The comonad package

[Tags: bsd3, library]

Haskell 98 compatible comonads


[Skip to ReadMe]

Properties

Versions0.1.0, 0.1.1, 0.3.0, 0.4.0, 0.5.0, 0.6.0, 0.6.1, 0.6.1.1, 0.6.1.2, 0.6.2, 0.6.2.1, 0.7.0, 0.9.0, 0.9.0.1, 1.0, 1.0.1, 1.0.2, 1.0.3, 1.1.0, 1.1.0.1, 1.1.0.2, 1.1.1, 1.1.1.1, 1.1.1.2, 1.1.1.3, 1.1.1.4, 1.1.1.5, 1.1.1.6, 3.0, 3.0.0.1, 3.0.0.2, 3.0.1.1, 3.0.2, 3.0.3, 3.1, 4.0, 4.0.1, 4.2, 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6, 4.2.7, 4.2.7.1, 4.2.7.2
Change logCHANGELOG.markdown
Dependenciesbase (==4.*), containers (>=0.3 && <0.6), semigroups (>=0.8.3 && <1), transformers (>=0.2 && <0.4) [details]
LicenseBSD3
CopyrightCopyright (C) 2008-2013 Edward A. Kmett, Copyright (C) 2004-2008 Dave Menendez
AuthorEdward A. Kmett
MaintainerEdward A. Kmett <ekmett@gmail.com>
Stabilityprovisional
CategoryControl, Comonads
Home pagehttp://github.com/ekmett/comonad/
Bug trackerhttp://github.com/ekmett/comonad/issues
Source repositoryhead: git clone git://github.com/ekmett/comonad.git
UploadedTue Mar 19 10:24:50 UTC 2013 by EdwardKmett
DistributionsDebian:4.2.7.2, FreeBSD:4.2.7.2, LTSHaskell:4.2.7.2, NixOS:4.2.7.2, Stackage:4.2.7.2
Downloads129562 total (1290 in last 30 days)
Votes
3 []
StatusDocs uploaded by user
Build status unknown [no reports yet]

Modules

[Index]

Flags

NameDescriptionDefaultType
test-doctestsEnabledManual

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainers' corner

For package maintainers and hackage trustees

Readme for comonad-3.0.2

comonad

Build Status

This package provides comonads, the categorical dual of monads.

class Functor w => Comonad w where
    extract :: w a -> a
    duplicate :: w a -> w (w a)
    extend :: (w a -> b) -> w a -> w b

There are two ways to define a comonad:

I. Provide definitions for 'extract' and 'extend' satisfying these laws:

extend extract      = id
extract . extend f  = f
extend f . extend g = extend (f . extend g)

In this case, you may simply set 'fmap' = 'liftW'.

These laws are directly analogous to the laws for monads and perhaps can be made clearer by viewing them as laws stating that Cokleisli composition must be associative, and has extract for a unit:

f =>= extract   = f
extract =>= f   = f
(f =>= g) =>= h = f =>= (g =>= h)

II. Alternately, you may choose to provide definitions for 'fmap', 'extract', and 'duplicate' satisfying these laws:

extract . duplicate      = id
fmap extract . duplicate = id
duplicate . duplicate    = fmap duplicate . duplicate

In this case you may not rely on the ability to define 'fmap' in terms of 'liftW'.

You may of course, choose to define both 'duplicate' /and/ 'extend'. In that case you must also satisfy these laws:

extend f  = fmap f . duplicate
duplicate = extend id
fmap f    = extend (f . extract)

These are the default definitions of 'extend' and'duplicate' and the definition of 'liftW' respectively.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett