The distributive package

[ Tags: bsd3, data-structures, library ] [ Propose Tags ]

Distributive functors -- Dual to Traversable


[Skip to Readme]

Properties

Versions 0.1, 0.1.1, 0.1.2, 0.2.0, 0.2.0.1, 0.2.1, 0.2.2, 0.3, 0.3.1, 0.3.2, 0.4, 0.4.1, 0.4.2, 0.4.3, 0.4.3.1, 0.4.3.2, 0.4.4, 0.5, 0.5.0.1, 0.5.0.2, 0.5.1, 0.5.2, 0.5.3
Change log CHANGELOG.markdown
Dependencies base (==4.*), ghc-prim, tagged (>=0.7 && <1), transformers (>=0.2 && <0.4), transformers-compat (==0.1.*) [details]
License BSD3
Copyright Copyright (C) 2011-2014 Edward A. Kmett
Author Edward A. Kmett
Maintainer Edward A. Kmett <ekmett@gmail.com>
Category Data Structures
Home page http://github.com/ekmett/distributive/
Bug tracker http://github.com/ekmett/distributive/issues
Source repository head: git clone git://github.com/ekmett/distributive.git
Uploaded Mon Apr 28 12:58:20 UTC 2014 by EdwardKmett
Distributions Arch:0.5.3, Debian:0.4.4, Fedora:0.5.2, FreeBSD:0.4.4, LTSHaskell:0.5.3, NixOS:0.5.3, Stackage:0.5.3, Tumbleweed:0.5.2
Downloads 166840 total (1530 in the last 30 days)
Rating 2.0 (1 ratings) [clear rating]
  • λ
  • λ
  • λ
Status Docs available [build log]
Successful builds reported [all 1 reports]
Hackage Matrix CI

Modules

[Index]

Flags

NameDescriptionDefaultType
lib-werrorDisabledManual

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainer's Corner

For package maintainers and hackage trustees


Readme for distributive-0.4.3.2

[back to package description]

distributive

Build Status

This package provides the notion that is categorically dual to Traversable.

A Distributive Functor is one that you can push any functor inside of.

distribute :: (Functor f, Distributive g) => f (g a) -> g (f a)

Compare this with the corresponding Traversable notion, sequenceA.

sequenceA :: (Applicative f, Traversable g) => g (f a) -> f (g a)

This package includes instances for common types, and includes other methods similar to traverse which fuse the use of fmap.

We only require Functor rather than some dual notion to Applicative, because the latter cannot meaningfully exist in Haskell since all comonoids there are trivial.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett