Copyright | (C) 2013 Richard Eisenberg |
---|---|
License | BSD-style (see LICENSE) |
Maintainer | Ryan Scott |
Stability | experimental |
Portability | non-portable |
Safe Haskell | Safe-Inferred |
Language | GHC2021 |
This module contains everything you need to derive your own singletons via
Template Haskell, exporting both Template Haskell functionality and
definitions that are likely to be mentioned in promoted or singled code.
For a version of this module that only contains the Template Haskell
functionality and nothing else, see Data.Singletons.TH from the
singletons-th
library.
Synopsis
- singletons :: OptionsMonad q => q [Dec] -> q [Dec]
- singletonsOnly :: OptionsMonad q => q [Dec] -> q [Dec]
- genSingletons :: OptionsMonad q => [Name] -> q [Dec]
- promote :: OptionsMonad q => q [Dec] -> q [Dec]
- promoteOnly :: OptionsMonad q => q [Dec] -> q [Dec]
- genDefunSymbols :: OptionsMonad q => [Name] -> q [Dec]
- genPromotions :: OptionsMonad q => [Name] -> q [Dec]
- promoteEqInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteEqInstance :: OptionsMonad q => Name -> q [Dec]
- singEqInstances :: OptionsMonad q => [Name] -> q [Dec]
- singEqInstance :: OptionsMonad q => Name -> q [Dec]
- singDecideInstances :: OptionsMonad q => [Name] -> q [Dec]
- singDecideInstance :: OptionsMonad q => Name -> q [Dec]
- promoteOrdInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteOrdInstance :: OptionsMonad q => Name -> q [Dec]
- singOrdInstances :: OptionsMonad q => [Name] -> q [Dec]
- singOrdInstance :: OptionsMonad q => Name -> q [Dec]
- promoteBoundedInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteBoundedInstance :: OptionsMonad q => Name -> q [Dec]
- singBoundedInstances :: OptionsMonad q => [Name] -> q [Dec]
- singBoundedInstance :: OptionsMonad q => Name -> q [Dec]
- promoteEnumInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteEnumInstance :: OptionsMonad q => Name -> q [Dec]
- singEnumInstances :: OptionsMonad q => [Name] -> q [Dec]
- singEnumInstance :: OptionsMonad q => Name -> q [Dec]
- promoteShowInstances :: OptionsMonad q => [Name] -> q [Dec]
- promoteShowInstance :: OptionsMonad q => Name -> q [Dec]
- singShowInstances :: OptionsMonad q => [Name] -> q [Dec]
- singShowInstance :: OptionsMonad q => Name -> q [Dec]
- showSingInstances :: OptionsMonad q => [Name] -> q [Dec]
- showSingInstance :: OptionsMonad q => Name -> q [Dec]
- singITyConInstances :: DsMonad q => [Int] -> q [Dec]
- singITyConInstance :: DsMonad q => Int -> q Dec
- cases :: DsMonad q => Name -> q Exp -> q Exp -> q Exp
- sCases :: OptionsMonad q => Name -> q Exp -> q Exp -> q Exp
- data SList :: forall (a :: Type). [a] -> Type where
- data SBool :: Bool -> Type where
- data STuple0 :: () -> Type where
- data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where
- data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where
- data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where
- data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where
- data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where
- STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where
- STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- data SOrdering :: Ordering -> Type where
- class PEq a where
- type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ...
- sIf :: Sing a -> Sing b -> Sing c -> Sing (If a b c)
- type family (a :: Bool) && (b :: Bool) :: Bool where ...
- (%&&) :: Sing a -> Sing b -> Sing (a && b)
- class SEq a where
- class POrd a where
- class SEq a => SOrd a where
- sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering)
- (%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool)
- (%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool)
- (%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool)
- (%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool)
- sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a)
- sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a)
- type family ThenCmp (a :: Ordering) (a :: Ordering) :: Ordering where ...
- sThenCmp :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply ThenCmpSym0 t) t :: Ordering)
- class SDecide k where
- data (a :: k) :~: (b :: k) where
- data Void
- type Refuted a = a -> Void
- data Decision a
- class PBounded a where
- class SBounded a where
- sMinBound :: Sing (MinBoundSym0 :: a)
- sMaxBound :: Sing (MaxBoundSym0 :: a)
- class PEnum a where
- class SEnum a where
- sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a)
- sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural)
- class PShow a where
- class SShow a where
- sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol)
- sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol)
- sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol)
- class PIsString a where
- type FromString (arg :: Symbol) :: a
- class SIsString a where
- sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t :: a)
- type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ...
- sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol)
- type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ...
- sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol)
- type family ShowSpace (a :: Symbol) :: Symbol where ...
- sShowSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowSpaceSym0 t :: Symbol)
- type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ...
- sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol)
- type family ShowCommaSpace (a :: Symbol) :: Symbol where ...
- sShowCommaSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowCommaSpaceSym0 t :: Symbol)
- type family FromInteger (arg :: Natural) :: a
- sFromInteger :: forall (t :: Natural). SNum a => Sing t -> Sing (Apply FromIntegerSym0 t :: a)
- type family Negate (arg :: a) :: a
- sNegate :: forall (t :: a). SNum a => Sing t -> Sing (Apply NegateSym0 t :: a)
- class PFunctor f where
- class SFunctor f where
- class PFoldable t where
- type Fold (arg :: t m) :: m
- type FoldMap (arg :: (~>) a m) (arg :: t a) :: m
- type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b
- type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b
- type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a
- type ToList (arg :: t a) :: [a]
- type Null (arg :: t a) :: Bool
- type Length (arg :: t a) :: Natural
- type Elem (arg :: a) (arg :: t a) :: Bool
- type Maximum (arg :: t a) :: a
- type Minimum (arg :: t a) :: a
- type Sum (arg :: t a) :: a
- type Product (arg :: t a) :: a
- class SFoldable t where
- sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m)
- sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m)
- sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b)
- sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b)
- sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b)
- sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b)
- sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a)
- sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a)
- sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a])
- sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool)
- sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Natural)
- sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool)
- sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a)
- sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a)
- sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a)
- sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a)
- class PMonoid a where
- class SSemigroup a => SMonoid a where
- sMempty :: Sing (MemptySym0 :: a)
- sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a)
- sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a)
- class PTraversable t where
- class (SFunctor t, SFoldable t) => STraversable t where
- sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b))
- sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a))
- sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b))
- sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a))
- class PApplicative f where
- class SFunctor f => SApplicative f where
- sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a)
- (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b)
- sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c)
- (%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b)
- (%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a)
- type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ...
- (%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c)
- type family Error (str :: k0) :: k where ...
- sError :: HasCallStack => Sing (str :: Symbol) -> a
- data ErrorSym0 :: (~>) k0 k
- type family ErrorSym1 (a6989586621679544356 :: k0) :: k where ...
- type family Undefined :: k where ...
- sUndefined :: HasCallStack => a
- type family UndefinedSym0 :: k where ...
- type family TrueSym0 :: Bool where ...
- type family FalseSym0 :: Bool where ...
- data (==@#@$) :: (~>) a ((~>) a Bool)
- data (==@#@$$) (a6989586621679140205 :: a) :: (~>) a Bool
- type family (a6989586621679140205 :: a) ==@#@$$$ (a6989586621679140206 :: a) :: Bool where ...
- data (>@#@$) :: (~>) a ((~>) a Bool)
- data (>@#@$$) (a6989586621679178620 :: a) :: (~>) a Bool
- type family (a6989586621679178620 :: a) >@#@$$$ (a6989586621679178621 :: a) :: Bool where ...
- data IfSym0 :: (~>) Bool ((~>) k ((~>) k k))
- data IfSym1 (a6989586621679135270 :: Bool) :: (~>) k ((~>) k k)
- data IfSym2 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) :: (~>) k k
- type family IfSym3 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) (a6989586621679135272 :: k) :: k where ...
- data (&&@#@$) :: (~>) Bool ((~>) Bool Bool)
- data (&&@#@$$) (a6989586621679134313 :: Bool) :: (~>) Bool Bool
- type family (a6989586621679134313 :: Bool) &&@#@$$$ (a6989586621679134314 :: Bool) :: Bool where ...
- type family LTSym0 :: Ordering where ...
- type family EQSym0 :: Ordering where ...
- type family GTSym0 :: Ordering where ...
- type family Tuple0Sym0 :: () where ...
- data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type))
- data Tuple2Sym1 (a6989586621679040855 :: a) :: (~>) b (a :: Type, b :: Type)
- type family Tuple2Sym2 (a6989586621679040855 :: a) (a6989586621679040856 :: b) :: (a :: Type, b :: Type) where ...
- data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type)))
- data Tuple3Sym1 (a6989586621679040886 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type))
- data Tuple3Sym2 (a6989586621679040886 :: a) (a6989586621679040887 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type)
- type family Tuple3Sym3 (a6989586621679040886 :: a) (a6989586621679040887 :: b) (a6989586621679040888 :: c) :: (a :: Type, b :: Type, c :: Type) where ...
- data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))))
- data Tuple4Sym1 (a6989586621679040935 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))
- data Tuple4Sym2 (a6989586621679040935 :: a) (a6989586621679040936 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))
- data Tuple4Sym3 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type)
- type family Tuple4Sym4 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) (a6989586621679040938 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ...
- data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))))
- data Tuple5Sym1 (a6989586621679041004 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))
- data Tuple5Sym2 (a6989586621679041004 :: a) (a6989586621679041005 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))
- data Tuple5Sym3 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))
- data Tuple5Sym4 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)
- type family Tuple5Sym5 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) (a6989586621679041008 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ...
- data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))))
- data Tuple6Sym1 (a6989586621679041095 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))
- data Tuple6Sym2 (a6989586621679041095 :: a) (a6989586621679041096 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))
- data Tuple6Sym3 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))
- data Tuple6Sym4 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))
- data Tuple6Sym5 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)
- type family Tuple6Sym6 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) (a6989586621679041100 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ...
- data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))))
- data Tuple7Sym1 (a6989586621679041210 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))
- data Tuple7Sym2 (a6989586621679041210 :: a) (a6989586621679041211 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))
- data Tuple7Sym3 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))
- data Tuple7Sym4 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))
- data Tuple7Sym5 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))
- data Tuple7Sym6 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)
- type family Tuple7Sym7 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) (a6989586621679041216 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ...
- data CompareSym0 :: (~>) a ((~>) a Ordering)
- data CompareSym1 (a6989586621679178605 :: a) :: (~>) a Ordering
- type family CompareSym2 (a6989586621679178605 :: a) (a6989586621679178606 :: a) :: Ordering where ...
- data ThenCmpSym0 :: (~>) Ordering ((~>) Ordering Ordering)
- data ThenCmpSym1 (a6989586621679178589 :: Ordering) :: (~>) Ordering Ordering
- type family ThenCmpSym2 (a6989586621679178589 :: Ordering) (a6989586621679178590 :: Ordering) :: Ordering where ...
- data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b))
- data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b)
- data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b
- type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ...
- type family MinBoundSym0 :: a where ...
- type family MaxBoundSym0 :: a where ...
- data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol))
- data ShowsPrecSym1 (a6989586621680249857 :: Natural) :: (~>) a ((~>) Symbol Symbol)
- data ShowsPrecSym2 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) :: (~>) Symbol Symbol
- type family ShowsPrecSym3 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) (a6989586621680249859 :: Symbol) :: Symbol where ...
- data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol)
- data ShowStringSym1 (a6989586621680249812 :: Symbol) :: (~>) Symbol Symbol
- type family ShowStringSym2 (a6989586621680249812 :: Symbol) (a6989586621680249813 :: Symbol) :: Symbol where ...
- data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol))
- data ShowParenSym1 (a6989586621680249796 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)
- data ShowParenSym2 (a6989586621680249796 :: Bool) (a6989586621680249797 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol
- data ShowSpaceSym0 :: (~>) Symbol Symbol
- type family ShowSpaceSym1 (a6989586621680249784 :: Symbol) :: Symbol where ...
- data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol)
- data ShowCharSym1 (a6989586621680249823 :: Char) :: (~>) Symbol Symbol
- type family ShowCharSym2 (a6989586621680249823 :: Char) (a6989586621680249824 :: Symbol) :: Symbol where ...
- data ShowCommaSpaceSym0 :: (~>) Symbol Symbol
- type family ShowCommaSpaceSym1 (a6989586621680249778 :: Symbol) :: Symbol where ...
- data FromIntegerSym0 :: (~>) Natural a
- type family FromIntegerSym1 (a6989586621679582481 :: Natural) :: a where ...
- data NegateSym0 :: (~>) a a
- type family NegateSym1 (a6989586621679582472 :: a) :: a where ...
- data FromStringSym0 :: (~>) Symbol a
- type family FromStringSym1 (a6989586621681319050 :: Symbol) :: a where ...
- data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b))
- data FmapSym1 (a6989586621679329112 :: (~>) a b) :: (~>) (f a) (f b)
- type family FmapSym2 (a6989586621679329112 :: (~>) a b) (a6989586621679329113 :: f a) :: f b where ...
- data (<$@#@$) :: (~>) a ((~>) (f b) (f a))
- data (<$@#@$$) (a6989586621679329117 :: a) :: (~>) (f b) (f a)
- type family (a6989586621679329117 :: a) <$@#@$$$ (a6989586621679329118 :: f b) :: f a where ...
- data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m)
- data FoldMapSym1 (a6989586621680438316 :: (~>) a m) :: (~>) (t a) m
- type family FoldMapSym2 (a6989586621680438316 :: (~>) a m) (a6989586621680438317 :: t a) :: m where ...
- type family MemptySym0 :: a where ...
- data MappendSym0 :: (~>) a ((~>) a a)
- data MappendSym1 (a6989586621680336631 :: a) :: (~>) a a
- type family MappendSym2 (a6989586621680336631 :: a) (a6989586621680336632 :: a) :: a where ...
- data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b))
- data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b)
- data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b
- type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ...
- data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b)))
- data TraverseSym1 (a6989586621680796847 :: (~>) a (f b)) :: (~>) (t a) (f (t b))
- type family TraverseSym2 (a6989586621680796847 :: (~>) a (f b)) (a6989586621680796848 :: t a) :: f (t b) where ...
- data PureSym0 :: (~>) a (f a)
- type family PureSym1 (a6989586621679329136 :: a) :: f a where ...
- data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b))
- data (<*>@#@$$) (a6989586621679329140 :: f ((~>) a b)) :: (~>) (f a) (f b)
- type family (a6989586621679329140 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679329141 :: f a) :: f b where ...
- data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c)))
- data LiftA2Sym1 (a6989586621679329146 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c))
- data LiftA2Sym2 (a6989586621679329146 :: (~>) a ((~>) b c)) (a6989586621679329147 :: f a) :: (~>) (f b) (f c)
- type family LiftA2Sym3 (a6989586621679329146 :: (~>) a ((~>) b c)) (a6989586621679329147 :: f a) (a6989586621679329148 :: f b) :: f c where ...
- data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c))
- data (.@#@$$) (a6989586621679278899 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c)
- data (a6989586621679278899 :: (~>) b c) .@#@$$$ (a6989586621679278900 :: (~>) a b) :: (~>) a c
- type family ((a6989586621679278899 :: (~>) b c) .@#@$$$$ (a6989586621679278900 :: (~>) a b)) (a6989586621679278901 :: a) :: c where ...
- type family NilSym0 :: [a :: Type] where ...
- data (:@#@$) :: (~>) a ((~>) [a] [a :: Type])
- data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type]
- type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ...
