TyFun (a ~> (b ~> b)) (b ~> ([a] ~> [b])) -> Type) (a6989586621679852067 :: a ~> (b ~> b)) Source # | |
Defined in Data.List.Singletons.Internal |
data ScanrSym1 (a6989586621679852067 :: (~>) a ((~>) b b)) :: (~>) b ((~>) [a] [b]) Source #
Instances
SingI1 (ScanrSym1 :: (a ~> (b ~> b)) -> TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (ScanrSym1 d :: TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanrSym1 a6989586621679852067 :: TyFun b ([a] ~> [b]) -> Type) (a6989586621679852068 :: b) Source # | |
Defined in Data.List.Singletons.Internal |
data ScanrSym2 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) :: (~>) [a] [b] Source #
Instances
SingI d => SingI1 (ScanrSym2 d :: b -> TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI2 (ScanrSym2 :: (a ~> (b ~> b)) -> b -> TyFun [a] [b] -> Type) Source # | |
(SingI d1, SingI d2) => SingI (ScanrSym2 d1 d2 :: TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ScanrSym2 a6989586621679852067 a6989586621679852068 :: TyFun [a] [b] -> Type) (a6989586621679852069 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family ScanrSym3 (a6989586621679852067 :: (~>) a ((~>) b b)) (a6989586621679852068 :: b) (a6989586621679852069 :: [a]) :: [b] where ... Source #
data Scanr1Sym0 :: (~>) ((~>) a ((~>) a a)) ((~>) [a] [a]) Source #
Instances
SingI (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing Scanr1Sym0 | |
SuppressUnusedWarnings (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) Source # | |
Defined in Data.List.Singletons.Internal type Apply (Scanr1Sym0 :: TyFun (a ~> (a ~> a)) ([a] ~> [a]) -> Type) (a6989586621679852047 :: a ~> (a ~> a)) = Scanr1Sym1 a6989586621679852047 |
data Scanr1Sym1 (a6989586621679852047 :: (~>) a ((~>) a a)) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (Scanr1Sym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (Scanr1Sym1 d) | |
SuppressUnusedWarnings (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (Scanr1Sym1 :: (a ~> (a ~> a)) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (Scanr1Sym1 x) | |
type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (Scanr1Sym1 a6989586621679852047 :: TyFun [a] [a] -> Type) (a6989586621679852048 :: [a]) = Scanr1 a6989586621679852047 a6989586621679852048 |
type family Scanr1Sym2 (a6989586621679852047 :: (~>) a ((~>) a a)) (a6989586621679852048 :: [a]) :: [a] where ... Source #
Scanr1Sym2 a6989586621679852047 a6989586621679852048 = Scanr1 a6989586621679852047 a6989586621679852048 |
Infinite lists
data ReplicateSym0 :: (~>) Natural ((~>) a [a]) Source #
Instances
SingI (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ReplicateSym0 :: TyFun Natural (a ~> [a]) -> Type) (a6989586621679851184 :: Natural) = ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type |
data ReplicateSym1 (a6989586621679851184 :: Natural) :: (~>) a [a] Source #
Instances
SingI1 (ReplicateSym1 :: Natural -> TyFun a [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ReplicateSym1 x) | |
SingI d => SingI (ReplicateSym1 d :: TyFun a [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ReplicateSym1 d) | |
SuppressUnusedWarnings (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ReplicateSym1 a6989586621679851184 :: TyFun a [a] -> Type) (a6989586621679851185 :: a) = Replicate a6989586621679851184 a6989586621679851185 |
type family ReplicateSym2 (a6989586621679851184 :: Natural) (a6989586621679851185 :: a) :: [a] where ... Source #
ReplicateSym2 a6989586621679851184 a6989586621679851185 = Replicate a6989586621679851184 a6989586621679851185 |
Sublists
data TakeSym0 :: (~>) Natural ((~>) [a] [a]) Source #
Instances
SingI (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (TakeSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851339 :: Natural) Source # | |
data TakeSym1 (a6989586621679851339 :: Natural) :: (~>) [a] [a] Source #
Instances
SingI1 (TakeSym1 :: Natural -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (TakeSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (TakeSym1 a6989586621679851339 :: TyFun [a] [a] -> Type) (a6989586621679851340 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family TakeSym2 (a6989586621679851339 :: Natural) (a6989586621679851340 :: [a]) :: [a] where ... Source #
