LambdaHack: A game engine library for tactical squad ASCII roguelike dungeon crawlers

[ bsd3, game, game-engine, library, program, roguelike ] [ Propose Tags ]

LambdaHack is a Haskell game engine library for ASCII roguelike games of arbitrary theme, size and complexity, with optional tactical squad combat. It's packaged together with a sample dungeon crawler in fantasy setting that can be tried out in the browser at http://lambdahack.github.io. (It runs fastest on Chrome. Keyboard commands and savefiles are supported only on recent enough versions of browsers. Mouse should work everywhere.)

Please see the changelog file for recent improvements and the issue tracker for short-term plans. Long term goals include multiplayer tactical squad combat, in-game content creation, auto-balancing and persistent content modification based on player behaviour. Contributions are welcome.

Games known to use the LambdaHack library:

Note: All modules in this library are kept visible, to let games override and reuse them. OTOH, to reflect that some modules are implementation details relative to others, the source code adheres to the following convention. If a module has the same name as a directory, the module is the exclusive interface to the directory. No references to the modules in the directory are allowed except from the interface module. This policy is only binding when developing the library --- library users are free to access any modules, since the library authors are in no position to guess their particular needs.

This is a workaround .cabal file, flattened to eliminated internal libraries until generating haddocks for them is fixed. The original .cabal file is stored in the github repo.


[Skip to Readme]

Modules

[Index] [Quick Jump]

Flags

Manual Flags

NameDescriptionDefault
vty

switch to the vty frontend (screen reader friendly)

Disabled
curses

switch to the curses frontend (not fully supported)

Disabled
gtk

switch to the GTK frontend (not fully supported)

Disabled
sdl

switch to the SDL2 frontend

Disabled
jsaddle

switch to the JSaddle frontend (may be bit-rotted)

Disabled
with_expensive_assertions

turn on expensive assertions of well-tested code

Disabled
release

prepare for a release (expose internal functions and types, etc.)

Enabled
supportnodejs

compile so that the JS blob works in terminal with NodeJS

Enabled

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Note: This package has metadata revisions in the cabal description newer than included in the tarball. To unpack the package including the revisions, use 'cabal get'.

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

  • No Candidates
Versions [RSS] 0.1.20080412, 0.1.20080413, 0.1.20090606, 0.1.20110117, 0.1.20110918, 0.2.0, 0.2.1, 0.2.6, 0.2.6.5, 0.2.8, 0.2.10, 0.2.10.5, 0.2.10.6, 0.2.12, 0.2.14, 0.4.9.0, 0.4.99.0, 0.4.100.0, 0.4.101.0, 0.4.101.1, 0.5.0.0, 0.6.0.0, 0.6.1.0, 0.6.2.0, 0.7.0.0, 0.7.1.0, 0.8.0.0, 0.8.1.0, 0.8.1.1, 0.8.1.2, 0.8.3.0, 0.9.3.0, 0.9.3.1, 0.9.4.0, 0.9.4.1, 0.9.5.0, 0.10.2.0, 0.10.3.0, 0.11.0.0, 0.11.0.1 (info)
Change log CHANGELOG.md
Dependencies assert-failure (>=0.1.2 && <0.2), async (>=2), base (>=4.10 && <99), base-compat (>=0.8.0), binary (>=0.8), bytestring (>=0.9.2), containers (>=0.5.3.0), deepseq (>=1.3), directory (>=1.1.0.1), enummapset (>=0.5.2.2), filepath (>=1.2.0.1), ghc-compact, ghc-prim, ghcjs-dom (>=0.9.1.1), hashable (>=1.1.2.5), hsini (>=0.2), keys (>=3), LambdaHack, miniutter (>=0.5.0.0), optparse-applicative (>=0.13), pretty-show (>=1.6), primitive (>=0.6.1.0), random (==1.1), sdl2 (>=2), sdl2-ttf (>=2), stm (>=2.4), template-haskell (>=2.6), text (>=0.11.2.3), time (>=1.4), transformers (>=0.4), unordered-containers (>=0.2.3), vector (>=0.11), vector-binary-instances (>=0.2.3.1), zlib (>=0.5.3.1) [details]
License BSD-3-Clause
Author Andres Loeh, Mikolaj Konarski and others
Maintainer Mikolaj Konarski <mikolaj.konarski@funktory.com>
Revised Revision 1 made by MikolajKonarski at 2020-06-24T13:45:04Z
Category Game Engine, Game
Home page https://lambdahack.github.io
Bug tracker http://github.com/LambdaHack/LambdaHack/issues
Source repo head: git clone git://github.com/LambdaHack/LambdaHack.git
Uploaded by MikolajKonarski at 2019-05-02T21:20:54Z
Distributions Arch:0.11.0.1, Debian:0.9.5.0, LTSHaskell:0.11.0.1
Reverse Dependencies 2 direct, 0 indirect [details]
Executables LambdaHack
Downloads 30766 total (38 in the last 30 days)
Rating 2.25 (votes: 2) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs uploaded by user
Build status unknown [no reports yet]

Readme for LambdaHack-0.9.5.0

[back to package description]

LambdaHack

Build Status Hackage Join the chat at https://gitter.im/LambdaHack/LambdaHack

LambdaHack is a Haskell1 game engine library for ASCII roguelike2 games of arbitrary theme, size and complexity, with optional tactical squad combat. It's packaged together with a sample dungeon crawler in wierd fantasy setting that can be tried out in the browser at http://lambdahack.github.io. (It runs fastest on Chrome. Keyboard commands and savefiles are supported only on recent enough versions of browsers. Mouse should work everywhere.)