- class SuppressUnusedWarnings (t :: k) where
- suppressUnusedWarnings :: ()
Primary Template Haskell generation functions
singletons :: OptionsMonad q => q [Dec] -> q [Dec] #
singletonsOnly :: OptionsMonad q => q [Dec] -> q [Dec] #
genSingletons :: OptionsMonad q => [Name] -> q [Dec] #
promoteOnly :: OptionsMonad q => q [Dec] -> q [Dec] #
genDefunSymbols :: OptionsMonad q => [Name] -> q [Dec] #
genPromotions :: OptionsMonad q => [Name] -> q [Dec] #
Functions to generate equality instances
promoteEqInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteEqInstance :: OptionsMonad q => Name -> q [Dec] #
singEqInstances :: OptionsMonad q => [Name] -> q [Dec] #
singEqInstance :: OptionsMonad q => Name -> q [Dec] #
singDecideInstances :: OptionsMonad q => [Name] -> q [Dec] #
singDecideInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Ord
instances
promoteOrdInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteOrdInstance :: OptionsMonad q => Name -> q [Dec] #
singOrdInstances :: OptionsMonad q => [Name] -> q [Dec] #
singOrdInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Bounded
instances
promoteBoundedInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteBoundedInstance :: OptionsMonad q => Name -> q [Dec] #
singBoundedInstances :: OptionsMonad q => [Name] -> q [Dec] #
singBoundedInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Enum
instances
promoteEnumInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteEnumInstance :: OptionsMonad q => Name -> q [Dec] #
singEnumInstances :: OptionsMonad q => [Name] -> q [Dec] #
singEnumInstance :: OptionsMonad q => Name -> q [Dec] #
Functions to generate Show
instances
promoteShowInstances :: OptionsMonad q => [Name] -> q [Dec] #
promoteShowInstance :: OptionsMonad q => Name -> q [Dec] #
singShowInstances :: OptionsMonad q => [Name] -> q [Dec] #
singShowInstance :: OptionsMonad q => Name -> q [Dec] #
showSingInstances :: OptionsMonad q => [Name] -> q [Dec] #
showSingInstance :: OptionsMonad q => Name -> q [Dec] #
Utility functions
singITyConInstances :: DsMonad q => [Int] -> q [Dec] #
singITyConInstance :: DsMonad q => Int -> q Dec #
Basic singleton definitions
data SList :: forall (a :: Type). [a] -> Type where Source #
SNil :: forall (a :: Type). SList ('[] :: [a :: Type]) | |
SCons :: forall (a :: Type) (n :: a) (n :: [a]). (Sing n) -> (Sing n) -> SList ('(:) n n :: [a :: Type]) infixr 5 |
Instances
(SDecide a, SDecide [a]) => TestCoercion (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide [a]) => TestEquality (SList :: [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing [a]) => Show (SList z) Source # | |
data SBool :: Bool -> Type where Source #
Instances
TestCoercion SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SBool Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SBool z) Source # | |
data STuple0 :: () -> Type where Source #
Instances
TestCoercion STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality STuple0 Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (STuple0 z) Source # | |
data STuple2 :: forall (a :: Type) (b :: Type). (a, b) -> Type where Source #
STuple2 :: forall (a :: Type) (b :: Type) (n :: a) (n :: b). (Sing n) -> (Sing n) -> STuple2 ('(n, n) :: (a :: Type, b :: Type)) |
Instances
(SDecide a, SDecide b) => TestCoercion (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b) => TestEquality (STuple2 :: (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b) => Show (STuple2 z) Source # | |
data STuple3 :: forall (a :: Type) (b :: Type) (c :: Type). (a, b, c) -> Type where Source #
STuple3 :: forall (a :: Type) (b :: Type) (c :: Type) (n :: a) (n :: b) (n :: c). (Sing n) -> (Sing n) -> (Sing n) -> STuple3 ('(n, n, n) :: (a :: Type, b :: Type, c :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c) => TestCoercion (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c) => TestEquality (STuple3 :: (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c) => Show (STuple3 z) Source # | |
data STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type). (a, b, c, d) -> Type where Source #
STuple4 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (n :: a) (n :: b) (n :: c) (n :: d). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple4 ('(n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d) => TestCoercion (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d) => TestEquality (STuple4 :: (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d) => Show (STuple4 z) Source # | |
data STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type). (a, b, c, d, e) -> Type where Source #
STuple5 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple5 ('(n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestCoercion (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e) => TestEquality (STuple5 :: (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e) => Show (STuple5 z) Source # | |
data STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type). (a, b, c, d, e, f) -> Type where Source #
STuple6 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple6 ('(n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestCoercion (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f) => TestEquality (STuple6 :: (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f) => Show (STuple6 z) Source # | |
data STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type). (a, b, c, d, e, f, g) -> Type where Source #
STuple7 :: forall (a :: Type) (b :: Type) (c :: Type) (d :: Type) (e :: Type) (f :: Type) (g :: Type) (n :: a) (n :: b) (n :: c) (n :: d) (n :: e) (n :: f) (n :: g). (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> (Sing n) -> STuple7 ('(n, n, n, n, n, n, n) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) |
Instances
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestCoercion (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(SDecide a, SDecide b, SDecide c, SDecide d, SDecide e, SDecide f, SDecide g) => TestEquality (STuple7 :: (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
(ShowSing a, ShowSing b, ShowSing c, ShowSing d, ShowSing e, ShowSing f, ShowSing g) => Show (STuple7 z) Source # | |
data SOrdering :: Ordering -> Type where Source #
SLT :: SOrdering ('LT :: Ordering) | |
SEQ :: SOrdering ('EQ :: Ordering) | |
SGT :: SOrdering ('GT :: Ordering) |
Instances
TestCoercion SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SOrdering Source # | |
Defined in Data.Singletons.Base.Instances | |
Show (SOrdering z) Source # | |
Auxiliary definitions
These definitions might be mentioned in code generated by Template Haskell, so they must be in scope.
type (arg :: a) == (arg :: a) :: Bool infix 4 Source #
type a == a = Apply (Apply TFHelper_6989586621679140225Sym0 a) a
type (arg :: a) /= (arg :: a) :: Bool infix 4 Source #
type a /= a = Apply (Apply TFHelper_6989586621679140214Sym0 a) a
Instances
PEq All Source # | |
PEq Any Source # | |
PEq Void Source # | |
PEq Ordering Source # | |
PEq Natural Source # | |
PEq () Source # | |
PEq Bool Source # | |
PEq Char Source # | |
PEq Symbol Source # | |
PEq (Identity a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Down a) Source # | |
PEq (First a) Source # | |
PEq (Last a) Source # | |
PEq (Max a) Source # | |
PEq (Min a) Source # | |
PEq (WrappedMonoid m) Source # | |
PEq (Dual a) Source # | |
PEq (Product a) Source # | |
PEq (Sum a) Source # | |
PEq (NonEmpty a) Source # | |
PEq (Maybe a) Source # | |
PEq (TYPE rep) Source # | |
PEq [a] Source # | |
PEq (Either a b) Source # | |
PEq (Proxy s) Source # | |
PEq (Arg a b) Source # | |
PEq (a, b) Source # | |
PEq (Const a b) Source # | |
PEq (a, b, c) Source # | |
PEq (a, b, c, d) Source # | |
PEq (a, b, c, d, e) Source # | |
PEq (a, b, c, d, e, f) Source # | |
PEq (a, b, c, d, e, f, g) Source # | |
type family If (cond :: Bool) (tru :: k) (fls :: k) :: k where ... #
Type-level If. If True a b
==> a
; If False a b
==> b
Nothing
(%==) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) infix 4 Source #
default (%==) :: forall (t :: a) (t :: a). (Apply (Apply (==@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679140225Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (==@#@$) t) t :: Bool) Source #
(%/=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (/=@#@$) t) t :: Bool) infix 4 Source #
Instances
type Compare (arg :: a) (arg :: a) :: Ordering Source #
type Compare a a = Apply (Apply Compare_6989586621679178639Sym0 a) a
type (arg :: a) < (arg :: a) :: Bool infix 4 Source #
type a < a = Apply (Apply TFHelper_6989586621679178660Sym0 a) a
type (arg :: a) <= (arg :: a) :: Bool infix 4 Source #
type a <= a = Apply (Apply TFHelper_6989586621679178676Sym0 a) a
type (arg :: a) > (arg :: a) :: Bool infix 4 Source #
type a > a = Apply (Apply TFHelper_6989586621679178692Sym0 a) a
type (arg :: a) >= (arg :: a) :: Bool infix 4 Source #
type a >= a = Apply (Apply TFHelper_6989586621679178708Sym0 a) a
type Max (arg :: a) (arg :: a) :: a Source #
type Max a a = Apply (Apply Max_6989586621679178724Sym0 a) a
type Min (arg :: a) (arg :: a) :: a Source #
type Min a a = Apply (Apply Min_6989586621679178740Sym0 a) a
Instances
POrd All Source # | |
POrd Any Source # | |
POrd Void Source # | |
POrd Ordering Source # | |
POrd Natural Source # | |
POrd () Source # | |
POrd Bool Source # | |
POrd Char Source # | |
POrd Symbol Source # | |
POrd (Identity a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Down a) Source # | |
POrd (First a) Source # | |
POrd (Last a) Source # | |
POrd (Max a) Source # | |
POrd (Min a) Source # | |
POrd (WrappedMonoid m) Source # | |
POrd (Dual a) Source # | |
POrd (Product a) Source # | |
POrd (Sum a) Source # | |
POrd (NonEmpty a) Source # | |
POrd (Maybe a) Source # | |
POrd [a] Source # | |
POrd (Either a b) Source # | |
POrd (Proxy s) Source # | |
POrd (Arg a b) Source # | |
POrd (a, b) Source # | |
POrd (Const a b) Source # | |
POrd (a, b, c) Source # | |
POrd (a, b, c, d) Source # | |
POrd (a, b, c, d, e) Source # | |
POrd (a, b, c, d, e, f) Source # | |
POrd (a, b, c, d, e, f, g) Source # | |
class SEq a => SOrd a where Source #
Nothing
sCompare :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
default sCompare :: forall (t :: a) (t :: a). (Apply (Apply CompareSym0 t) t :: Ordering) ~ Apply (Apply Compare_6989586621679178639Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply CompareSym0 t) t :: Ordering) Source #
(%<) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) infix 4 Source #
default (%<) :: forall (t :: a) (t :: a). (Apply (Apply (<@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178660Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<@#@$) t) t :: Bool) Source #
(%<=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) infix 4 Source #
default (%<=) :: forall (t :: a) (t :: a). (Apply (Apply (<=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178676Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<=@#@$) t) t :: Bool) Source #
(%>) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) infix 4 Source #
default (%>) :: forall (t :: a) (t :: a). (Apply (Apply (>@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178692Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>@#@$) t) t :: Bool) Source #
(%>=) :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) infix 4 Source #
default (%>=) :: forall (t :: a) (t :: a). (Apply (Apply (>=@#@$) t) t :: Bool) ~ Apply (Apply TFHelper_6989586621679178708Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (>=@#@$) t) t :: Bool) Source #
sMax :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
default sMax :: forall (t :: a) (t :: a). (Apply (Apply MaxSym0 t) t :: a) ~ Apply (Apply Max_6989586621679178724Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MaxSym0 t) t :: a) Source #
sMin :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MinSym0 t) t :: a) Source #
Instances
SOrd Bool => SOrd All Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: All) (t2 :: All). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Bool => SOrd Any Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Any) (t2 :: Any). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Void Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Ordering Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Natural Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd () Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Bool Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Char Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd Symbol Source # | |
Defined in GHC.TypeLits.Singletons.Internal sCompare :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Symbol) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Identity a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Maybe a) => SOrd (First a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Maybe a) => SOrd (Last a) Source # | |
Defined in Data.Monoid.Singletons sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Down a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Down a) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (First a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Last a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Max a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Min a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd m => SOrd (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: WrappedMonoid m) (t2 :: WrappedMonoid m). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Dual a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Dual a) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Product a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Product a) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Sum a) Source # | |
Defined in Data.Semigroup.Singletons.Internal sCompare :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Sum a) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd [a]) => SOrd (NonEmpty a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: NonEmpty a) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Maybe a) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Maybe a) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd [a]) => SOrd [a] Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: [a]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b) => SOrd (Either a b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Either a b) (t2 :: Either a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sCompare :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sCompare :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Arg a b) (t2 :: Arg a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b) => SOrd (a, b) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
SOrd a => SOrd (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sCompare :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c) => SOrd (a, b, c) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c)) (t2 :: (a, b, c)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d) => SOrd (a, b, c, d) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d)) (t2 :: (a, b, c, d)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e) => SOrd (a, b, c, d, e) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e)) (t2 :: (a, b, c, d, e)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f) => SOrd (a, b, c, d, e, f) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e, f)) (t2 :: (a, b, c, d, e, f)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
(SOrd a, SOrd b, SOrd c, SOrd d, SOrd e, SOrd f, SOrd g) => SOrd (a, b, c, d, e, f, g) Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: (a, b, c, d, e, f, g)) (t2 :: (a, b, c, d, e, f, g)). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # |
sThenCmp :: forall (t :: Ordering) (t :: Ordering). Sing t -> Sing t -> Sing (Apply (Apply ThenCmpSym0 t) t :: Ordering) Source #
Instances
data (a :: k) :~: (b :: k) where infix 4 #
Propositional equality. If a :~: b
is inhabited by some terminating
value, then the type a
is the same as the type b
. To use this equality
in practice, pattern-match on the a :~: b
to get out the Refl
constructor;
in the body of the pattern-match, the compiler knows that a ~ b
.