data DropSym0 :: (~>) Natural ((~>) [a] [a]) Source #
Instances
SingI (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (DropSym0 :: TyFun Natural ([a] ~> [a]) -> Type) (a6989586621679851326 :: Natural) Source # | |
data DropSym1 (a6989586621679851326 :: Natural) :: (~>) [a] [a] Source #
Instances
SingI1 (DropSym1 :: Natural -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (DropSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (DropSym1 a6989586621679851326 :: TyFun [a] [a] -> Type) (a6989586621679851327 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family DropSym2 (a6989586621679851326 :: Natural) (a6989586621679851327 :: [a]) :: [a] where ... Source #
data TakeWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #
Instances
SingI (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) Source # | |
Defined in Data.List.Singletons.Internal type Apply (TakeWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851456 :: a ~> Bool) = TakeWhileSym1 a6989586621679851456 |
data TakeWhileSym1 (a6989586621679851456 :: (~>) a Bool) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (TakeWhileSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (TakeWhileSym1 d) | |
SuppressUnusedWarnings (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (TakeWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (TakeWhileSym1 x) | |
type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (TakeWhileSym1 a6989586621679851456 :: TyFun [a] [a] -> Type) (a6989586621679851457 :: [a]) = TakeWhile a6989586621679851456 a6989586621679851457 |
type family TakeWhileSym2 (a6989586621679851456 :: (~>) a Bool) (a6989586621679851457 :: [a]) :: [a] where ... Source #
TakeWhileSym2 a6989586621679851456 a6989586621679851457 = TakeWhile a6989586621679851456 a6989586621679851457 |
data DropWhileSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #
Instances
SingI (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) Source # | |
Defined in Data.List.Singletons.Internal type Apply (DropWhileSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851441 :: a ~> Bool) = DropWhileSym1 a6989586621679851441 |
data DropWhileSym1 (a6989586621679851441 :: (~>) a Bool) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (DropWhileSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (DropWhileSym1 d) | |
SuppressUnusedWarnings (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (DropWhileSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileSym1 x) | |
type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (DropWhileSym1 a6989586621679851441 :: TyFun [a] [a] -> Type) (a6989586621679851442 :: [a]) = DropWhile a6989586621679851441 a6989586621679851442 |
type family DropWhileSym2 (a6989586621679851441 :: (~>) a Bool) (a6989586621679851442 :: [a]) :: [a] where ... Source #
DropWhileSym2 a6989586621679851441 a6989586621679851442 = DropWhile a6989586621679851441 a6989586621679851442 |
data DropWhileEndSym0 :: (~>) ((~>) a Bool) ((~>) [a] [a]) Source #
Instances
SingI (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) Source # | |
Defined in Data.List.Singletons.Internal type Apply (DropWhileEndSym0 :: TyFun (a ~> Bool) ([a] ~> [a]) -> Type) (a6989586621679851424 :: a ~> Bool) = DropWhileEndSym1 a6989586621679851424 |
data DropWhileEndSym1 (a6989586621679851424 :: (~>) a Bool) :: (~>) [a] [a] Source #
Instances
SingI d => SingI (DropWhileEndSym1 d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (DropWhileEndSym1 d) | |
SuppressUnusedWarnings (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (DropWhileEndSym1 :: (a ~> Bool) -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (DropWhileEndSym1 x) | |
type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (DropWhileEndSym1 a6989586621679851424 :: TyFun [a] [a] -> Type) (a6989586621679851425 :: [a]) = DropWhileEnd a6989586621679851424 a6989586621679851425 |
type family DropWhileEndSym2 (a6989586621679851424 :: (~>) a Bool) (a6989586621679851425 :: [a]) :: [a] where ... Source #
DropWhileEndSym2 a6989586621679851424 a6989586621679851425 = DropWhileEnd a6989586621679851424 a6989586621679851425 |
data SpanSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #
Instances
SingI (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (SpanSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851387 :: a ~> Bool) Source # | |
data SpanSym1 (a6989586621679851387 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #
Instances
SingI d => SingI (SpanSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (SpanSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
type Apply (SpanSym1 a6989586621679851387 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851388 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family SpanSym2 (a6989586621679851387 :: (~>) a Bool) (a6989586621679851388 :: [a]) :: ([a], [a]) where ... Source #
data BreakSym0 :: (~>) ((~>) a Bool) ((~>) [a] ([a], [a])) Source #
Instances
SingI (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (BreakSym0 :: TyFun (a ~> Bool) ([a] ~> ([a], [a])) -> Type) (a6989586621679851352 :: a ~> Bool) Source # | |
data BreakSym1 (a6989586621679851352 :: (~>) a Bool) :: (~>) [a] ([a], [a]) Source #
Instances
SingI d => SingI (BreakSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
SingI1 (BreakSym1 :: (a ~> Bool) -> TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
type Apply (BreakSym1 a6989586621679851352 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851353 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
type family BreakSym2 (a6989586621679851352 :: (~>) a Bool) (a6989586621679851353 :: [a]) :: ([a], [a]) where ... Source #
data SplitAtSym0 :: (~>) Natural ((~>) [a] ([a], [a])) Source #
Instances
SingI (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing SplitAtSym0 | |
SuppressUnusedWarnings (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) Source # | |
Defined in Data.List.Singletons.Internal type Apply (SplitAtSym0 :: TyFun Natural ([a] ~> ([a], [a])) -> Type) (a6989586621679851319 :: Natural) = SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type |
data SplitAtSym1 (a6989586621679851319 :: Natural) :: (~>) [a] ([a], [a]) Source #
Instances
SingI1 (SplitAtSym1 :: Natural -> TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (SplitAtSym1 x) | |
SingI d => SingI (SplitAtSym1 d :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (SplitAtSym1 d) | |
SuppressUnusedWarnings (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (SplitAtSym1 a6989586621679851319 :: TyFun [a] ([a], [a]) -> Type) (a6989586621679851320 :: [a]) = SplitAt a6989586621679851319 a6989586621679851320 |
type family SplitAtSym2 (a6989586621679851319 :: Natural) (a6989586621679851320 :: [a]) :: ([a], [a]) where ... Source #
SplitAtSym2 a6989586621679851319 a6989586621679851320 = SplitAt a6989586621679851319 a6989586621679851320 |
Searching lists
data NotElemSym0 :: (~>) a ((~>) (t a) Bool) Source #
Instances
(SFoldable t, SEq a) => SingI (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing NotElemSym0 | |
SuppressUnusedWarnings (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) Source # | |
Defined in Data.Foldable.Singletons type Apply (NotElemSym0 :: TyFun a (t a ~> Bool) -> Type) (a6989586621680438115 :: a) = NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type |
data NotElemSym1 (a6989586621680438115 :: a) :: (~>) (t a) Bool Source #
Instances
(SFoldable t, SEq a) => SingI1 (NotElemSym1 :: a -> TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (NotElemSym1 x) | |
(SFoldable t, SEq a, SingI d) => SingI (NotElemSym1 d :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (NotElemSym1 d) | |
SuppressUnusedWarnings (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (NotElemSym1 a6989586621680438115 :: TyFun (t a) Bool -> Type) (a6989586621680438116 :: t a) = NotElem a6989586621680438115 a6989586621680438116 |
type family NotElemSym2 (a6989586621680438115 :: a) (a6989586621680438116 :: t a) :: Bool where ... Source #
NotElemSym2 a6989586621680438115 a6989586621680438116 = NotElem a6989586621680438115 a6989586621680438116 |
data LookupSym0 :: (~>) a ((~>) [(a, b)] (Maybe b)) Source #
Instances
SEq a => SingI (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing LookupSym0 | |
SuppressUnusedWarnings (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) Source # | |
Defined in Data.List.Singletons.Internal type Apply (LookupSym0 :: TyFun a ([(a, b)] ~> Maybe b) -> Type) (a6989586621679851247 :: a) = LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type |