As an example of the engine's capabilities, here is a showcase of shooting down explosive projectiles. A couple were shot down close enough to enemies to harm them. Others exploded closer to our party members and took out of the air the projectiles that would otherwise harm them.

gameplay screenshot

This was a semi-automatic stealthy speedrun of the escape scenario of the sample game that comes with the engine. Small bitmap font. The enemy gang has a huge numerical and equipment superiority. Our team loots the area on auto-pilot until the first foe is spotted. Then they scout out enemy positions. Then hero 1 draws enemies and unfortunately enemy fire as well, which is when he valiantly shoots down explosives to avoid the worst damage. Then heroine 2 sneaks behind enemy lines to reach the remaining treasure. That accomplished, the captain signals retreat and leaves for the next area (the zoo).

Using the engine

To use the engine, you need to specify the content to be procedurally generated. You specify what the game world is made of (entities, their relations, physics and lore) and the engine builds the world and runs it. The library lets you compile a ready-to-play game binary, using either the supplied or a custom-made main loop. Several frontends are available (SDL2 is the default for desktop and there is a JavaScript browser frontend) and many other generic engine components are easily overridden, but the fundamental source of flexibility lies in the strict and type-safe separation of code from the content and of clients (human and AI-controlled) from the server.

Please see the changelog file for recent improvements and the issue tracker for short-term plans. Long term goals include multiplayer tactical squad combat, in-game content creation, auto-balancing and persistent content modification based on player behaviour. Contributions are welcome. Please offer feedback to mikolaj.konarski@funktory.com or, preferably, at any of the public forums.

Other games known to use the LambdaHack library:

  • Allure of the Stars6, a near-future Sci-Fi game
  • Space Privateers8, an adventure game set in far future

Note: the engine and the example game are bundled together in a single Hackage3 package released under the permissive BSD3 license. You are welcome to create your own games by forking and modifying the single package, but please consider eventually splitting your changes into a separate content-only package that depends on the upstream engine library. This will help us exchange ideas and share improvements to the common codebase. Alternatively, you can already start the development in separation by cloning and rewriting Allure of the Stars10 and mix and merge with the example LambdaHack game rules at will. Note that the LambdaHack sample game derives from the Hack/Nethack visual and narrative tradition9, while Allure of the Stars uses the more free-form Moria/Angband style (it also uses the AGPL license, and BSD3 + AGPL = AGPL, so make sure you want to liberate your code and content to such an extent).

When creating a new game based on LambdaHack I've found it useful to place completely new content at the end of the content files to distinguish from merely modified original LambdaHack content and thus help merging with new releases. Removals of LambdaHack content merge reasonably well, so there are no special considerations. When modifying individual content items, it makes sense to keep their Haskell identifier names and change only in-game names and possibly frequency group names.

Installation of the sample game from binary archives

The game runs rather slowly in the browser (fastest on Chrome) and you are limited to only one font, though it's scalable. Also, savefiles are prone to corruption on the browser, e.g., when it's closed while the game is still saving progress (which takes a long time). Hence, after trying out the game, you may prefer to use a native binary for your architecture, if it exists.

Pre-compiled game binaries are available through the release page11 (and, for Windows, dev versions continuously from AppVeyor[18]). To use a pre-compiled binary archive, unpack it and run the executable in the unpacked directory or use program shortcuts from the installer, if available. On Linux, make sure you have the SDL2 libraries installed on your system (e.g., libsdl2-2.0-0 and libsdl2-ttf-2.0-0 on Ubuntu). For Windows (XP no longer supported), the SDL2 and all other needed libraries are already contained in the game's binary archive.

Screen and keyboard configuration

The game UI can be configured via a config file. The default settings, the same that are built into the binary, are in GameDefinition/config.ui.default. When the game is run for the first time, the file is copied to the default user data folder, which is ~/.LambdaHack/ on Linux, C:\Users\<username>\AppData\Roaming\LambdaHack\ (or C:\Documents And Settings\user\Application Data\LambdaHack\ or something else altogether) on Windows, and in RMB menu, under Inspect/Application/Local Storage when run inside the Chrome browser.