Since: base-4.7.0.0
Instances
TestCoercion ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Coercion | |
TestEquality ((:~:) a :: k -> Type) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
NFData2 ((:~:) :: Type -> Type -> Type) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
NFData1 ((:~:) a) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
a ~ b => Bounded (a :~: b) | Since: base-4.7.0.0 |
a ~ b => Enum (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality | |
a ~ b => Read (a :~: b) | Since: base-4.7.0.0 |
Show (a :~: b) | Since: base-4.7.0.0 |
NFData (a :~: b) | Since: deepseq-1.4.3.0 |
Defined in Control.DeepSeq | |
Eq (a :~: b) | Since: base-4.7.0.0 |
Ord (a :~: b) | Since: base-4.7.0.0 |
Defined in Data.Type.Equality |
Uninhabited data type
Since: base-4.8.0.0
Instances
Data Void | Since: base-4.8.0.0 |
Defined in Data.Void gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Void -> c Void # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Void # dataTypeOf :: Void -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Void) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Void) # gmapT :: (forall b. Data b => b -> b) -> Void -> Void # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Void -> r # gmapQ :: (forall d. Data d => d -> u) -> Void -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Void -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Void -> m Void # | |
Semigroup Void | Since: base-4.9.0.0 |
Exception Void | Since: base-4.8.0.0 |
Defined in Data.Void toException :: Void -> SomeException # fromException :: SomeException -> Maybe Void # displayException :: Void -> String # | |
Generic Void | |
Ix Void | Since: base-4.8.0.0 |
Read Void | Reading a Since: base-4.8.0.0 |
Show Void | Since: base-4.8.0.0 |
NFData Void | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Eq Void | Since: base-4.8.0.0 |
Ord Void | Since: base-4.8.0.0 |
SingKind Void | |
SDecide Void Source # | |
PEq Void Source # | |
SEq Void Source # | |
POrd Void Source # | |
SOrd Void Source # | |
Defined in Data.Ord.Singletons sCompare :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply CompareSym0 t1) t2) Source # (%<) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<@#@$) t1) t2) Source # (%<=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<=@#@$) t1) t2) Source # (%>) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>@#@$) t1) t2) Source # (%>=) :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply (>=@#@$) t1) t2) Source # sMax :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MaxSym0 t1) t2) Source # sMin :: forall (t1 :: Void) (t2 :: Void). Sing t1 -> Sing t2 -> Sing (Apply (Apply MinSym0 t1) t2) Source # | |
PSemigroup Void Source # | |
SSemigroup Void Source # | |
PShow Void Source # | |
SShow Void Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Void) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Void]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
TestCoercion SVoid Source # | |
Defined in Data.Singletons.Base.Instances | |
TestEquality SVoid Source # | |
Defined in Data.Singletons.Base.Instances | |
Lift Void | Since: template-haskell-2.15.0.0 |
SingI (AbsurdSym0 :: TyFun Void a -> Type) | |
Defined in Data.Void.Singletons sing :: Sing AbsurdSym0 | |
SuppressUnusedWarnings (AbsurdSym0 :: TyFun Void a -> Type) Source # | |
Defined in Data.Void.Singletons suppressUnusedWarnings :: () # | |
type Rep Void | Since: base-4.8.0.0 |
type Demote Void | |
Defined in Data.Singletons.Base.Instances | |
type Sing Source # | |
Defined in Data.Singletons.Base.Instances | |
type Sconcat (arg :: NonEmpty Void) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Show_ (arg :: Void) Source # | |
Defined in Text.Show.Singletons | |
type (arg1 :: Void) /= (arg2 :: Void) Source # | |
Defined in Data.Eq.Singletons | |
type (a1 :: Void) == (a2 :: Void) Source # | |
Defined in Data.Eq.Singletons | |
type (arg1 :: Void) < (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) <= (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) > (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (arg1 :: Void) >= (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Compare (a1 :: Void) (a2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Max (arg1 :: Void) (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type Min (arg1 :: Void) (arg2 :: Void) Source # | |
Defined in Data.Ord.Singletons | |
type (a1 :: Void) <> (a2 :: Void) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type ShowList (arg1 :: [Void]) arg2 Source # | |
Defined in Text.Show.Singletons | |
type ShowsPrec a1 (a2 :: Void) a3 Source # | |
Defined in Text.Show.Singletons | |
type Apply (AbsurdSym0 :: TyFun Void k2 -> Type) (a6989586621679277271 :: Void) | |
Defined in Data.Void.Singletons type Apply (AbsurdSym0 :: TyFun Void k2 -> Type) (a6989586621679277271 :: Void) = Absurd a6989586621679277271 :: k2 |
Instances
PBounded All Source # | |
PBounded Any Source # | |
PBounded Ordering Source # | |
PBounded () Source # | |
PBounded Bool Source # | |
PBounded Char Source # | |
PBounded (Identity a) Source # | |
PBounded (First a) Source # | |
PBounded (Last a) Source # | |
PBounded (Max a) Source # | |
PBounded (Min a) Source # | |
PBounded (WrappedMonoid m) Source # | |
PBounded (Dual a) Source # | |
PBounded (Product a) Source # | |
PBounded (Sum a) Source # | |
PBounded (Proxy s) Source # | |
PBounded (a, b) Source # | |
PBounded (Const a b) Source # | |
PBounded (a, b, c) Source # | |
PBounded (a, b, c, d) Source # | |
PBounded (a, b, c, d, e) Source # | |
PBounded (a, b, c, d, e, f) Source # | |
PBounded (a, b, c, d, e, f, g) Source # | |
class SBounded a where Source #
sMinBound :: Sing (MinBoundSym0 :: a) Source #
sMaxBound :: Sing (MaxBoundSym0 :: a) Source #
Instances
Instances
PEnum Ordering Source # | |
PEnum Natural Source # | |
PEnum () Source # | |
PEnum Bool Source # | |
PEnum Char Source # | |
PEnum (Identity a) Source # | |
PEnum (First a) Source # | |
PEnum (Last a) Source # | |
PEnum (Max a) Source # | |
PEnum (Min a) Source # | |
PEnum (WrappedMonoid a) Source # | |
PEnum (Proxy s) Source # | |
PEnum (Const a b) Source # | |
sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t :: a) Source #
sFromEnum :: forall (t :: a). Sing t -> Sing (Apply FromEnumSym0 t :: Natural) Source #
Instances
SEnum Ordering Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Ordering). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Ordering). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Ordering). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Ordering) (t2 :: Ordering). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Ordering) (t2 :: Ordering) (t3 :: Ordering). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Natural Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Natural). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Natural). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Natural). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Natural) (t2 :: Natural). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Natural). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum () Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: ()). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: ()). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: ()). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: ()) (t2 :: ()). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: ()) (t2 :: ()) (t3 :: ()). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Bool Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Bool). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Bool). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Bool). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Bool) (t2 :: Bool). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Bool) (t2 :: Bool) (t3 :: Bool). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum Char Source # | |
Defined in Data.Singletons.Base.Enum sSucc :: forall (t :: Char). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Char). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Char). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Char) (t2 :: Char). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Char) (t2 :: Char) (t3 :: Char). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sSucc :: forall (t :: Identity a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Identity a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Identity a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Identity a) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Identity a) (t2 :: Identity a) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (First a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: First a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: First a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: First a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: First a) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: First a) (t2 :: First a) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Last a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Last a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Last a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Last a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Last a) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Last a) (t2 :: Last a) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Max a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Max a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Max a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Max a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Max a) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Max a) (t2 :: Max a) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Min a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: Min a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Min a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Min a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Min a) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Min a) (t2 :: Min a) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (WrappedMonoid a) Source # | |
Defined in Data.Semigroup.Singletons sSucc :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: WrappedMonoid a). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: WrappedMonoid a) (t2 :: WrappedMonoid a) (t3 :: WrappedMonoid a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sSucc :: forall (t :: Proxy s). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Proxy s). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Proxy s). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Proxy s) (t2 :: Proxy s). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Proxy s) (t2 :: Proxy s) (t3 :: Proxy s). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # | |
SEnum a => SEnum (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sSucc :: forall (t :: Const a b). Sing t -> Sing (Apply SuccSym0 t) Source # sPred :: forall (t :: Const a b). Sing t -> Sing (Apply PredSym0 t) Source # sToEnum :: forall (t :: Natural). Sing t -> Sing (Apply ToEnumSym0 t) Source # sFromEnum :: forall (t :: Const a b). Sing t -> Sing (Apply FromEnumSym0 t) Source # sEnumFromTo :: forall (t1 :: Const a b) (t2 :: Const a b). Sing t1 -> Sing t2 -> Sing (Apply (Apply EnumFromToSym0 t1) t2) Source # sEnumFromThenTo :: forall (t1 :: Const a b) (t2 :: Const a b) (t3 :: Const a b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply EnumFromThenToSym0 t1) t2) t3) Source # |
type ShowsPrec (arg :: Natural) (arg :: a) (arg :: Symbol) :: Symbol Source #
type ShowsPrec a a a = Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 a) a) a
type Show_ (arg :: a) :: Symbol Source #
type Show_ a = Apply Show__6989586621680249883Sym0 a
type ShowList (arg :: [a]) (arg :: Symbol) :: Symbol Source #
type ShowList a a = Apply (Apply ShowList_6989586621680249891Sym0 a) a
Instances
PShow All Source # | |
PShow Any Source # | |
PShow Void Source # | |
PShow Ordering Source # | |
PShow Natural Source # | |
PShow () Source # | |
PShow Bool Source # | |
PShow Char Source # | |
PShow Symbol Source # | |
PShow (Identity a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (First a) Source # | |
PShow (Last a) Source # | |
PShow (Max a) Source # | |
PShow (Min a) Source # | |
PShow (WrappedMonoid m) Source # | |
PShow (Dual a) Source # | |
PShow (Product a) Source # | |
PShow (Sum a) Source # | |
PShow (NonEmpty a) Source # | |
PShow (Maybe a) Source # | |
PShow [a] Source # | |
PShow (Either a b) Source # | |
PShow (Proxy s) Source # | |
PShow (Arg a b) Source # | |
PShow (a, b) Source # | |
PShow (Const a b) Source # | |
PShow (a, b, c) Source # | |
PShow (a, b, c, d) Source # | |
PShow (a, b, c, d, e) Source # | |
PShow (a, b, c, d, e, f) Source # | |
PShow (a, b, c, d, e, f, g) Source # | |
Nothing
sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
default sShowsPrec :: forall (t :: Natural) (t :: a) (t :: Symbol). (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) ~ Apply (Apply (Apply ShowsPrec_6989586621680249871Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowsPrecSym0 t) t) t :: Symbol) Source #
sShow_ :: forall (t :: a). Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
default sShow_ :: forall (t :: a). (Apply Show_Sym0 t :: Symbol) ~ Apply Show__6989586621680249883Sym0 t => Sing t -> Sing (Apply Show_Sym0 t :: Symbol) Source #
sShowList :: forall (t :: [a]) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowListSym0 t) t :: Symbol) Source #
Instances
SShow Bool => SShow All Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: All) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: All). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [All]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Bool => SShow Any Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Any) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Any). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Any]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Void Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Void) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Void). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Void]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Ordering Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Ordering) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Ordering). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Ordering]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Natural Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Natural) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Natural). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Natural]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow () Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: ()) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: ()). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [()]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Bool Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Bool) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Bool). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Bool]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Char Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Char) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Char). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Char]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow Symbol Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Symbol) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Symbol). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Symbol]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Identity a) Source # | |
Defined in Data.Functor.Identity.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Identity a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Identity a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Identity a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Maybe a) => SShow (First a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Maybe a) => SShow (Last a) Source # | |
Defined in Data.Monoid.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (First a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: First a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: First a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [First a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Last a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Last a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Last a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Last a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Max a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Max a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Max a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Max a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Min a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Min a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Min a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Min a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow m => SShow (WrappedMonoid m) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: WrappedMonoid m) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: WrappedMonoid m). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [WrappedMonoid m]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Dual a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Dual a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Dual a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Dual a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Product a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Product a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Product a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Product a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Sum a) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Sum a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Sum a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Sum a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow [a]) => SShow (NonEmpty a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: NonEmpty a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: NonEmpty a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [NonEmpty a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Maybe a) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Maybe a) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Maybe a). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Maybe a]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow [a] Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: [a]) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: [a]). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [[a]]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (Either a b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Either a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Either a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Either a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow (Proxy s) Source # | |
Defined in Data.Proxy.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Proxy s) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Proxy s). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Proxy s]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (Arg a b) Source # | |
Defined in Data.Semigroup.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Arg a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Arg a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Arg a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b) => SShow (a, b) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
SShow a => SShow (Const a b) Source # | |
Defined in Data.Functor.Const.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: Const a b) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: Const a b). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [Const a b]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c) => SShow (a, b, c) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d) => SShow (a, b, c, d) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e) => SShow (a, b, c, d, e) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f) => SShow (a, b, c, d, e, f) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e, f)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e, f)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # | |
(SShow a, SShow b, SShow c, SShow d, SShow e, SShow f, SShow g) => SShow (a, b, c, d, e, f, g) Source # | |
Defined in Text.Show.Singletons sShowsPrec :: forall (t1 :: Natural) (t2 :: (a, b, c, d, e, f, g)) (t3 :: Symbol). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply ShowsPrecSym0 t1) t2) t3) Source # sShow_ :: forall (t :: (a, b, c, d, e, f, g)). Sing t -> Sing (Apply Show_Sym0 t) Source # sShowList :: forall (t1 :: [(a, b, c, d, e, f, g)]) (t2 :: Symbol). Sing t1 -> Sing t2 -> Sing (Apply (Apply ShowListSym0 t1) t2) Source # |
type FromString (arg :: Symbol) :: a Source #
Instances
PIsString Symbol Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # | |
PIsString (Identity a) Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # | |
PIsString (Const a b) Source # | |
Defined in Data.String.Singletons type FromString arg :: a Source # |
class SIsString a where Source #
sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t :: a) Source #
Instances
SIsString Symbol Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # | |
SIsString a => SIsString (Identity a) Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # | |
SIsString a => SIsString (Const a b) Source # | |
Defined in Data.String.Singletons sFromString :: forall (t :: Symbol). Sing t -> Sing (Apply FromStringSym0 t) Source # |