data LookupSym1 (a6989586621679851247 :: a) :: (~>) [(a, b)] (Maybe b) Source #
Instances
SEq a => SingI1 (LookupSym1 :: a -> TyFun [(a, b)] (Maybe b) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (LookupSym1 x) | |
(SEq a, SingI d) => SingI (LookupSym1 d :: TyFun [(a, b)] (Maybe b) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (LookupSym1 d) | |
SuppressUnusedWarnings (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (LookupSym1 a6989586621679851247 :: TyFun [(a, b)] (Maybe b) -> Type) (a6989586621679851248 :: [(a, b)]) = Lookup a6989586621679851247 a6989586621679851248 |
type family LookupSym2 (a6989586621679851247 :: a) (a6989586621679851248 :: [(a, b)]) :: Maybe b where ... Source #
LookupSym2 a6989586621679851247 a6989586621679851248 = Lookup a6989586621679851247 a6989586621679851248 |
Zipping and unzipping lists
data ZipSym0 :: (~>) [a] ((~>) [b] [(a, b)]) Source #
Instances
SingI (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipSym0 :: TyFun [a] ([b] ~> [(a, b)]) -> Type) (a6989586621679851874 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data ZipSym1 (a6989586621679851874 :: [a]) :: (~>) [b] [(a, b)] Source #
Instances
SingI1 (ZipSym1 :: [a] -> TyFun [b] [(a, b)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (ZipSym1 d :: TyFun [b] [(a, b)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipSym1 a6989586621679851874 :: TyFun [b] [(a, b)] -> Type) (a6989586621679851875 :: [b]) Source # | |
Defined in Data.List.Singletons.Internal |
type family ZipSym2 (a6989586621679851874 :: [a]) (a6989586621679851875 :: [b]) :: [(a, b)] where ... Source #
data Zip3Sym0 :: (~>) [a] ((~>) [b] ((~>) [c] [(a, b, c)])) Source #
Instances
SingI (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Zip3Sym0 :: TyFun [a] ([b] ~> ([c] ~> [(a, b, c)])) -> Type) (a6989586621679851862 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal |
data Zip3Sym1 (a6989586621679851862 :: [a]) :: (~>) [b] ((~>) [c] [(a, b, c)]) Source #
Instances
SingI1 (Zip3Sym1 :: [a] -> TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SingI d => SingI (Zip3Sym1 d :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Zip3Sym1 a6989586621679851862 :: TyFun [b] ([c] ~> [(a, b, c)]) -> Type) (a6989586621679851863 :: [b]) Source # | |
Defined in Data.List.Singletons.Internal |
data Zip3Sym2 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) :: (~>) [c] [(a, b, c)] Source #
Instances
SingI2 (Zip3Sym2 :: [a] -> [b] -> TyFun [c] [(a, b, c)] -> Type) Source # | |
SingI d => SingI1 (Zip3Sym2 d :: [b] -> TyFun [c] [(a, b, c)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
(SingI d1, SingI d2) => SingI (Zip3Sym2 d1 d2 :: TyFun [c] [(a, b, c)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Zip3Sym2 a6989586621679851862 a6989586621679851863 :: TyFun [c] [(a, b, c)] -> Type) (a6989586621679851864 :: [c]) Source # | |
Defined in Data.List.Singletons.Internal |
type family Zip3Sym3 (a6989586621679851862 :: [a]) (a6989586621679851863 :: [b]) (a6989586621679851864 :: [c]) :: [(a, b, c)] where ... Source #
data ZipWithSym0 :: (~>) ((~>) a ((~>) b c)) ((~>) [a] ((~>) [b] [c])) Source #
Instances
SingI (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing ZipWithSym0 | |
SuppressUnusedWarnings (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWithSym0 :: TyFun (a ~> (b ~> c)) ([a] ~> ([b] ~> [c])) -> Type) (a6989586621679851850 :: a ~> (b ~> c)) = ZipWithSym1 a6989586621679851850 |
data ZipWithSym1 (a6989586621679851850 :: (~>) a ((~>) b c)) :: (~>) [a] ((~>) [b] [c]) Source #
Instances
SingI1 (ZipWithSym1 :: (a ~> (b ~> c)) -> TyFun [a] ([b] ~> [c]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym1 x) | |
SingI d => SingI (ZipWithSym1 d :: TyFun [a] ([b] ~> [c]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ZipWithSym1 d) | |
SuppressUnusedWarnings (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWithSym1 a6989586621679851850 :: TyFun [a] ([b] ~> [c]) -> Type) (a6989586621679851851 :: [a]) = ZipWithSym2 a6989586621679851850 a6989586621679851851 |
data ZipWithSym2 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) :: (~>) [b] [c] Source #
Instances