Screen font and consequently window size can be changed by editing the config file in the user data folder. The default bitmap font 16x16xw.bdf covers most national characters in the Latin alphabet (e.g. to give custom names to player characters) and results in a game window of exactly 720p (standard HD) dimensions. The 8x8xb.fnt bitmap font results in a tiny window and covers latin-1 characters only. The scalable 16x16xw.woff font results in window sizes dependent on the scalableFontSize parameter in the config file. With scalableFontSize = 16 it should look almost the same as the pixel-perfect 16x16xw.bdf.

If you don't have a numeric keypad, you can use the Vi editor keys (aka roguelike keys) or mouse for movement or you can enable the compact laptop keys (uk8o79jl) in the config file. If numeric keypad doesn't work, toggling the Num Lock key sometimes helps. If running with the Shift key and keypad keys doesn't work, try Control key instead. The game is fully playable with mouse only, as well as with keyboard only, but the most efficient combination for some players is mouse for go-to, inspecting, and aiming at distant positions and keyboard for everything else.

If you are using a terminal frontend, e.g. the best supported vty frontend, numeric keypad (e.g., keypad '*' and '/') may not work correctly depending on versions of the libraries, terminfo and terminal emulators. Toggling the Num Lock key may help or make issues worse. As a workaround for the vty frontend, numbers are used for movement, which sadly prevents the number keys from selecting heroes. The commands that require pressing Control and Shift together won't work either, but fortunately they are not crucial to gameplay.

Some effort has been put to help using the vty frontend with screen readers, but without feedback it's hard to say how accesible that setup is. As a side effect of screen reader support, there is no aiming line nor path in vty frontend. Screen readers may also work better with animations turned off using --noAnim or the corresponding config file option. Note that unicode and cursor support are now necessary for correct output.

Compilation of the library and sample game from source

If you want to compile native binaries from the source code, use Cabal (already a part of your OS distribution, or available within The Haskell Platform7), which also takes care of all the dependencies.

The recommended frontend is based on SDL2, so you need the SDL2 libraries for your OS. On Linux, remember to install the -dev versions as well, e.g., libsdl2-dev and libsdl2-ttf-dev on Ubuntu Linux 16.04. (Compilation to JavaScript for the browser is more complicated and requires the ghcjs15 compiler and optionally the Google Closure Compiler16 as well.)

The latest official version of the LambdaHack library can be downloaded, compiled for SDL2 and installed automatically by Cabal from Hackage3 as follows

cabal update
cabal install LambdaHack

For a newer snapshot, clone the source code from github5 and run Cabal from the main directory

cabal install

There is a built-in black and white line terminal frontend, suitable for teletype terminals or a keyboard and a printer (but it's going to use a lot of paper, unless you disable animations with --noAnim). To compile with one of the less rudimentary terminal frontends (in which case you are on your own regarding font choice and color setup and you won't have the spiffy colorful squares outlining special positions that exist in SDL2 frontend, but only crude cursor highlights), use Cabal flags, e.g,

cabal install -fvty

Testing and debugging

The Makefile contains many sample test commands. Numerous tests that use the screensaver game modes (AI vs. AI) and the teletype frontend are gathered in make test. Of these, travis runs test-travis on each push to github. Test commands with prefix frontend start AI vs. AI games with the standard, user-friendly frontend.

Run LambdaHack --help to see a brief description of all debug options. Of these, the --sniff option is very useful (though verbose and initially cryptic), for displaying the traffic between clients and the server. Some options in the config file may prove useful too, though they mostly overlap with commandline options (and will be totally merged at some point).

You can use HPC with the game as follows (details vary according to HPC version).

cabal clean
cabal install --enable-coverage
make test
hpc report --hpcdir=dist/hpc/dyn/mix/LambdaHack --hpcdir=dist/hpc/dyn/mix/LambdaHack-xxx/ LambdaHack
hpc markup --hpcdir=dist/hpc/dyn/mix/LambdaHack --hpcdir=dist/hpc/dyn/mix/LambdaHack-xxx/ LambdaHack

A quick manual playing session after the automated tests would be in order, as well, since the tests don't touch the topmost UI layer. Note that a debug option of the form --stopAfter* is required to cleanly terminate any automated test. This is needed to gather any HPC info, because HPC requires a clean exit to save data files.

Coding style

Stylish Haskell is used for slight auto-formatting at buffer save; see .stylish-haskell.yaml. As defined in the file, indentation is 2 spaces wide and screen is 80-columns wide. Spaces are used, not tabs. Spurious whitespace avoided. Spaces around arithmetic operators encouraged. Generally, relax and try to stick to the style apparent in a file you are editing. Put big formatting changes in separate commits.

Haddocks are provided for all module headers and for all functions and types from major modules, in particular the modules that are interfaces for a whole directory of modules. Apart of that, only very important functions and types are distinguished by having a haddock. If minor ones have comments, they should not be haddocks and they are permitted to describe implementation details and be out of date. Prefer assertions to comments, unless too verbose.

Further information

For more information, visit the wiki4 and see PLAYING.md, CREDITS and COPYLEFT.

Have fun!