type family ShowString (a :: Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowString a_6989586621680249805 a_6989586621680249807 = Apply (Apply (<>@#@$) a_6989586621680249805) a_6989586621680249807 |
sShowString :: forall (t :: Symbol) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowStringSym0 t) t :: Symbol) Source #
type family ShowParen (a :: Bool) (a :: (~>) Symbol Symbol) (a :: Symbol) :: Symbol where ... Source #
ShowParen b p a_6989586621680249790 = Apply (Case_6989586621680249802 b p a_6989586621680249790 b) a_6989586621680249790 |
sShowParen :: forall (t :: Bool) (t :: (~>) Symbol Symbol) (t :: Symbol). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply ShowParenSym0 t) t) t :: Symbol) Source #
type family ShowSpace (a :: Symbol) :: Symbol where ... Source #
ShowSpace a_6989586621680249780 = Apply (Apply Lambda_6989586621680249786Sym0 a_6989586621680249780) a_6989586621680249780 |
sShowSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowSpaceSym0 t :: Symbol) Source #
type family ShowChar (a :: Char) (a :: Symbol) :: Symbol where ... Source #
ShowChar a_6989586621680249816 a_6989586621680249818 = Apply (Apply ConsSymbolSym0 a_6989586621680249816) a_6989586621680249818 |
sShowChar :: forall (t :: Char) (t :: Symbol). Sing t -> Sing t -> Sing (Apply (Apply ShowCharSym0 t) t :: Symbol) Source #
type family ShowCommaSpace (a :: Symbol) :: Symbol where ... Source #
ShowCommaSpace a_6989586621680249774 = Apply (Apply ShowStringSym0 ", ") a_6989586621680249774 |
sShowCommaSpace :: forall (t :: Symbol). Sing t -> Sing (Apply ShowCommaSpaceSym0 t :: Symbol) Source #
type family FromInteger (arg :: Natural) :: a Source #
Instances
type FromInteger a Source # | |
Defined in GHC.Num.Singletons type FromInteger a = a | |
type FromInteger a2 Source # | |
Defined in Data.Functor.Identity.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in GHC.Num.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons.Internal type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Semigroup.Singletons.Internal type FromInteger a2 | |
type FromInteger a2 Source # | |
Defined in Data.Functor.Const.Singletons type FromInteger a2 |
sFromInteger :: forall (t :: Natural). SNum a => Sing t -> Sing (Apply FromIntegerSym0 t :: a) Source #
type family Negate (arg :: a) :: a Source #
Instances
type Negate (a :: Natural) Source # | |
Defined in GHC.Num.Singletons | |
type Negate (a2 :: Identity a1) Source # | |
Defined in Data.Functor.Identity.Singletons | |
type Negate (a2 :: Down a1) Source # | |
Defined in GHC.Num.Singletons | |
type Negate (a2 :: Max a1) Source # | |
Defined in Data.Semigroup.Singletons | |
type Negate (a2 :: Min a1) Source # | |
Defined in Data.Semigroup.Singletons | |
type Negate (a2 :: Product a1) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Negate (a2 :: Sum a1) Source # | |
Defined in Data.Semigroup.Singletons.Internal | |
type Negate (a2 :: Const a1 b) Source # | |
Defined in Data.Functor.Const.Singletons |
type Fmap (arg :: (~>) a b) (arg :: f a) :: f b Source #
type (arg :: a) <$ (arg :: f b) :: f a infixl 4 Source #
type a <$ a = Apply (Apply TFHelper_6989586621679329121Sym0 a) a
Instances
PFunctor Identity Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Down Source # | |
PFunctor First Source # | |
PFunctor Last Source # | |
PFunctor Max Source # | |
PFunctor Min Source # | |
PFunctor Dual Source # | |
PFunctor Product Source # | |
PFunctor Sum Source # | |
PFunctor NonEmpty Source # | |
PFunctor Maybe Source # | |
PFunctor [] Source # | |
PFunctor (Either a) Source # | |
PFunctor (Proxy :: Type -> Type) Source # | |
PFunctor (Arg a) Source # | |
PFunctor ((,) a) Source # | |
PFunctor (Const m :: Type -> Type) Source # | |
PFunctor (Product f g) Source # | |
PFunctor (Sum f g) Source # | |
PFunctor (Compose f g) Source # | |
class SFunctor f where Source #
sFmap :: forall a b (t :: (~>) a b) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply FmapSym0 t) t :: f b) Source #
(%<$) :: forall a b (t :: a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<$@#@$) t) t :: f a) infixl 4 Source #
Instances
SFunctor Identity Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Down Source # | |
SFunctor First Source # | |
SFunctor Last Source # | |
SFunctor Max Source # | |
SFunctor Min Source # | |
SFunctor Dual Source # | |
SFunctor Product Source # | |
SFunctor Sum Source # | |
SFunctor NonEmpty Source # | |
SFunctor Maybe Source # | |
SFunctor [] Source # | |
SFunctor (Either a) Source # | |
SFunctor (Proxy :: Type -> Type) Source # | |
SFunctor (Arg a) Source # | |
SFunctor ((,) a) Source # | |
SFunctor (Const m :: Type -> Type) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Product f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Sum f g) Source # | |
(SFunctor f, SFunctor g) => SFunctor (Compose f g) Source # | |
type Fold (arg :: t m) :: m Source #
type Fold a = Apply Fold_6989586621680438383Sym0 a
type FoldMap (arg :: (~>) a m) (arg :: t a) :: m Source #
type FoldMap a a = Apply (Apply FoldMap_6989586621680438393Sym0 a) a
type Foldr (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr a a a = Apply (Apply (Apply Foldr_6989586621680438407Sym0 a) a) a
type Foldr' (arg :: (~>) a ((~>) b b)) (arg :: b) (arg :: t a) :: b Source #
type Foldr' a a a = Apply (Apply (Apply Foldr'_6989586621680438422Sym0 a) a) a
type Foldl (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl a a a = Apply (Apply (Apply Foldl_6989586621680438445Sym0 a) a) a
type Foldl' (arg :: (~>) b ((~>) a b)) (arg :: b) (arg :: t a) :: b Source #
type Foldl' a a a = Apply (Apply (Apply Foldl'_6989586621680438460Sym0 a) a) a
type Foldr1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldr1 a a = Apply (Apply Foldr1_6989586621680438482Sym0 a) a
type Foldl1 (arg :: (~>) a ((~>) a a)) (arg :: t a) :: a Source #
type Foldl1 a a = Apply (Apply Foldl1_6989586621680438503Sym0 a) a
type ToList (arg :: t a) :: [a] Source #
type ToList a = Apply ToList_6989586621680438523Sym0 a
type Null (arg :: t a) :: Bool Source #
type Null a = Apply Null_6989586621680438532Sym0 a
type Length (arg :: t a) :: Natural Source #
type Length a = Apply Length_6989586621680438549Sym0 a
type Elem (arg :: a) (arg :: t a) :: Bool Source #
type Elem a a = Apply (Apply Elem_6989586621680438568Sym0 a) a
type Maximum (arg :: t a) :: a Source #
type Maximum a = Apply Maximum_6989586621680438582Sym0 a
type Minimum (arg :: t a) :: a Source #
type Minimum a = Apply Minimum_6989586621680438597Sym0 a
type Sum (arg :: t a) :: a Source #
type Sum a = Apply Sum_6989586621680438612Sym0 a
type Product (arg :: t a) :: a Source #
type Product a = Apply Product_6989586621680438621Sym0 a
Instances
PFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable First Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Last Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Max Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Min Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Dual Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Product Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Sum Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable [] Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # | |
PFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons type FoldMap arg arg1 :: m Source # type Foldr arg arg1 arg2 :: b Source # type Foldr' arg arg1 arg2 :: b Source # type Foldl arg arg1 arg2 :: b Source # type Foldl' arg arg1 arg2 :: b Source # type Foldr1 arg arg1 :: a Source # type Foldl1 arg arg1 :: a Source # type ToList arg :: [a] Source # type Null arg :: Bool Source # type Length arg :: Natural Source # type Elem arg arg1 :: Bool Source # type Maximum arg :: a Source # |
class SFoldable t where Source #
Nothing
sFold :: forall m (t :: t m). SMonoid m => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
default sFold :: forall m (t :: t m). ((Apply FoldSym0 t :: m) ~ Apply Fold_6989586621680438383Sym0 t, SMonoid m) => Sing t -> Sing (Apply FoldSym0 t :: m) Source #
sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). SMonoid m => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
default sFoldMap :: forall a m (t :: (~>) a m) (t :: t a). ((Apply (Apply FoldMapSym0 t) t :: m) ~ Apply (Apply FoldMap_6989586621680438393Sym0 t) t, SMonoid m) => Sing t -> Sing t -> Sing (Apply (Apply FoldMapSym0 t) t :: m) Source #
sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
default sFoldr :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldrSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr_6989586621680438407Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldrSym0 t) t) t :: b) Source #
sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
default sFoldr' :: forall a b (t :: (~>) a ((~>) b b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldr'_6989586621680438422Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldr'Sym0 t) t) t :: b) Source #
sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
default sFoldl :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply FoldlSym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl_6989586621680438445Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply FoldlSym0 t) t) t :: b) Source #
sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
default sFoldl' :: forall b a (t :: (~>) b ((~>) a b)) (t :: b) (t :: t a). (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) ~ Apply (Apply (Apply Foldl'_6989586621680438460Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply Foldl'Sym0 t) t) t :: b) Source #
sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
default sFoldr1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldr1Sym0 t) t :: a) ~ Apply (Apply Foldr1_6989586621680438482Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldr1Sym0 t) t :: a) Source #
sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
default sFoldl1 :: forall a (t :: (~>) a ((~>) a a)) (t :: t a). (Apply (Apply Foldl1Sym0 t) t :: a) ~ Apply (Apply Foldl1_6989586621680438503Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply Foldl1Sym0 t) t :: a) Source #
sToList :: forall a (t :: t a). Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
default sToList :: forall a (t :: t a). (Apply ToListSym0 t :: [a]) ~ Apply ToList_6989586621680438523Sym0 t => Sing t -> Sing (Apply ToListSym0 t :: [a]) Source #
sNull :: forall a (t :: t a). Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
default sNull :: forall a (t :: t a). (Apply NullSym0 t :: Bool) ~ Apply Null_6989586621680438532Sym0 t => Sing t -> Sing (Apply NullSym0 t :: Bool) Source #
sLength :: forall a (t :: t a). Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #
default sLength :: forall a (t :: t a). (Apply LengthSym0 t :: Natural) ~ Apply Length_6989586621680438549Sym0 t => Sing t -> Sing (Apply LengthSym0 t :: Natural) Source #
sElem :: forall a (t :: a) (t :: t a). SEq a => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
default sElem :: forall a (t :: a) (t :: t a). ((Apply (Apply ElemSym0 t) t :: Bool) ~ Apply (Apply Elem_6989586621680438568Sym0 t) t, SEq a) => Sing t -> Sing t -> Sing (Apply (Apply ElemSym0 t) t :: Bool) Source #
sMaximum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
default sMaximum :: forall a (t :: t a). ((Apply MaximumSym0 t :: a) ~ Apply Maximum_6989586621680438582Sym0 t, SOrd a) => Sing t -> Sing (Apply MaximumSym0 t :: a) Source #
sMinimum :: forall a (t :: t a). SOrd a => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
default sMinimum :: forall a (t :: t a). ((Apply MinimumSym0 t :: a) ~ Apply Minimum_6989586621680438597Sym0 t, SOrd a) => Sing t -> Sing (Apply MinimumSym0 t :: a) Source #
sSum :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply SumSym0 t :: a) Source #
default sSum :: forall a (t :: t a). ((Apply SumSym0 t :: a) ~ Apply Sum_6989586621680438612Sym0 t, SNum a) => Sing t -> Sing (Apply SumSym0 t :: a) Source #
sProduct :: forall a (t :: t a). SNum a => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
default sProduct :: forall a (t :: t a). ((Apply ProductSym0 t :: a) ~ Apply Product_6989586621680438621Sym0 t, SNum a) => Sing t -> Sing (Apply ProductSym0 t :: a) Source #
Instances
SFoldable Identity Source # | |
Defined in Data.Functor.Identity.Singletons sFold :: forall m (t1 :: Identity m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Identity a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Identity a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Identity a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Identity a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Identity a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Identity a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable First Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Last Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable First Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: First m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: First a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: First a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: First a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: First a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: First a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: First a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: First a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: First a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Last Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Last m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Last a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Last a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Last a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Last a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Last a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Last a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Max Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Max m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Max a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Max a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Max a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Max a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Max a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Max a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Min Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Min m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Min a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Min a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Min a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Min a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Min a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Min a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Dual Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Dual m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Dual a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Dual a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Dual a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Dual a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Dual a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Dual a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Product Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Product m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Product a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Product a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Product a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Product a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Sum Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Sum m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Sum a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Sum a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Sum a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Sum a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable NonEmpty Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: NonEmpty m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: NonEmpty a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: NonEmpty a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: NonEmpty a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: NonEmpty a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: NonEmpty a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable Maybe Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Maybe m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Maybe a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Maybe a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Maybe a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Maybe a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Maybe a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Maybe a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable [] Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: [m]). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: [a]). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: [a]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: [a]). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: [a]). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: [a]). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: [a]). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Either a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Either a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Either a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Either a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Either a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: Either a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: Either a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: Either a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: Either a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Proxy :: Type -> Type) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: Proxy m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Proxy a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Proxy a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Proxy a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Proxy a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Proxy a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Proxy a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sFold :: forall m (t1 :: Arg a m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: Arg a a0). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: Arg a a0). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: Arg a a0). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: Arg a a0). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: Arg a a0). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: Arg a a0). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: Arg a a0). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable ((,) a) Source # | |
Defined in Data.Foldable.Singletons sFold :: forall m (t1 :: (a, m)). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a0 m (t1 :: a0 ~> m) (t2 :: (a, a0)). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a0 b (t1 :: a0 ~> (b ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a0 (t1 :: b ~> (a0 ~> b)) (t2 :: b) (t3 :: (a, a0)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a0 (t1 :: a0 ~> (a0 ~> a0)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a0 (t1 :: (a, a0)). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a0 (t1 :: a0) (t2 :: (a, a0)). SEq a0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a0 (t1 :: (a, a0)). SOrd a0 => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a0 (t1 :: (a, a0)). SNum a0 => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
SFoldable (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sFold :: forall m0 (t1 :: Const m m0). SMonoid m0 => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m0 (t1 :: a ~> m0) (t2 :: Const m a). SMonoid m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Const m a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Const m a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Const m a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Const m a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Const m a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sFold :: forall m (t1 :: Product f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Product f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Product f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Product f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Product f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Product f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Product f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sFold :: forall m (t1 :: Sum f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Sum f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Sum f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Sum f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Sum f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Sum f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Sum f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Sum f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # | |
(SFoldable f, SFoldable g) => SFoldable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sFold :: forall m (t1 :: Compose f g m). SMonoid m => Sing t1 -> Sing (Apply FoldSym0 t1) Source # sFoldMap :: forall a m (t1 :: a ~> m) (t2 :: Compose f g a). SMonoid m => Sing t1 -> Sing t2 -> Sing (Apply (Apply FoldMapSym0 t1) t2) Source # sFoldr :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldrSym0 t1) t2) t3) Source # sFoldr' :: forall a b (t1 :: a ~> (b ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldr'Sym0 t1) t2) t3) Source # sFoldl :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply FoldlSym0 t1) t2) t3) Source # sFoldl' :: forall b a (t1 :: b ~> (a ~> b)) (t2 :: b) (t3 :: Compose f g a). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply Foldl'Sym0 t1) t2) t3) Source # sFoldr1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldr1Sym0 t1) t2) Source # sFoldl1 :: forall a (t1 :: a ~> (a ~> a)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply Foldl1Sym0 t1) t2) Source # sToList :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply ToListSym0 t1) Source # sNull :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply NullSym0 t1) Source # sLength :: forall a (t1 :: Compose f g a). Sing t1 -> Sing (Apply LengthSym0 t1) Source # sElem :: forall a (t1 :: a) (t2 :: Compose f g a). SEq a => Sing t1 -> Sing t2 -> Sing (Apply (Apply ElemSym0 t1) t2) Source # sMaximum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MaximumSym0 t1) Source # sMinimum :: forall a (t1 :: Compose f g a). SOrd a => Sing t1 -> Sing (Apply MinimumSym0 t1) Source # sSum :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply SumSym0 t1) Source # sProduct :: forall a (t1 :: Compose f g a). SNum a => Sing t1 -> Sing (Apply ProductSym0 t1) Source # |
type Mappend (arg :: a) (arg :: a) :: a Source #
type Mappend a a = Apply (Apply Mappend_6989586621680336638Sym0 a) a
type Mconcat (arg :: [a]) :: a Source #
type Mconcat a = Apply Mconcat_6989586621680336652Sym0 a
Instances
PMonoid All Source # | |
PMonoid Any Source # | |
PMonoid Ordering Source # | |
PMonoid () Source # | |
PMonoid Symbol Source # | |
PMonoid (Identity a) Source # | |
PMonoid (First a) Source # | |
PMonoid (Last a) Source # | |
PMonoid (Down a) Source # | |
PMonoid (Max a) Source # | |
PMonoid (Min a) Source # | |
PMonoid (WrappedMonoid m) Source # | |
PMonoid (Dual a) Source # | |
PMonoid (Product a) Source # | |
PMonoid (Sum a) Source # | |
PMonoid (Maybe a) Source # | |
PMonoid [a] Source # | |
PMonoid (Proxy s) Source # | |
PMonoid (a ~> b) Source # | |
PMonoid (a, b) Source # | |
PMonoid (Const a b) Source # | |
PMonoid (a, b, c) Source # | |
PMonoid (a, b, c, d) Source # | |
PMonoid (a, b, c, d, e) Source # | |
class SSemigroup a => SMonoid a where Source #
sMempty :: Sing (MemptySym0 :: a) Source #
sMappend :: forall (t :: a) (t :: a). Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
default sMappend :: forall (t :: a) (t :: a). (Apply (Apply MappendSym0 t) t :: a) ~ Apply (Apply Mappend_6989586621680336638Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply MappendSym0 t) t :: a) Source #
sMconcat :: forall (t :: [a]). Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
default sMconcat :: forall (t :: [a]). (Apply MconcatSym0 t :: a) ~ Apply Mconcat_6989586621680336652Sym0 t => Sing t -> Sing (Apply MconcatSym0 t :: a) Source #
Instances
class PTraversable t Source #
type Traverse (arg :: (~>) a (f b)) (arg :: t a) :: f (t b) Source #
type Traverse a a = Apply (Apply Traverse_6989586621680796862Sym0 a) a
type SequenceA (arg :: t (f a)) :: f (t a) Source #
type SequenceA a = Apply SequenceA_6989586621680796874Sym0 a
type MapM (arg :: (~>) a (m b)) (arg :: t a) :: m (t b) Source #
type MapM a a = Apply (Apply MapM_6989586621680796884Sym0 a) a
type Sequence (arg :: t (m a)) :: m (t a) Source #
type Sequence a = Apply Sequence_6989586621680796898Sym0 a
Instances
PTraversable Identity Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable First Source # | |
PTraversable Last Source # | |
PTraversable Max Source # | |
PTraversable Min Source # | |
PTraversable Dual Source # | |
PTraversable Product Source # | |
PTraversable Sum Source # | |
PTraversable NonEmpty Source # | |
PTraversable Maybe Source # | |
PTraversable [] Source # | |
PTraversable (Either a) Source # | |
PTraversable (Proxy :: Type -> Type) Source # | |
PTraversable (Arg a) Source # | |
PTraversable ((,) a) Source # | |
PTraversable (Const m :: Type -> Type) Source # | |
PTraversable (Product f g) Source # | |
PTraversable (Sum f g) Source # | |
PTraversable (Compose f g) Source # | |
class (SFunctor t, SFoldable t) => STraversable t where Source #
Nothing
sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). SApplicative f => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
default sTraverse :: forall a f b (t :: (~>) a (f b)) (t :: t a). ((Apply (Apply TraverseSym0 t) t :: f (t b)) ~ Apply (Apply Traverse_6989586621680796862Sym0 t) t, SApplicative f) => Sing t -> Sing t -> Sing (Apply (Apply TraverseSym0 t) t :: f (t b)) Source #
sSequenceA :: forall f a (t :: t (f a)). SApplicative f => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
default sSequenceA :: forall f a (t :: t (f a)). ((Apply SequenceASym0 t :: f (t a)) ~ Apply SequenceA_6989586621680796874Sym0 t, SApplicative f) => Sing t -> Sing (Apply SequenceASym0 t :: f (t a)) Source #
sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). SMonad m => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
default sMapM :: forall a m b (t :: (~>) a (m b)) (t :: t a). ((Apply (Apply MapMSym0 t) t :: m (t b)) ~ Apply (Apply MapM_6989586621680796884Sym0 t) t, SMonad m) => Sing t -> Sing t -> Sing (Apply (Apply MapMSym0 t) t :: m (t b)) Source #
sSequence :: forall m a (t :: t (m a)). SMonad m => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
default sSequence :: forall m a (t :: t (m a)). ((Apply SequenceSym0 t :: m (t a)) ~ Apply Sequence_6989586621680796898Sym0 t, SMonad m) => Sing t -> Sing (Apply SequenceSym0 t :: m (t a)) Source #
Instances
STraversable Identity Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Identity a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Identity (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Identity a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Identity (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable First Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Last Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable First Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: First a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: First (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: First a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: First (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Last Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Last a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Last (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Last a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Last (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Max Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Max a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Max (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Max a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Max (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Min Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Min a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Min (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Min a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Min (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Dual Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Dual a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Dual (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Dual a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Dual (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Product Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Product a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Product (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Product (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Sum Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Sum a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Sum (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Sum (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable NonEmpty Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: NonEmpty a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: NonEmpty (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: NonEmpty a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: NonEmpty (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable Maybe Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Maybe a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Maybe (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Maybe a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Maybe (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable [] Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: [a]). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: [f a]). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: [a]). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: [m a]). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Either a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Either a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Either a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Either a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: Either a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Proxy :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Proxy a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Proxy (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Proxy a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Proxy (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Arg a) Source # | |
Defined in Data.Semigroup.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: Arg a a0). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: Arg a (f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: Arg a a0). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: Arg a (m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable ((,) a) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a0 (f :: Type -> Type) b (t1 :: a0 ~> f b) (t2 :: (a, a0)). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a0 (t1 :: (a, f a0)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a0 (m :: Type -> Type) b (t1 :: a0 ~> m b) (t2 :: (a, a0)). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a0 (t1 :: (a, m a0)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
STraversable (Const m :: Type -> Type) Source # | |
Defined in Data.Traversable.Singletons sTraverse :: forall a (f :: Type -> Type) b (t1 :: a ~> f b) (t2 :: Const m a). SApplicative f => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f :: Type -> Type) a (t1 :: Const m (f a)). SApplicative f => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m0 :: Type -> Type) b (t1 :: a ~> m0 b) (t2 :: Const m a). SMonad m0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m0 :: Type -> Type) a (t1 :: Const m (m0 a)). SMonad m0 => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Product f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Product f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Product f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Product f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Sum f g) Source # | |
Defined in Data.Functor.Sum.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Sum f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Sum f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Sum f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Sum f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # | |
(STraversable f, STraversable g) => STraversable (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sTraverse :: forall a (f0 :: Type -> Type) b (t1 :: a ~> f0 b) (t2 :: Compose f g a). SApplicative f0 => Sing t1 -> Sing t2 -> Sing (Apply (Apply TraverseSym0 t1) t2) Source # sSequenceA :: forall (f0 :: Type -> Type) a (t1 :: Compose f g (f0 a)). SApplicative f0 => Sing t1 -> Sing (Apply SequenceASym0 t1) Source # sMapM :: forall a (m :: Type -> Type) b (t1 :: a ~> m b) (t2 :: Compose f g a). SMonad m => Sing t1 -> Sing t2 -> Sing (Apply (Apply MapMSym0 t1) t2) Source # sSequence :: forall (m :: Type -> Type) a (t1 :: Compose f g (m a)). SMonad m => Sing t1 -> Sing (Apply SequenceSym0 t1) Source # |
class PApplicative f Source #
type Pure (arg :: a) :: f a Source #
type (arg :: f ((~>) a b)) <*> (arg :: f a) :: f b infixl 4 Source #
type a <*> a = Apply (Apply TFHelper_6989586621679329161Sym0 a) a
type LiftA2 (arg :: (~>) a ((~>) b c)) (arg :: f a) (arg :: f b) :: f c Source #
type LiftA2 a a a = Apply (Apply (Apply LiftA2_6989586621679329177Sym0 a) a) a
type (arg :: f a) *> (arg :: f b) :: f b infixl 4 Source #
type a *> a = Apply (Apply TFHelper_6989586621679329193Sym0 a) a
type (arg :: f a) <* (arg :: f b) :: f a infixl 4 Source #
type a <* a = Apply (Apply TFHelper_6989586621679329204Sym0 a) a
Instances
PApplicative Identity Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Down Source # | |
PApplicative First Source # | |
PApplicative Last Source # | |
PApplicative Max Source # | |
PApplicative Min Source # | |
PApplicative Dual Source # | |
PApplicative Product Source # | |
PApplicative Sum Source # | |
PApplicative NonEmpty Source # | |
PApplicative Maybe Source # | |
PApplicative [] Source # | |
PApplicative (Either e) Source # | |
PApplicative (Proxy :: Type -> Type) Source # | |
PApplicative ((,) a) Source # | |
PApplicative (Const m :: Type -> Type) Source # | |
PApplicative (Product f g) Source # | |
PApplicative (Compose f g) Source # | |
class SFunctor f => SApplicative f where Source #
sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t :: f a) Source #
(%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) infixl 4 Source #
default (%<*>) :: forall a b (t :: f ((~>) a b)) (t :: f a). (Apply (Apply (<*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329161Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (<*>@#@$) t) t :: f b) Source #
sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #
default sLiftA2 :: forall a b c (t :: (~>) a ((~>) b c)) (t :: f a) (t :: f b). (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) ~ Apply (Apply (Apply LiftA2_6989586621679329177Sym0 t) t) t => Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply LiftA2Sym0 t) t) t :: f c) Source #
(%*>) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) infixl 4 Source #
default (%*>) :: forall a b (t :: f a) (t :: f b). (Apply (Apply (*>@#@$) t) t :: f b) ~ Apply (Apply TFHelper_6989586621679329193Sym0 t) t => Sing t -> Sing t -> Sing (Apply (Apply (*>@#@$) t) t :: f b) Source #
(%<*) :: forall a b (t :: f a) (t :: f b). Sing t -> Sing t -> Sing (Apply (Apply (<*@#@$) t) t :: f a) infixl 4 Source #
Instances
SApplicative Identity Source # | |
Defined in Data.Functor.Identity.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Identity (a ~> b)) (t2 :: Identity a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Identity a) (t3 :: Identity b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Identity a) (t2 :: Identity b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative First Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Last Source # | |
Defined in Data.Monoid.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Down Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Down (a ~> b)) (t2 :: Down a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Down a) (t3 :: Down b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Down a) (t2 :: Down b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative First Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: First (a ~> b)) (t2 :: First a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: First a) (t3 :: First b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: First a) (t2 :: First b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Last Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Last (a ~> b)) (t2 :: Last a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Last a) (t3 :: Last b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Last a) (t2 :: Last b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Max Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Max (a ~> b)) (t2 :: Max a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Max a) (t3 :: Max b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Max a) (t2 :: Max b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Min Source # | |
Defined in Data.Semigroup.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Min (a ~> b)) (t2 :: Min a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Min a) (t3 :: Min b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Min a) (t2 :: Min b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Dual Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Dual (a ~> b)) (t2 :: Dual a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Dual a) (t3 :: Dual b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Dual a) (t2 :: Dual b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Product Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Product (a ~> b)) (t2 :: Product a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product a) (t3 :: Product b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Product a) (t2 :: Product b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Sum Source # | |
Defined in Data.Semigroup.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Sum (a ~> b)) (t2 :: Sum a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Sum a) (t3 :: Sum b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Sum a) (t2 :: Sum b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative NonEmpty Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: NonEmpty (a ~> b)) (t2 :: NonEmpty a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: NonEmpty a) (t3 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: NonEmpty a) (t2 :: NonEmpty b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative Maybe Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Maybe (a ~> b)) (t2 :: Maybe a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Maybe a) (t3 :: Maybe b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Maybe a) (t2 :: Maybe b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative [] Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: [a ~> b]) (t2 :: [a]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: [a]) (t3 :: [b]). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: [a]) (t2 :: [b]). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative (Either e) Source # | |
Defined in Control.Monad.Singletons.Internal sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Either e (a ~> b)) (t2 :: Either e a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Either e a) (t3 :: Either e b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Either e a) (t2 :: Either e b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SApplicative (Proxy :: Type -> Type) Source # | |
Defined in Data.Proxy.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Proxy (a ~> b)) (t2 :: Proxy a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Proxy a) (t3 :: Proxy b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Proxy a) (t2 :: Proxy b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SMonoid a => SApplicative ((,) a) Source # | |
Defined in Control.Applicative.Singletons sPure :: forall a0 (t :: a0). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a0 b (t1 :: (a, a0 ~> b)) (t2 :: (a, a0)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a0 b c (t1 :: a0 ~> (b ~> c)) (t2 :: (a, a0)) (t3 :: (a, b)). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a0 b (t1 :: (a, a0)) (t2 :: (a, b)). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
SMonoid m => SApplicative (Const m :: Type -> Type) Source # | |
Defined in Data.Functor.Const.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Const m (a ~> b)) (t2 :: Const m a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Const m a) (t3 :: Const m b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Const m a) (t2 :: Const m b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Product f g) Source # | |
Defined in Data.Functor.Product.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Product f g (a ~> b)) (t2 :: Product f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Product f g a) (t3 :: Product f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Product f g a) (t2 :: Product f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # | |
(SApplicative f, SApplicative g) => SApplicative (Compose f g) Source # | |
Defined in Data.Functor.Compose.Singletons sPure :: forall a (t :: a). Sing t -> Sing (Apply PureSym0 t) Source # (%<*>) :: forall a b (t1 :: Compose f g (a ~> b)) (t2 :: Compose f g a). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*>@#@$) t1) t2) Source # sLiftA2 :: forall a b c (t1 :: a ~> (b ~> c)) (t2 :: Compose f g a) (t3 :: Compose f g b). Sing t1 -> Sing t2 -> Sing t3 -> Sing (Apply (Apply (Apply LiftA2Sym0 t1) t2) t3) Source # (%*>) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (*>@#@$) t1) t2) Source # (%<*) :: forall a b (t1 :: Compose f g a) (t2 :: Compose f g b). Sing t1 -> Sing t2 -> Sing (Apply (Apply (<*@#@$) t1) t2) Source # |
type family ((a :: (~>) b c) . (a :: (~>) a b)) (a :: a) :: c where ... infixr 9 Source #
(f . g) a_6989586621679278893 = Apply (Apply (Apply (Apply Lambda_6989586621679278905Sym0 f) g) a_6989586621679278893) a_6989586621679278893 |
(%.) :: forall b c a (t :: (~>) b c) (t :: (~>) a b) (t :: a). Sing t -> Sing t -> Sing t -> Sing (Apply (Apply (Apply (.@#@$) t) t) t :: c) infixr 9 Source #
type family Error (str :: k0) :: k where ... Source #
The promotion of error
. This version is more poly-kinded for
easier use.
data ErrorSym0 :: (~>) k0 k Source #
Instances
SingI (ErrorSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal | |
SuppressUnusedWarnings (ErrorSym0 :: TyFun k0 k -> Type) Source # | |
Defined in GHC.TypeLits.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (ErrorSym0 :: TyFun k0 k2 -> Type) (a6989586621679544356 :: k0) Source # | |
Defined in GHC.TypeLits.Singletons.Internal |
sUndefined :: HasCallStack => a Source #
The singleton for undefined
.