SingI d => SingI1 (ZipWithSym2 d :: [a] -> TyFun [b] [c] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ZipWithSym2 d x) | |
SingI2 (ZipWithSym2 :: (a ~> (b ~> c)) -> [a] -> TyFun [b] [c] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWithSym2 x y) | |
(SingI d1, SingI d2) => SingI (ZipWithSym2 d1 d2 :: TyFun [b] [c] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ZipWithSym2 d1 d2) | |
SuppressUnusedWarnings (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWithSym2 a6989586621679851850 a6989586621679851851 :: TyFun [b] [c] -> Type) (a6989586621679851852 :: [b]) = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852 |
type family ZipWithSym3 (a6989586621679851850 :: (~>) a ((~>) b c)) (a6989586621679851851 :: [a]) (a6989586621679851852 :: [b]) :: [c] where ... Source #
ZipWithSym3 a6989586621679851850 a6989586621679851851 a6989586621679851852 = ZipWith a6989586621679851850 a6989586621679851851 a6989586621679851852 |
data ZipWith3Sym0 :: (~>) ((~>) a ((~>) b ((~>) c d))) ((~>) [a] ((~>) [b] ((~>) [c] [d]))) Source #
Instances
SingI (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing ZipWith3Sym0 | |
SuppressUnusedWarnings (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWith3Sym0 :: TyFun (a ~> (b ~> (c ~> d))) ([a] ~> ([b] ~> ([c] ~> [d]))) -> Type) (a6989586621679851835 :: a ~> (b ~> (c ~> d))) = ZipWith3Sym1 a6989586621679851835 |
data ZipWith3Sym1 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) :: (~>) [a] ((~>) [b] ((~>) [c] [d])) Source #
Instances
SingI1 (ZipWith3Sym1 :: (a ~> (b ~> (c ~> d))) -> TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym1 x) | |
SingI d2 => SingI (ZipWith3Sym1 d2 :: TyFun [a] ([b] ~> ([c] ~> [d1])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ZipWith3Sym1 d2) | |
SuppressUnusedWarnings (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWith3Sym1 a6989586621679851835 :: TyFun [a] ([b] ~> ([c] ~> [d])) -> Type) (a6989586621679851836 :: [a]) = ZipWith3Sym2 a6989586621679851835 a6989586621679851836 |
data ZipWith3Sym2 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) :: (~>) [b] ((~>) [c] [d]) Source #
Instances
SingI d2 => SingI1 (ZipWith3Sym2 d2 :: [a] -> TyFun [b] ([c] ~> [d1]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym2 d2 x) | |
SingI2 (ZipWith3Sym2 :: (a ~> (b ~> (c ~> d))) -> [a] -> TyFun [b] ([c] ~> [d]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym2 x y) | |
(SingI d2, SingI d3) => SingI (ZipWith3Sym2 d2 d3 :: TyFun [b] ([c] ~> [d1]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ZipWith3Sym2 d2 d3) | |
SuppressUnusedWarnings (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWith3Sym2 a6989586621679851835 a6989586621679851836 :: TyFun [b] ([c] ~> [d]) -> Type) (a6989586621679851837 :: [b]) = ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 |
data ZipWith3Sym3 (a6989586621679851835 :: (~>) a ((~>) b ((~>) c d))) (a6989586621679851836 :: [a]) (a6989586621679851837 :: [b]) :: (~>) [c] [d] Source #
Instances
SingI d2 => SingI2 (ZipWith3Sym3 d2 :: [a] -> [b] -> TyFun [c] [d1] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ZipWith3Sym3 d2 x y) | |
(SingI d2, SingI d3) => SingI1 (ZipWith3Sym3 d2 d3 :: [b] -> TyFun [c] [d1] -> Type) Source # | |
Defined in Data.List.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (ZipWith3Sym3 d2 d3 x) | |
(SingI d2, SingI d3, SingI d4) => SingI (ZipWith3Sym3 d2 d3 d4 :: TyFun [c] [d1] -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing (ZipWith3Sym3 d2 d3 d4) | |
SuppressUnusedWarnings (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (ZipWith3Sym3 a6989586621679851835 a6989586621679851836 a6989586621679851837 :: TyFun [c] [d] -> Type) (a6989586621679851838 :: [c]) = ZipWith3 a6989586621679851835 a6989586621679851836 a6989586621679851837 a6989586621679851838 |
data UnzipSym0 :: (~>) [(a, b)] ([a], [b]) Source #
Instances
SingI (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal | |
SuppressUnusedWarnings (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (UnzipSym0 :: TyFun [(a, b)] ([a], [b]) -> Type) (a6989586621679851816 :: [(a, b)]) Source # | |
Defined in Data.List.Singletons.Internal |
data Unzip3Sym0 :: (~>) [(a, b, c)] ([a], [b], [c]) Source #
Instances
