The statistics package

[Tags: bsd3, library]

This library provides a number of common functions and types useful in statistics. Our focus is on high performance, numerical robustness, and use of good algorithms. Where possible, we provide references to the statistical literature.

The library's facilities can be divided into three broad categories:

Working with widely used discrete and continuous probability distributions. (There are dozens of exotic distributions in use; we focus on the most common.)

Computing with sample data: quantile estimation, kernel density estimation, bootstrap methods, and autocorrelation analysis.


[Skip to ReadMe]

Properties

Versions0.1, 0.2, 0.2.1, 0.2.2, 0.3, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.5, 0.3.6, 0.4.0, 0.4.1, 0.5.0.0, 0.5.1.0, 0.5.1.1, 0.5.1.2, 0.6.0.0, 0.6.0.1, 0.6.0.2, 0.7.0.0, 0.8.0.0, 0.8.0.1, 0.8.0.2, 0.8.0.3, 0.8.0.4, 0.8.0.5, 0.9.0.0, 0.10.0.0, 0.10.0.1, 0.10.1.0, 0.10.2.0, 0.10.3.0, 0.10.3.1, 0.10.4.0, 0.10.4.1, 0.10.5.0, 0.10.5.1, 0.10.5.2, 0.11.0.0, 0.11.0.1, 0.11.0.2, 0.11.0.3, 0.12.0.0, 0.13.1.0, 0.13.1.1, 0.13.2.0, 0.13.2.1, 0.13.2.2, 0.13.2.3
Change logNone available
Dependenciesbase (<5), erf, mersenne-random, uvector (>=0.1.0.4), uvector-algorithms (>=0.2) [details]
LicenseBSD3
Copyright2009 Bryan O'Sullivan
AuthorBryan O'Sullivan <bos@serpentine.com>
MaintainerBryan O'Sullivan <bos@serpentine.com>
CategoryMath, Statistics
Home pagehttp://darcs.serpentine.com/statistics
UploadedSun Sep 13 05:07:27 UTC 2009 by BryanOSullivan
DistributionsDebian:0.13.2.3, FreeBSD:0.13.2.3, LTSHaskell:0.13.2.3, Stackage:0.13.2.3
Downloads24507 total (754 in last 30 days)
Votes
0 []
StatusDocs uploaded by user
Build status unknown [no reports yet]

Modules

[Index]

Downloads

Maintainers' corner

For package maintainers and hackage trustees

Readme for statistics-0.2.1

Statistics: efficient, general purpose statistics
-------------------------------------------------

This package provides the Statistics module, a Haskell library for
working with statistical data in a space- and time-efficient way.

Where possible, we give citations and computational complexity
estimates for the algorithms used.


Source code
-----------

darcs get http://darcs.serpentine.com/statistics


Authors
-------

Bryan O'Sullivan <bos@serpentine.com>