type family UndefinedSym0 :: k where ... Source #
data (==@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SEq a => SingI ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679140205 :: a) Source # | |
Defined in Data.Eq.Singletons |
data (==@#@$$) (a6989586621679140205 :: a) :: (~>) a Bool infix 4 Source #
Instances
SEq a => SingI1 ((==@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
(SEq a, SingI d) => SingI ((==@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons | |
SuppressUnusedWarnings ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Eq.Singletons suppressUnusedWarnings :: () # | |
type Apply ((==@#@$$) a6989586621679140205 :: TyFun a Bool -> Type) (a6989586621679140206 :: a) Source # | |
Defined in Data.Eq.Singletons |
type family (a6989586621679140205 :: a) ==@#@$$$ (a6989586621679140206 :: a) :: Bool where ... infix 4 Source #
data (>@#@$) :: (~>) a ((~>) a Bool) infix 4 Source #
Instances
SOrd a => SingI ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$) :: TyFun a (a ~> Bool) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$) :: TyFun a (a ~> Bool) -> Type) (a6989586621679178620 :: a) Source # | |
Defined in Data.Ord.Singletons |
data (>@#@$$) (a6989586621679178620 :: a) :: (~>) a Bool infix 4 Source #
Instances
SOrd a => SingI1 ((>@#@$$) :: a -> TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
(SOrd a, SingI d) => SingI ((>@#@$$) d :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons | |
SuppressUnusedWarnings ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ((>@#@$$) a6989586621679178620 :: TyFun a Bool -> Type) (a6989586621679178621 :: a) Source # | |
Defined in Data.Ord.Singletons |
type family (a6989586621679178620 :: a) >@#@$$$ (a6989586621679178621 :: a) :: Bool where ... infix 4 Source #
data IfSym0 :: (~>) Bool ((~>) k ((~>) k k)) Source #
Instances
SingI (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym0 :: TyFun Bool (k ~> (k ~> k)) -> Type) (a6989586621679135270 :: Bool) Source # | |
data IfSym1 (a6989586621679135270 :: Bool) :: (~>) k ((~>) k k) Source #
Instances
SingI1 (IfSym1 :: Bool -> TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SingI c => SingI (IfSym1 c :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym1 a6989586621679135270 :: TyFun k (k ~> k) -> Type) (a6989586621679135271 :: k) Source # | |
Defined in Data.Bool.Singletons |
data IfSym2 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) :: (~>) k k Source #
Instances
SingI2 (IfSym2 :: Bool -> k2 -> TyFun k2 k2 -> Type) Source # | |
SingI c => SingI1 (IfSym2 c :: k1 -> TyFun k1 k1 -> Type) Source # | |
Defined in Data.Bool.Singletons | |
(SingI c, SingI t) => SingI (IfSym2 c t :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (IfSym2 a6989586621679135270 a6989586621679135271 :: TyFun k k -> Type) (a6989586621679135272 :: k) Source # | |
Defined in Data.Bool.Singletons |
type family IfSym3 (a6989586621679135270 :: Bool) (a6989586621679135271 :: k) (a6989586621679135272 :: k) :: k where ... Source #
data (&&@#@$) :: (~>) Bool ((~>) Bool Bool) infixr 3 Source #
Instances
SingI (&&@#@$) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings (&&@#@$) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply (&&@#@$) (a6989586621679134313 :: Bool) Source # | |
Defined in Data.Bool.Singletons |
data (&&@#@$$) (a6989586621679134313 :: Bool) :: (~>) Bool Bool infixr 3 Source #
Instances
SingI x => SingI ((&&@#@$$) x :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons | |
SuppressUnusedWarnings ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) Source # | |
Defined in Data.Bool.Singletons suppressUnusedWarnings :: () # | |
type Apply ((&&@#@$$) a6989586621679134313 :: TyFun Bool Bool -> Type) (a6989586621679134314 :: Bool) Source # | |
type family (a6989586621679134313 :: Bool) &&@#@$$$ (a6989586621679134314 :: Bool) :: Bool where ... infixr 3 Source #
type family Tuple0Sym0 :: () where ... Source #
Tuple0Sym0 = '() |
data Tuple2Sym0 :: (~>) a ((~>) b (a :: Type, b :: Type)) Source #
Instances
SingI (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple2Sym0 | |
SuppressUnusedWarnings (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym0 :: TyFun a (b ~> (a, b)) -> Type) (a6989586621679040855 :: a) = Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type |
data Tuple2Sym1 (a6989586621679040855 :: a) :: (~>) b (a :: Type, b :: Type) Source #
Instances
SingI1 (Tuple2Sym1 :: a -> TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple2Sym1 x) | |
SingI d => SingI (Tuple2Sym1 d :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple2Sym1 d) | |
SuppressUnusedWarnings (Tuple2Sym1 a6989586621679040855 :: TyFun b (a, b) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple2Sym1 a6989586621679040855 :: TyFun k2 (k1, k2) -> Type) (a6989586621679040856 :: k2) = '(a6989586621679040855, a6989586621679040856) |
type family Tuple2Sym2 (a6989586621679040855 :: a) (a6989586621679040856 :: b) :: (a :: Type, b :: Type) where ... Source #
Tuple2Sym2 a6989586621679040855 a6989586621679040856 = '(a6989586621679040855, a6989586621679040856) |
data Tuple3Sym0 :: (~>) a ((~>) b ((~>) c (a :: Type, b :: Type, c :: Type))) Source #
Instances
SingI (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple3Sym0 | |
SuppressUnusedWarnings (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym0 :: TyFun a (b ~> (c ~> (a, b, c))) -> Type) (a6989586621679040886 :: a) = Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type |
data Tuple3Sym1 (a6989586621679040886 :: a) :: (~>) b ((~>) c (a :: Type, b :: Type, c :: Type)) Source #
Instances
SingI1 (Tuple3Sym1 :: a -> TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym1 x) | |
SingI d => SingI (Tuple3Sym1 d :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym1 d) | |
SuppressUnusedWarnings (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym1 a6989586621679040886 :: TyFun b (c ~> (a, b, c)) -> Type) (a6989586621679040887 :: b) = Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type |
data Tuple3Sym2 (a6989586621679040886 :: a) (a6989586621679040887 :: b) :: (~>) c (a :: Type, b :: Type, c :: Type) Source #
Instances
SingI2 (Tuple3Sym2 :: a -> b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple3Sym2 x y) | |
SingI d => SingI1 (Tuple3Sym2 d :: b -> TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple3Sym2 d x) | |
(SingI d1, SingI d2) => SingI (Tuple3Sym2 d1 d2 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple3Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun c (a, b, c) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple3Sym2 a6989586621679040886 a6989586621679040887 :: TyFun k3 (k1, k2, k3) -> Type) (a6989586621679040888 :: k3) = '(a6989586621679040886, a6989586621679040887, a6989586621679040888) |
type family Tuple3Sym3 (a6989586621679040886 :: a) (a6989586621679040887 :: b) (a6989586621679040888 :: c) :: (a :: Type, b :: Type, c :: Type) where ... Source #
Tuple3Sym3 a6989586621679040886 a6989586621679040887 a6989586621679040888 = '(a6989586621679040886, a6989586621679040887, a6989586621679040888) |
data Tuple4Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)))) Source #
Instances
SingI (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple4Sym0 | |
SuppressUnusedWarnings (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym0 :: TyFun a (b ~> (c ~> (d ~> (a, b, c, d)))) -> Type) (a6989586621679040935 :: a) = Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type |
data Tuple4Sym1 (a6989586621679040935 :: a) :: (~>) b ((~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type))) Source #
Instances
SingI1 (Tuple4Sym1 :: a -> TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym1 x) | |
SingI d1 => SingI (Tuple4Sym1 d1 :: TyFun b (c ~> (d2 ~> (a, b, c, d2))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym1 d1) | |
SuppressUnusedWarnings (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym1 a6989586621679040935 :: TyFun b (c ~> (d ~> (a, b, c, d))) -> Type) (a6989586621679040936 :: b) = Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type |
data Tuple4Sym2 (a6989586621679040935 :: a) (a6989586621679040936 :: b) :: (~>) c ((~>) d (a :: Type, b :: Type, c :: Type, d :: Type)) Source #
Instances
SingI2 (Tuple4Sym2 :: a -> b -> TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym2 x y) | |
SingI d1 => SingI1 (Tuple4Sym2 d1 :: b -> TyFun c (d2 ~> (a, b, c, d2)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple4Sym2 d1 d2 :: TyFun c (d3 ~> (a, b, c, d3)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym2 a6989586621679040935 a6989586621679040936 :: TyFun c (d ~> (a, b, c, d)) -> Type) (a6989586621679040937 :: c) = Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type |
data Tuple4Sym3 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) :: (~>) d (a :: Type, b :: Type, c :: Type, d :: Type) Source #
Instances
SingI d1 => SingI2 (Tuple4Sym3 d1 :: b -> c -> TyFun d2 (a, b, c, d2) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple4Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple4Sym3 d1 d2 :: c -> TyFun d3 (a, b, c, d3) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple4Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple4Sym3 d1 d2 d3 :: TyFun d4 (a, b, c, d4) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple4Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun d (a, b, c, d) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple4Sym3 a6989586621679040935 a6989586621679040936 a6989586621679040937 :: TyFun k4 (k1, k2, k3, k4) -> Type) (a6989586621679040938 :: k4) = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938) |
type family Tuple4Sym4 (a6989586621679040935 :: a) (a6989586621679040936 :: b) (a6989586621679040937 :: c) (a6989586621679040938 :: d) :: (a :: Type, b :: Type, c :: Type, d :: Type) where ... Source #
Tuple4Sym4 a6989586621679040935 a6989586621679040936 a6989586621679040937 a6989586621679040938 = '(a6989586621679040935, a6989586621679040936, a6989586621679040937, a6989586621679040938) |
data Tuple5Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))))) Source #
Instances
SingI (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple5Sym0 | |
SuppressUnusedWarnings (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (a, b, c, d, e))))) -> Type) (a6989586621679041004 :: a) = Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type |
data Tuple5Sym1 (a6989586621679041004 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)))) Source #
Instances
SingI1 (Tuple5Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym1 x) | |
SingI d1 => SingI (Tuple5Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (a, b, c, d2, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym1 d1) | |
SuppressUnusedWarnings (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym1 a6989586621679041004 :: TyFun b (c ~> (d ~> (e ~> (a, b, c, d, e)))) -> Type) (a6989586621679041005 :: b) = Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type |
data Tuple5Sym2 (a6989586621679041004 :: a) (a6989586621679041005 :: b) :: (~>) c ((~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type))) Source #
Instances
SingI2 (Tuple5Sym2 :: a -> b -> TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym2 x y) | |
SingI d1 => SingI1 (Tuple5Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (a, b, c, d2, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple5Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (a, b, c, d3, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym2 a6989586621679041004 a6989586621679041005 :: TyFun c (d ~> (e ~> (a, b, c, d, e))) -> Type) (a6989586621679041006 :: c) = Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type |
data Tuple5Sym3 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) :: (~>) d ((~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type)) Source #
Instances
SingI d1 => SingI2 (Tuple5Sym3 d1 :: b -> c -> TyFun d2 (e ~> (a, b, c, d2, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple5Sym3 d1 d2 :: c -> TyFun d3 (e ~> (a, b, c, d3, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple5Sym3 d1 d2 d3 :: TyFun d4 (e ~> (a, b, c, d4, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym3 a6989586621679041004 a6989586621679041005 a6989586621679041006 :: TyFun d (e ~> (a, b, c, d, e)) -> Type) (a6989586621679041007 :: d) = Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type |
data Tuple5Sym4 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) :: (~>) e (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple5Sym4 d1 d2 :: c -> d3 -> TyFun e (a, b, c, d3, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple5Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple5Sym4 d1 d2 d3 :: d4 -> TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple5Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple5Sym4 d1 d2 d3 d5 :: TyFun e (a, b, c, d4, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple5Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun e (a, b, c, d, e) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple5Sym4 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 :: TyFun k5 (k1, k2, k3, k4, k5) -> Type) (a6989586621679041008 :: k5) = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008) |
type family Tuple5Sym5 (a6989586621679041004 :: a) (a6989586621679041005 :: b) (a6989586621679041006 :: c) (a6989586621679041007 :: d) (a6989586621679041008 :: e) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type) where ... Source #
Tuple5Sym5 a6989586621679041004 a6989586621679041005 a6989586621679041006 a6989586621679041007 a6989586621679041008 = '(a6989586621679041004, a6989586621679041005, a6989586621679041006, a6989586621679041007, a6989586621679041008) |
data Tuple6Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))))) Source #
Instances
SingI (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple6Sym0 | |
SuppressUnusedWarnings (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f)))))) -> Type) (a6989586621679041095 :: a) = Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type |
data Tuple6Sym1 (a6989586621679041095 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))))) Source #
Instances
SingI1 (Tuple6Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym1 x) | |
SingI d1 => SingI (Tuple6Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym1 d1) | |
SuppressUnusedWarnings (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym1 a6989586621679041095 :: TyFun b (c ~> (d ~> (e ~> (f ~> (a, b, c, d, e, f))))) -> Type) (a6989586621679041096 :: b) = Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type |
data Tuple6Sym2 (a6989586621679041095 :: a) (a6989586621679041096 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)))) Source #
Instances
SingI2 (Tuple6Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym2 x y) | |
SingI d1 => SingI1 (Tuple6Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (a, b, c, d2, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple6Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (a, b, c, d3, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym2 a6989586621679041095 a6989586621679041096 :: TyFun c (d ~> (e ~> (f ~> (a, b, c, d, e, f)))) -> Type) (a6989586621679041097 :: c) = Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type |
data Tuple6Sym3 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) :: (~>) d ((~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type))) Source #
Instances
SingI d1 => SingI2 (Tuple6Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (a, b, c, d2, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple6Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (a, b, c, d3, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple6Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (a, b, c, d4, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym3 a6989586621679041095 a6989586621679041096 a6989586621679041097 :: TyFun d (e ~> (f ~> (a, b, c, d, e, f))) -> Type) (a6989586621679041098 :: d) = Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type |
data Tuple6Sym4 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) :: (~>) e ((~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type)) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple6Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (a, b, c, d3, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple6Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple6Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (a, b, c, d4, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym4 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 :: TyFun e (f ~> (a, b, c, d, e, f)) -> Type) (a6989586621679041099 :: e) = Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type |
data Tuple6Sym5 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) :: (~>) f (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple6Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple6Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple6Sym5 d1 d2 d3 d5 :: e -> TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple6Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple6Sym5 d1 d2 d3 d5 d6 :: TyFun f (a, b, c, d4, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple6Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun f (a, b, c, d, e, f) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple6Sym5 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 :: TyFun k6 (k1, k2, k3, k4, k5, k6) -> Type) (a6989586621679041100 :: k6) = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100) |