SingI (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing Unzip3Sym0 | |
SuppressUnusedWarnings (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) Source # | |
Defined in Data.List.Singletons.Internal type Apply (Unzip3Sym0 :: TyFun [(a, b, c)] ([a], [b], [c]) -> Type) (a6989586621679851798 :: [(a, b, c)]) = Unzip3 a6989586621679851798 |
type family Unzip3Sym1 (a6989586621679851798 :: [(a, b, c)]) :: ([a], [b], [c]) where ... Source #
Unzip3Sym1 a6989586621679851798 = Unzip3 a6989586621679851798 |
Functions on Symbol
s
data UnlinesSym0 :: (~>) [Symbol] Symbol Source #
Instances
SingI UnlinesSym0 Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing UnlinesSym0 | |
SuppressUnusedWarnings UnlinesSym0 Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply UnlinesSym0 (a6989586621679851701 :: [Symbol]) Source # | |
Defined in Data.List.Singletons.Internal |
type family UnlinesSym1 (a6989586621679851701 :: [Symbol]) :: Symbol where ... Source #
UnlinesSym1 a6989586621679851701 = Unlines a6989586621679851701 |
data UnwordsSym0 :: (~>) [Symbol] Symbol Source #
Instances
SingI UnwordsSym0 Source # | |
Defined in Data.List.Singletons.Internal sing :: Sing UnwordsSym0 | |
SuppressUnusedWarnings UnwordsSym0 Source # | |
Defined in Data.List.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply UnwordsSym0 (a6989586621679851691 :: [Symbol]) Source # | |
Defined in Data.List.Singletons.Internal |
type family UnwordsSym1 (a6989586621679851691 :: [Symbol]) :: Symbol where ... Source #
UnwordsSym1 a6989586621679851691 = Unwords a6989586621679851691 |
Converting to and from Symbol
Converting to Symbol
data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol)) Source #
Instances
SShow a => SingI (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) = ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type |
data ShowsPrecSym1 (a6989586621680249857 :: Natural) :: (~>) a ((~>) Symbol Symbol) Source #
Instances
SShow a => SingI1 (ShowsPrecSym1 :: Natural -> TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym1 x) | |
(SShow a, SingI d) => SingI (ShowsPrecSym1 d :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym1 d) | |
SuppressUnusedWarnings (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) = ShowsPrecSym2 a6989586621680249857 a6989586621680249858 |
data ShowsPrecSym2 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) :: (~>) Symbol Symbol Source #
Instances
SShow a => SingI2 (ShowsPrecSym2 :: Natural -> a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowsPrecSym2 x y) | |
(SShow a, SingI d) => SingI1 (ShowsPrecSym2 d :: a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym2 d x) | |
(SShow a, SingI d1, SingI d2) => SingI (ShowsPrecSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym2 d1 d2) | |
SuppressUnusedWarnings (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowsPrecSym3 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) (a6989586621680249859 :: Symbol) :: Symbol where ... Source #
ShowsPrecSym3 a6989586621680249857 a6989586621680249858 a6989586621680249859 = ShowsPrec a6989586621680249857 a6989586621680249858 a6989586621680249859 |
data ShowListSym0 :: (~>) [a] ((~>) Symbol Symbol) Source #
Instances
SShow a => SingI (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing ShowListSym0 | |
SuppressUnusedWarnings (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) Source # | |
Defined in Text.Show.Singletons type Apply (ShowListSym0 :: TyFun [a] (Symbol ~> Symbol) -> Type) (a6989586621680249866 :: [a]) = ShowListSym1 a6989586621680249866 |
data ShowListSym1 (a6989586621680249866 :: [a]) :: (~>) Symbol Symbol Source #
Instances
SShow a => SingI1 (ShowListSym1 :: [a] -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowListSym1 x) | |
(SShow a, SingI d) => SingI (ShowListSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowListSym1 d) | |
SuppressUnusedWarnings (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowListSym1 a6989586621680249866 :: TyFun Symbol Symbol -> Type) (a6989586621680249867 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowListSym2 (a6989586621680249866 :: [a]) (a6989586621680249867 :: Symbol) :: Symbol where ... Source #
ShowListSym2 a6989586621680249866 a6989586621680249867 = ShowList a6989586621680249866 a6989586621680249867 |
