generics-sop: Generic Programming using True Sums of Products

[ bsd3, generics, library ] [ Propose Tags ] [ Report a vulnerability ]

A library to support the definition of generic functions. Datatypes are viewed in a uniform, structured way: the choice between constructors is represented using an n-ary sum, and the arguments of each constructor are represented using an n-ary product.

The module Generics.SOP is the main module of this library and contains more detailed documentation.

Since version 0.4.0.0, this package is now based on sop-core. The core package contains all the functionality of n-ary sums and products, whereas this package provides the datatype-generic programming support on top.

Examples of using this library are provided by the following packages:

A detailed description of the ideas behind this library is provided by the paper:

Downloads

Maintainer's Corner

Package maintainers

For package maintainers and hackage trustees

Candidates

Versions [RSS] 0.1.0.0, 0.1.0.1, 0.1.0.2, 0.1.0.3, 0.1.0.4, 0.1.1, 0.1.1.1, 0.1.1.2, 0.2.0.0, 0.2.1.0, 0.2.2.0, 0.2.3.0, 0.2.4.0, 0.2.5.0, 0.3.0.0, 0.3.1.0, 0.3.2.0, 0.4.0.0, 0.4.0.1, 0.5.0.0, 0.5.1.0, 0.5.1.1, 0.5.1.2, 0.5.1.3, 0.5.1.4 (info)
Change log CHANGELOG.md
Dependencies base (>=4.9 && <4.19), ghc-prim (>=0.3 && <0.11), sop-core (>=0.5.0 && <0.5.1), template-haskell (>=2.8 && <2.21), th-abstraction (>=0.4 && <0.6) [details]
Tested with ghc ==8.0.2, ghc ==8.2.2, ghc ==8.4.4, ghc ==8.6.5, ghc ==8.8.4, ghc ==8.10.7, ghc ==9.0.2, ghc ==9.2.7, ghc ==9.4.4, ghc ==9.6.1
License BSD-3-Clause
Author Edsko de Vries <edsko@well-typed.com>, Andres Löh <andres@well-typed.com>
Maintainer andres@well-typed.com
Category Generics
Source repo head: git clone https://github.com/well-typed/generics-sop
Uploaded by AndresLoeh at 2023-04-23T18:51:04Z
Distributions Arch:0.5.1.3, Debian:0.5.1.0, Fedora:0.5.1.3, LTSHaskell:0.5.1.3, NixOS:0.5.1.3, Stackage:0.5.1.4
Reverse Dependencies 74 direct, 7837 indirect [details]
Downloads 50926 total (311 in the last 30 days)
Rating 2.75 (votes: 8) [estimated by Bayesian average]
Your Rating
  • λ
  • λ
  • λ
Status Docs available [build log]
Last success reported on 2023-04-23 [all 1 reports]