type family Tuple6Sym6 (a6989586621679041095 :: a) (a6989586621679041096 :: b) (a6989586621679041097 :: c) (a6989586621679041098 :: d) (a6989586621679041099 :: e) (a6989586621679041100 :: f) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type) where ... Source #
Tuple6Sym6 a6989586621679041095 a6989586621679041096 a6989586621679041097 a6989586621679041098 a6989586621679041099 a6989586621679041100 = '(a6989586621679041095, a6989586621679041096, a6989586621679041097, a6989586621679041098, a6989586621679041099, a6989586621679041100) |
data Tuple7Sym0 :: (~>) a ((~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))))) Source #
Instances
SingI (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing Tuple7Sym0 | |
SuppressUnusedWarnings (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym0 :: TyFun a (b ~> (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))))) -> Type) (a6989586621679041210 :: a) = Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type |
data Tuple7Sym1 (a6989586621679041210 :: a) :: (~>) b ((~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))))) Source #
Instances
SingI1 (Tuple7Sym1 :: a -> TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym1 x) | |
SingI d1 => SingI (Tuple7Sym1 d1 :: TyFun b (c ~> (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym1 d1) | |
SuppressUnusedWarnings (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym1 a6989586621679041210 :: TyFun b (c ~> (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))))) -> Type) (a6989586621679041211 :: b) = Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type |
data Tuple7Sym2 (a6989586621679041210 :: a) (a6989586621679041211 :: b) :: (~>) c ((~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))))) Source #
Instances
SingI2 (Tuple7Sym2 :: a -> b -> TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym2 x y) | |
SingI d1 => SingI1 (Tuple7Sym2 d1 :: b -> TyFun c (d2 ~> (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym2 d1 x) | |
(SingI d1, SingI d2) => SingI (Tuple7Sym2 d1 d2 :: TyFun c (d3 ~> (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym2 d1 d2) | |
SuppressUnusedWarnings (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym2 a6989586621679041210 a6989586621679041211 :: TyFun c (d ~> (e ~> (f ~> (g ~> (a, b, c, d, e, f, g))))) -> Type) (a6989586621679041212 :: c) = Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type |
data Tuple7Sym3 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) :: (~>) d ((~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)))) Source #
Instances
SingI d1 => SingI2 (Tuple7Sym3 d1 :: b -> c -> TyFun d2 (e ~> (f ~> (g ~> (a, b, c, d2, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym3 d1 x y) | |
(SingI d1, SingI d2) => SingI1 (Tuple7Sym3 d1 d2 :: c -> TyFun d3 (e ~> (f ~> (g ~> (a, b, c, d3, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym3 d1 d2 x) | |
(SingI d1, SingI d2, SingI d3) => SingI (Tuple7Sym3 d1 d2 d3 :: TyFun d4 (e ~> (f ~> (g ~> (a, b, c, d4, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym3 d1 d2 d3) | |
SuppressUnusedWarnings (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym3 a6989586621679041210 a6989586621679041211 a6989586621679041212 :: TyFun d (e ~> (f ~> (g ~> (a, b, c, d, e, f, g)))) -> Type) (a6989586621679041213 :: d) = Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type |
data Tuple7Sym4 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) :: (~>) e ((~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type))) Source #
Instances
(SingI d1, SingI d2) => SingI2 (Tuple7Sym4 d1 d2 :: c -> d3 -> TyFun e (f ~> (g ~> (a, b, c, d3, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym4 d1 d2 x y) | |
(SingI d1, SingI d2, SingI d3) => SingI1 (Tuple7Sym4 d1 d2 d3 :: d4 -> TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym4 d1 d2 d3 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI (Tuple7Sym4 d1 d2 d3 d5 :: TyFun e (f ~> (g ~> (a, b, c, d4, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym4 d1 d2 d3 d5) | |
SuppressUnusedWarnings (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym4 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 :: TyFun e (f ~> (g ~> (a, b, c, d, e, f, g))) -> Type) (a6989586621679041214 :: e) = Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type |
data Tuple7Sym5 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) :: (~>) f ((~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type)) Source #
Instances
(SingI d1, SingI d2, SingI d3) => SingI2 (Tuple7Sym5 d1 d2 d3 :: d4 -> e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym5 d1 d2 d3 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI1 (Tuple7Sym5 d1 d2 d3 d5 :: e -> TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym5 d1 d2 d3 d5 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI (Tuple7Sym5 d1 d2 d3 d5 d6 :: TyFun f (g ~> (a, b, c, d4, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym5 d1 d2 d3 d5 d6) | |
SuppressUnusedWarnings (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym5 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 :: TyFun f (g ~> (a, b, c, d, e, f, g)) -> Type) (a6989586621679041215 :: f) = Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type |
data Tuple7Sym6 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) :: (~>) g (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) Source #
Instances
(SingI d1, SingI d2, SingI d3, SingI d5) => SingI2 (Tuple7Sym6 d1 d2 d3 d5 :: e -> f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (Tuple7Sym6 d1 d2 d3 d5 x y) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6) => SingI1 (Tuple7Sym6 d1 d2 d3 d5 d6 :: f -> TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances liftSing :: forall (x :: k1). Sing x -> Sing (Tuple7Sym6 d1 d2 d3 d5 d6 x) | |
(SingI d1, SingI d2, SingI d3, SingI d5, SingI d6, SingI d7) => SingI (Tuple7Sym6 d1 d2 d3 d5 d6 d7 :: TyFun g (a, b, c, d4, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances sing :: Sing (Tuple7Sym6 d1 d2 d3 d5 d6 d7) | |
SuppressUnusedWarnings (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun g (a, b, c, d, e, f, g) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) Source # | |
Defined in Data.Singletons.Base.Instances type Apply (Tuple7Sym6 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 :: TyFun k7 (k1, k2, k3, k4, k5, k6, k7) -> Type) (a6989586621679041216 :: k7) = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216) |
type family Tuple7Sym7 (a6989586621679041210 :: a) (a6989586621679041211 :: b) (a6989586621679041212 :: c) (a6989586621679041213 :: d) (a6989586621679041214 :: e) (a6989586621679041215 :: f) (a6989586621679041216 :: g) :: (a :: Type, b :: Type, c :: Type, d :: Type, e :: Type, f :: Type, g :: Type) where ... Source #
Tuple7Sym7 a6989586621679041210 a6989586621679041211 a6989586621679041212 a6989586621679041213 a6989586621679041214 a6989586621679041215 a6989586621679041216 = '(a6989586621679041210, a6989586621679041211, a6989586621679041212, a6989586621679041213, a6989586621679041214, a6989586621679041215, a6989586621679041216) |
data CompareSym0 :: (~>) a ((~>) a Ordering) Source #
Instances
SOrd a => SingI (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing CompareSym0 | |
SuppressUnusedWarnings (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym0 :: TyFun a (a ~> Ordering) -> Type) (a6989586621679178605 :: a) = CompareSym1 a6989586621679178605 |
data CompareSym1 (a6989586621679178605 :: a) :: (~>) a Ordering Source #
Instances
SOrd a => SingI1 (CompareSym1 :: a -> TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (CompareSym1 x) | |
(SOrd a, SingI d) => SingI (CompareSym1 d :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing (CompareSym1 d) | |
SuppressUnusedWarnings (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) Source # | |
Defined in Data.Ord.Singletons type Apply (CompareSym1 a6989586621679178605 :: TyFun a Ordering -> Type) (a6989586621679178606 :: a) = Compare a6989586621679178605 a6989586621679178606 |
type family CompareSym2 (a6989586621679178605 :: a) (a6989586621679178606 :: a) :: Ordering where ... Source #
CompareSym2 a6989586621679178605 a6989586621679178606 = Compare a6989586621679178605 a6989586621679178606 |
data ThenCmpSym0 :: (~>) Ordering ((~>) Ordering Ordering) Source #
Instances
SingI ThenCmpSym0 Source # | |
Defined in Data.Ord.Singletons sing :: Sing ThenCmpSym0 | |
SuppressUnusedWarnings ThenCmpSym0 Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply ThenCmpSym0 (a6989586621679178589 :: Ordering) Source # | |
Defined in Data.Ord.Singletons |
data ThenCmpSym1 (a6989586621679178589 :: Ordering) :: (~>) Ordering Ordering Source #
Instances
SingI1 ThenCmpSym1 Source # | |
Defined in Data.Ord.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ThenCmpSym1 x) | |
SingI d => SingI (ThenCmpSym1 d :: TyFun Ordering Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons sing :: Sing (ThenCmpSym1 d) | |
SuppressUnusedWarnings (ThenCmpSym1 a6989586621679178589 :: TyFun Ordering Ordering -> Type) Source # | |
Defined in Data.Ord.Singletons suppressUnusedWarnings :: () # | |
type Apply (ThenCmpSym1 a6989586621679178589 :: TyFun Ordering Ordering -> Type) (a6989586621679178590 :: Ordering) Source # | |
Defined in Data.Ord.Singletons |
type family ThenCmpSym2 (a6989586621679178589 :: Ordering) (a6989586621679178590 :: Ordering) :: Ordering where ... Source #
ThenCmpSym2 a6989586621679178589 a6989586621679178590 = ThenCmp a6989586621679178589 a6989586621679178590 |
data FoldlSym0 :: (~>) ((~>) b ((~>) a b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym0 :: TyFun (b ~> (a ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438336 :: b ~> (a ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym1 (a6989586621680438336 :: (~>) b ((~>) a b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldlSym1 :: (b ~> (a ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldlSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym1 a6989586621680438336 :: TyFun b (t a ~> b) -> Type) (a6989586621680438337 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldlSym2 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldlSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldlSym2 :: (b ~> (a ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldlSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldlSym2 a6989586621680438336 a6989586621680438337 :: TyFun (t a) b -> Type) (a6989586621680438338 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldlSym3 (a6989586621680438336 :: (~>) b ((~>) a b)) (a6989586621680438337 :: b) (a6989586621680438338 :: t a) :: b where ... Source #
type family MinBoundSym0 :: a where ... Source #
type family MaxBoundSym0 :: a where ... Source #
data ShowsPrecSym0 :: (~>) Natural ((~>) a ((~>) Symbol Symbol)) Source #
Instances
SShow a => SingI (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym0 :: TyFun Natural (a ~> (Symbol ~> Symbol)) -> Type) (a6989586621680249857 :: Natural) = ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type |
data ShowsPrecSym1 (a6989586621680249857 :: Natural) :: (~>) a ((~>) Symbol Symbol) Source #
Instances
SShow a => SingI1 (ShowsPrecSym1 :: Natural -> TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym1 x) | |
(SShow a, SingI d) => SingI (ShowsPrecSym1 d :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym1 d) | |
SuppressUnusedWarnings (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) Source # | |
Defined in Text.Show.Singletons type Apply (ShowsPrecSym1 a6989586621680249857 :: TyFun a (Symbol ~> Symbol) -> Type) (a6989586621680249858 :: a) = ShowsPrecSym2 a6989586621680249857 a6989586621680249858 |
data ShowsPrecSym2 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) :: (~>) Symbol Symbol Source #
Instances
SShow a => SingI2 (ShowsPrecSym2 :: Natural -> a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowsPrecSym2 x y) | |
(SShow a, SingI d) => SingI1 (ShowsPrecSym2 d :: a -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowsPrecSym2 d x) | |
(SShow a, SingI d1, SingI d2) => SingI (ShowsPrecSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowsPrecSym2 d1 d2) | |
SuppressUnusedWarnings (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowsPrecSym2 a6989586621680249857 a6989586621680249858 :: TyFun Symbol Symbol -> Type) (a6989586621680249859 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowsPrecSym3 (a6989586621680249857 :: Natural) (a6989586621680249858 :: a) (a6989586621680249859 :: Symbol) :: Symbol where ... Source #
ShowsPrecSym3 a6989586621680249857 a6989586621680249858 a6989586621680249859 = ShowsPrec a6989586621680249857 a6989586621680249858 a6989586621680249859 |
data ShowStringSym0 :: (~>) Symbol ((~>) Symbol Symbol) Source #
Instances
SingI ShowStringSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowStringSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowStringSym0 (a6989586621680249812 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
data ShowStringSym1 (a6989586621680249812 :: Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowStringSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowStringSym1 x) | |
SingI d => SingI (ShowStringSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowStringSym1 d) | |
SuppressUnusedWarnings (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowStringSym1 a6989586621680249812 :: TyFun Symbol Symbol -> Type) (a6989586621680249813 :: Symbol) = ShowString a6989586621680249812 a6989586621680249813 |
type family ShowStringSym2 (a6989586621680249812 :: Symbol) (a6989586621680249813 :: Symbol) :: Symbol where ... Source #
ShowStringSym2 a6989586621680249812 a6989586621680249813 = ShowString a6989586621680249812 a6989586621680249813 |
data ShowParenSym0 :: (~>) Bool ((~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol)) Source #
Instances
SingI ShowParenSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowParenSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowParenSym0 (a6989586621680249796 :: Bool) Source # | |
Defined in Text.Show.Singletons |
data ShowParenSym1 (a6989586621680249796 :: Bool) :: (~>) ((~>) Symbol Symbol) ((~>) Symbol Symbol) Source #
Instances
SingI1 ShowParenSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym1 x) | |
SingI d => SingI (ShowParenSym1 d :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym1 d) | |
SuppressUnusedWarnings (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) Source # | |
Defined in Text.Show.Singletons type Apply (ShowParenSym1 a6989586621680249796 :: TyFun (Symbol ~> Symbol) (Symbol ~> Symbol) -> Type) (a6989586621680249797 :: Symbol ~> Symbol) = ShowParenSym2 a6989586621680249796 a6989586621680249797 |
data ShowParenSym2 (a6989586621680249796 :: Bool) (a6989586621680249797 :: (~>) Symbol Symbol) :: (~>) Symbol Symbol Source #
Instances
SingI2 ShowParenSym2 Source # | |
Defined in Text.Show.Singletons liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (ShowParenSym2 x y) | |
(SingI d1, SingI d2) => SingI (ShowParenSym2 d1 d2 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowParenSym2 d1 d2) | |
SuppressUnusedWarnings (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
SingI d => SingI1 (ShowParenSym2 d :: (Symbol ~> Symbol) -> TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowParenSym2 d x) | |
type Apply (ShowParenSym2 a6989586621680249796 a6989586621680249797 :: TyFun Symbol Symbol -> Type) (a6989586621680249798 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
data ShowSpaceSym0 :: (~>) Symbol Symbol Source #
Instances
SingI ShowSpaceSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowSpaceSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowSpaceSym0 (a6989586621680249784 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowSpaceSym1 (a6989586621680249784 :: Symbol) :: Symbol where ... Source #
ShowSpaceSym1 a6989586621680249784 = ShowSpace a6989586621680249784 |
data ShowCharSym0 :: (~>) Char ((~>) Symbol Symbol) Source #
Instances
SingI ShowCharSym0 Source # | |
Defined in Text.Show.Singletons sing :: Sing ShowCharSym0 | |
SuppressUnusedWarnings ShowCharSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowCharSym0 (a6989586621680249823 :: Char) Source # | |
Defined in Text.Show.Singletons |
data ShowCharSym1 (a6989586621680249823 :: Char) :: (~>) Symbol Symbol Source #
Instances
SingI1 ShowCharSym1 Source # | |
Defined in Text.Show.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (ShowCharSym1 x) | |
SingI d => SingI (ShowCharSym1 d :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons sing :: Sing (ShowCharSym1 d) | |
SuppressUnusedWarnings (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply (ShowCharSym1 a6989586621680249823 :: TyFun Symbol Symbol -> Type) (a6989586621680249824 :: Symbol) Source # | |
Defined in Text.Show.Singletons |