data Show_Sym0 :: (~>) a Symbol Source #
Instances
SShow a => SingI (Show_Sym0 :: TyFun a Symbol -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (Show_Sym0 :: TyFun a Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (Show_Sym0 :: TyFun a Symbol -> Type) (a6989586621680249862 :: a) Source # | |
Defined in Text.Show.Singletons |
data ShowsSym0 :: (~>) a ((~>) Symbol Symbol) Source #
Instances
SShow a => SingI (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsSym0 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249849 :: a) Source # | |
data ShowsSym1 (a6989586621680249849 :: a) :: (~>) Symbol Symbol Source #
Instances
SShow a => SingI1 (ShowsSym1 :: a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons | |
(SShow a, SingI d) => SingI (ShowsSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsSym1 a6989586621680249849 :: TyFun Symbol Symbol -> Type) (a6989586621680249850 :: Symbol) Source # | |
type family ShowsSym2 (a6989586621680249849 :: a) (a6989586621680249850 :: Symbol) :: Symbol where ... Source #
data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol) Source #
Instances
SingI ShowCharSym0 Source # | |
Defined in Text.Show.Singletons sing :: Sing ShowCharSym0 | |
SuppressUnusedWarnings ShowCharSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowCharSym0 (a6989586621680249823 :: Char) Source # | |
Defined in Text.Show.Singletons |
data ShowCharSym1 (a6989586621680249823 :: Char) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowCharSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowCharSym1 x) | |
SingI d => SingI (ShowCharSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowCharSym1 d) | |
SuppressUnusedWarnings (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowCharSym2 (a6989586621680249823 :: Char) (a6989586621680249824 :: Symbol) :: Symbol where ... Source #
ShowCharSym2 a6989586621680249823 a6989586621680249824 = ShowChar a6989586621680249823 a6989586621680249824 |
data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol) Source #
Instances
SingI ShowStringSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowStringSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
data ShowStringSym1 (a6989586621680249812 :: Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowStringSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowStringSym1 x) | |
SingI d => SingI (ShowStringSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowStringSym1 d) | |
SuppressUnusedWarnings (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) = ShowString a6989586621680249812 a6989586621680249813 |
type family ShowStringSym2 (a6989586621680249812 :: Symbol) (a6989586621680249813 :: Symbol) :: Symbol where ... Source #
ShowStringSym2 a6989586621680249812 a6989586621680249813 = ShowString a6989586621680249812 a6989586621680249813 |
data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)) Source #
Instances
SingI ShowParenSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowParenSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowParenSym0 (a6989586621680249796 :: Bool) Source # | |
Defined in Text.Show.Singletons |
data ShowParenSym1 (a6989586621680249796 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol) Source #
Instances
SingI1 ShowParenSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym1 x) | |
SingI d => SingI (ShowParenSym1 d :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym1 d) | |
SuppressUnusedWarnings (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) = ShowParenSym2 a6989586621680249796 a6989586621680249797 |
data ShowParenSym2 (a6989586621680249796 :: Bool) (a6989586621680249797 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI2 ShowParenSym2 Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowParenSym2 x y) | |
(SingI d1, SingI d2) => SingI (ShowParenSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym2 d1 d2) | |
SuppressUnusedWarnings (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
SingI d => SingI1 (ShowParenSym2 d :: (Symbol ~> Symbol) -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym2 d x) | |
type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) Source # | |
Defined in Text.Show.Singletons |