type family ShowCharSym2 (a6989586621680249823 :: Char) (a6989586621680249824 :: Symbol) :: Symbol where ... Source #
ShowCharSym2 a6989586621680249823 a6989586621680249824 = ShowChar a6989586621680249823 a6989586621680249824 |
data ShowCommaSpaceSym0 :: (~>) Symbol Symbol Source #
Instances
SingI ShowCommaSpaceSym0 Source # | |
Defined in Text.Show.Singletons | |
SuppressUnusedWarnings ShowCommaSpaceSym0 Source # | |
Defined in Text.Show.Singletons suppressUnusedWarnings :: () # | |
type Apply ShowCommaSpaceSym0 (a6989586621680249778 :: Symbol) Source # | |
Defined in Text.Show.Singletons type Apply ShowCommaSpaceSym0 (a6989586621680249778 :: Symbol) = ShowCommaSpace a6989586621680249778 |
type family ShowCommaSpaceSym1 (a6989586621680249778 :: Symbol) :: Symbol where ... Source #
ShowCommaSpaceSym1 a6989586621680249778 = ShowCommaSpace a6989586621680249778 |
data FromIntegerSym0 :: (~>) Natural a Source #
Instances
SNum a => SingI (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons | |
SuppressUnusedWarnings (FromIntegerSym0 :: TyFun Natural a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) Source # | |
Defined in GHC.Num.Singletons type Apply (FromIntegerSym0 :: TyFun Natural k2 -> Type) (a6989586621679582481 :: Natural) = FromInteger a6989586621679582481 :: k2 |
type family FromIntegerSym1 (a6989586621679582481 :: Natural) :: a where ... Source #
FromIntegerSym1 a6989586621679582481 = FromInteger a6989586621679582481 |
data NegateSym0 :: (~>) a a Source #
Instances
SNum a => SingI (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons sing :: Sing NegateSym0 | |
SuppressUnusedWarnings (NegateSym0 :: TyFun a a -> Type) Source # | |
Defined in GHC.Num.Singletons suppressUnusedWarnings :: () # | |
type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) Source # | |
Defined in GHC.Num.Singletons type Apply (NegateSym0 :: TyFun a a -> Type) (a6989586621679582472 :: a) = Negate a6989586621679582472 |
type family NegateSym1 (a6989586621679582472 :: a) :: a where ... Source #
NegateSym1 a6989586621679582472 = Negate a6989586621679582472 |
data FromStringSym0 :: (~>) Symbol a Source #
Instances
SIsString a => SingI (FromStringSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in Data.String.Singletons | |
SuppressUnusedWarnings (FromStringSym0 :: TyFun Symbol a -> Type) Source # | |
Defined in Data.String.Singletons suppressUnusedWarnings :: () # | |
type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681319050 :: Symbol) Source # | |
Defined in Data.String.Singletons type Apply (FromStringSym0 :: TyFun Symbol k2 -> Type) (a6989586621681319050 :: Symbol) = FromString a6989586621681319050 :: k2 |
type family FromStringSym1 (a6989586621681319050 :: Symbol) :: a where ... Source #
FromStringSym1 a6989586621681319050 = FromString a6989586621681319050 |
data FmapSym0 :: (~>) ((~>) a b) ((~>) (f a) (f b)) Source #
Instances
SFunctor f => SingI (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym0 :: TyFun (a ~> b) (f a ~> f b) -> Type) (a6989586621679329112 :: a ~> b) Source # | |
Defined in Control.Monad.Singletons.Internal |
data FmapSym1 (a6989586621679329112 :: (~>) a b) :: (~>) (f a) (f b) Source #
Instances
SFunctor f => SingI1 (FmapSym1 :: (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI (FmapSym1 d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (FmapSym1 a6989586621679329112 :: TyFun (f a) (f b) -> Type) (a6989586621679329113 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family FmapSym2 (a6989586621679329112 :: (~>) a b) (a6989586621679329113 :: f a) :: f b where ... Source #
data (<$@#@$) :: (~>) a ((~>) (f b) (f a)) infixl 4 Source #
Instances
SFunctor f => SingI ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$) :: TyFun a (f b ~> f a) -> Type) (a6989586621679329117 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<$@#@$$) (a6989586621679329117 :: a) :: (~>) (f b) (f a) infixl 4 Source #
Instances
SFunctor f => SingI1 ((<$@#@$$) :: a -> TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
(SFunctor f, SingI d) => SingI ((<$@#@$$) d :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<$@#@$$) a6989586621679329117 :: TyFun (f b) (f a) -> Type) (a6989586621679329118 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal |
type family (a6989586621679329117 :: a) <$@#@$$$ (a6989586621679329118 :: f b) :: f a where ... infixl 4 Source #
data FoldMapSym0 :: (~>) ((~>) a m) ((~>) (t a) m) Source #
Instances
(SFoldable t, SMonoid m) => SingI (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing FoldMapSym0 | |
SuppressUnusedWarnings (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym0 :: TyFun (a ~> m) (t a ~> m) -> Type) (a6989586621680438316 :: a ~> m) = FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type |
data FoldMapSym1 (a6989586621680438316 :: (~>) a m) :: (~>) (t a) m Source #
Instances
(SFoldable t, SMonoid m) => SingI1 (FoldMapSym1 :: (a ~> m) -> TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (FoldMapSym1 x) | |
(SFoldable t, SMonoid m, SingI d) => SingI (FoldMapSym1 d :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons sing :: Sing (FoldMapSym1 d) | |
SuppressUnusedWarnings (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) Source # | |
Defined in Data.Foldable.Singletons type Apply (FoldMapSym1 a6989586621680438316 :: TyFun (t a) m -> Type) (a6989586621680438317 :: t a) = FoldMap a6989586621680438316 a6989586621680438317 |
type family FoldMapSym2 (a6989586621680438316 :: (~>) a m) (a6989586621680438317 :: t a) :: m where ... Source #
FoldMapSym2 a6989586621680438316 a6989586621680438317 = FoldMap a6989586621680438316 a6989586621680438317 |
type family MemptySym0 :: a where ... Source #
data MappendSym0 :: (~>) a ((~>) a a) Source #
Instances
SMonoid a => SingI (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing MappendSym0 | |
SuppressUnusedWarnings (MappendSym0 :: TyFun a (a ~> a) -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym0 :: TyFun a (a ~> a) -> Type) (a6989586621680336631 :: a) = MappendSym1 a6989586621680336631 |
data MappendSym1 (a6989586621680336631 :: a) :: (~>) a a Source #
Instances
SMonoid a => SingI1 (MappendSym1 :: a -> TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (MappendSym1 x) | |
(SMonoid a, SingI d) => SingI (MappendSym1 d :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons sing :: Sing (MappendSym1 d) | |
SuppressUnusedWarnings (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) Source # | |
Defined in Data.Monoid.Singletons suppressUnusedWarnings :: () # | |
type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) Source # | |
Defined in Data.Monoid.Singletons type Apply (MappendSym1 a6989586621680336631 :: TyFun a a -> Type) (a6989586621680336632 :: a) = Mappend a6989586621680336631 a6989586621680336632 |
type family MappendSym2 (a6989586621680336631 :: a) (a6989586621680336632 :: a) :: a where ... Source #
MappendSym2 a6989586621680336631 a6989586621680336632 = Mappend a6989586621680336631 a6989586621680336632 |
data FoldrSym0 :: (~>) ((~>) a ((~>) b b)) ((~>) b ((~>) (t a) b)) Source #
Instances
SFoldable t => SingI (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym0 :: TyFun (a ~> (b ~> b)) (b ~> (t a ~> b)) -> Type) (a6989586621680438322 :: a ~> (b ~> b)) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym1 (a6989586621680438322 :: (~>) a ((~>) b b)) :: (~>) b ((~>) (t a) b) Source #
Instances
SFoldable t => SingI1 (FoldrSym1 :: (a ~> (b ~> b)) -> TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
(SFoldable t, SingI d) => SingI (FoldrSym1 d :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym1 a6989586621680438322 :: TyFun b (t a ~> b) -> Type) (a6989586621680438323 :: b) Source # | |
Defined in Data.Foldable.Singletons |
data FoldrSym2 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) :: (~>) (t a) b Source #
Instances
(SFoldable t, SingI d) => SingI1 (FoldrSym2 d :: b -> TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SFoldable t => SingI2 (FoldrSym2 :: (a ~> (b ~> b)) -> b -> TyFun (t a) b -> Type) Source # | |
(SFoldable t, SingI d1, SingI d2) => SingI (FoldrSym2 d1 d2 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons | |
SuppressUnusedWarnings (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) Source # | |
Defined in Data.Foldable.Singletons suppressUnusedWarnings :: () # | |
type Apply (FoldrSym2 a6989586621680438322 a6989586621680438323 :: TyFun (t a) b -> Type) (a6989586621680438324 :: t a) Source # | |
Defined in Data.Foldable.Singletons |
type family FoldrSym3 (a6989586621680438322 :: (~>) a ((~>) b b)) (a6989586621680438323 :: b) (a6989586621680438324 :: t a) :: b where ... Source #
data TraverseSym0 :: (~>) ((~>) a (f b)) ((~>) (t a) (f (t b))) Source #
Instances
(STraversable t, SApplicative f) => SingI (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing TraverseSym0 | |
SuppressUnusedWarnings (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym0 :: TyFun (a ~> f b) (t a ~> f (t b)) -> Type) (a6989586621680796847 :: a ~> f b) = TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type |
data TraverseSym1 (a6989586621680796847 :: (~>) a (f b)) :: (~>) (t a) (f (t b)) Source #
Instances
(STraversable t, SApplicative f) => SingI1 (TraverseSym1 :: (a ~> f b) -> TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons liftSing :: forall (x :: k1). Sing x -> Sing (TraverseSym1 x) | |
(STraversable t, SApplicative f, SingI d) => SingI (TraverseSym1 d :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons sing :: Sing (TraverseSym1 d) | |
SuppressUnusedWarnings (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) Source # | |
Defined in Data.Traversable.Singletons suppressUnusedWarnings :: () # | |
type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) Source # | |
Defined in Data.Traversable.Singletons type Apply (TraverseSym1 a6989586621680796847 :: TyFun (t a) (f (t b)) -> Type) (a6989586621680796848 :: t a) = Traverse a6989586621680796847 a6989586621680796848 |
type family TraverseSym2 (a6989586621680796847 :: (~>) a (f b)) (a6989586621680796848 :: t a) :: f (t b) where ... Source #
TraverseSym2 a6989586621680796847 a6989586621680796848 = Traverse a6989586621680796847 a6989586621680796848 |
data PureSym0 :: (~>) a (f a) Source #
Instances
SApplicative f => SingI (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings (PureSym0 :: TyFun a (f a) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (PureSym0 :: TyFun a (f a) -> Type) (a6989586621679329136 :: a) Source # | |
Defined in Control.Monad.Singletons.Internal |
data (<*>@#@$) :: (~>) (f ((~>) a b)) ((~>) (f a) (f b)) infixl 4 Source #
Instances
SApplicative f => SingI ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal | |
SuppressUnusedWarnings ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$) :: TyFun (f (a ~> b)) (f a ~> f b) -> Type) (a6989586621679329140 :: f (a ~> b)) = (<*>@#@$$) a6989586621679329140 |
data (<*>@#@$$) (a6989586621679329140 :: f ((~>) a b)) :: (~>) (f a) (f b) infixl 4 Source #
Instances
SApplicative f => SingI1 ((<*>@#@$$) :: f (a ~> b) -> TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing ((<*>@#@$$) x) | |
(SApplicative f, SingI d) => SingI ((<*>@#@$$) d :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing ((<*>@#@$$) d) | |
SuppressUnusedWarnings ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply ((<*>@#@$$) a6989586621679329140 :: TyFun (f a) (f b) -> Type) (a6989586621679329141 :: f a) = a6989586621679329140 <*> a6989586621679329141 |
type family (a6989586621679329140 :: f ((~>) a b)) <*>@#@$$$ (a6989586621679329141 :: f a) :: f b where ... infixl 4 Source #
data LiftA2Sym0 :: (~>) ((~>) a ((~>) b c)) ((~>) (f a) ((~>) (f b) (f c))) Source #
Instances
SApplicative f => SingI (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing LiftA2Sym0 | |
SuppressUnusedWarnings (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679329146 :: a ~> (b ~> c)) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym0 :: TyFun (a ~> (b ~> c)) (f a ~> (f b ~> f c)) -> Type) (a6989586621679329146 :: a ~> (b ~> c)) = LiftA2Sym1 a6989586621679329146 :: TyFun (f a) (f b ~> f c) -> Type |
data LiftA2Sym1 (a6989586621679329146 :: (~>) a ((~>) b c)) :: (~>) (f a) ((~>) (f b) (f c)) Source #
Instances
SApplicative f => SingI1 (LiftA2Sym1 :: (a ~> (b ~> c)) -> TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym1 x) | |
(SApplicative f, SingI d) => SingI (LiftA2Sym1 d :: TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing (LiftA2Sym1 d) | |
SuppressUnusedWarnings (LiftA2Sym1 a6989586621679329146 :: TyFun (f a) (f b ~> f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym1 a6989586621679329146 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679329147 :: f a) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym1 a6989586621679329146 :: TyFun (f a) (f b ~> f c) -> Type) (a6989586621679329147 :: f a) = LiftA2Sym2 a6989586621679329146 a6989586621679329147 |
data LiftA2Sym2 (a6989586621679329146 :: (~>) a ((~>) b c)) (a6989586621679329147 :: f a) :: (~>) (f b) (f c) Source #
Instances
(SApplicative f, SingI d) => SingI1 (LiftA2Sym2 d :: f a -> TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing :: forall (x :: k1). Sing x -> Sing (LiftA2Sym2 d x) | |
SApplicative f => SingI2 (LiftA2Sym2 :: (a ~> (b ~> c)) -> f a -> TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal liftSing2 :: forall (x :: k1) (y :: k2). Sing x -> Sing y -> Sing (LiftA2Sym2 x y) | |
(SApplicative f, SingI d1, SingI d2) => SingI (LiftA2Sym2 d1 d2 :: TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal sing :: Sing (LiftA2Sym2 d1 d2) | |
SuppressUnusedWarnings (LiftA2Sym2 a6989586621679329146 a6989586621679329147 :: TyFun (f b) (f c) -> Type) Source # | |
Defined in Control.Monad.Singletons.Internal suppressUnusedWarnings :: () # | |
type Apply (LiftA2Sym2 a6989586621679329146 a6989586621679329147 :: TyFun (f b) (f c) -> Type) (a6989586621679329148 :: f b) Source # | |
Defined in Control.Monad.Singletons.Internal type Apply (LiftA2Sym2 a6989586621679329146 a6989586621679329147 :: TyFun (f b) (f c) -> Type) (a6989586621679329148 :: f b) = LiftA2 a6989586621679329146 a6989586621679329147 a6989586621679329148 |
type family LiftA2Sym3 (a6989586621679329146 :: (~>) a ((~>) b c)) (a6989586621679329147 :: f a) (a6989586621679329148 :: f b) :: f c where ... Source #
LiftA2Sym3 a6989586621679329146 a6989586621679329147 a6989586621679329148 = LiftA2 a6989586621679329146 a6989586621679329147 a6989586621679329148 |
data (.@#@$) :: (~>) ((~>) b c) ((~>) ((~>) a b) ((~>) a c)) infixr 9 Source #
Instances
SingI ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$) :: TyFun (b ~> c) ((a ~> b) ~> (a ~> c)) -> Type) (a6989586621679278899 :: b ~> c) Source # | |
Defined in GHC.Base.Singletons |
data (.@#@$$) (a6989586621679278899 :: (~>) b c) :: (~>) ((~>) a b) ((~>) a c) infixr 9 Source #
Instances
SingI1 ((.@#@$$) :: (b ~> c) -> TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SingI d => SingI ((.@#@$$) d :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply ((.@#@$$) a6989586621679278899 :: TyFun (a ~> b) (a ~> c) -> Type) (a6989586621679278900 :: a ~> b) Source # | |
Defined in GHC.Base.Singletons |
data (a6989586621679278899 :: (~>) b c) .@#@$$$ (a6989586621679278900 :: (~>) a b) :: (~>) a c infixr 9 Source #
Instances
SingI2 ((.@#@$$$) :: (b ~> c) -> (a ~> b) -> TyFun a c -> Type) Source # | |
SingI d => SingI1 ((.@#@$$$) d :: (a ~> b) -> TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
(SingI d1, SingI d2) => SingI (d1 .@#@$$$ d2 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons | |
SuppressUnusedWarnings (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) Source # | |
Defined in GHC.Base.Singletons suppressUnusedWarnings :: () # | |
type Apply (a6989586621679278899 .@#@$$$ a6989586621679278900 :: TyFun a c -> Type) (a6989586621679278901 :: a) Source # | |
Defined in GHC.Base.Singletons |
type family ((a6989586621679278899 :: (~>) b c) .@#@$$$$ (a6989586621679278900 :: (~>) a b)) (a6989586621679278901 :: a) :: c where ... infixr 9 Source #
data (:@#@$) :: (~>) a ((~>) [a] [a :: Type]) infixr 5 Source #
Instances
SingI ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$) :: TyFun a ([a] ~> [a]) -> Type) (a6989586621679040366 :: a) Source # | |
Defined in Data.Singletons.Base.Instances |
data (:@#@$$) (a6989586621679040366 :: a) :: (~>) [a] [a :: Type] infixr 5 Source #
Instances
SingI1 ((:@#@$$) :: a -> TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SingI d => SingI ((:@#@$$) d :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances | |
SuppressUnusedWarnings ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) Source # | |
Defined in Data.Singletons.Base.Instances suppressUnusedWarnings :: () # | |
type Apply ((:@#@$$) a6989586621679040366 :: TyFun [a] [a] -> Type) (a6989586621679040367 :: [a]) Source # | |
Defined in Data.Singletons.Base.Instances |
type family (a6989586621679040366 :: a) :@#@$$$ (a6989586621679040367 :: [a]) :: [a :: Type] where ... infixr 5 Source #
a6989586621679040366 :@#@$$$ a6989586621679040367 = '(:) a6989586621679040366 a6989586621679040367 |
class SuppressUnusedWarnings (t :: k) where #
suppressUnusedWarnings :: () #