[ algebra, bsd3, data, data-structures, library, math ] [ Propose Tags ]

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.

Versions 0.1.0, 0.2.0, 0.3.0, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.4.2, 0.4.0, 0.5.0, 0.5.0.1, 0.5.0.2, 0.6, 0.6.1, 0.7.0, 0.7.1, 0.7.1.1, 0.7.1.2, 0.8, 0.8.0.1, 0.8.2, 0.8.3, 0.8.3.1, 0.8.3.2, 0.8.4, 0.8.4.1, 0.8.5, 0.9, 0.9.1, 0.9.2, 0.10, 0.11, 0.12, 0.12.0.1, 0.12.1, 0.12.2, 0.13, 0.13.0.1, 0.14, 0.15, 0.15.1, 0.15.2, 0.15.3, 0.15.4, 0.16, 0.16.0.1, 0.16.1, 0.16.2, 0.16.2.1, 0.16.2.2, 0.17, 0.17.0.1, 0.18, 0.18.0.1, 0.18.1, 0.18.2, 0.18.3, 0.18.4 base (>=2 && <5), bytestring (>=0.9 && <0.11), containers (>=0.3 && <0.6), hashable (>=1.1 && <1.3), nats (>=0.1 && <1), text (>=0.10 && <0.12), unordered-containers (==0.2.*) [details] BSD-3-Clause Copyright (C) 2011 Edward A. Kmett Edward A. Kmett Edward A. Kmett Algebra, Data, Data Structures, Math http://github.com/ekmett/semigroups/ http://github.com/ekmett/semigroups/issues head: git clone git://github.com/ekmett/semigroups.git by EdwardKmett at Mon Sep 16 20:25:56 UTC 2013 Debian:0.18.0.1, Fedora:0.18.3, FreeBSD:0.16.2.2, LTSHaskell:0.18.4, NixOS:0.18.4, Stackage:0.18.4, openSUSE:0.18.4 384758 total (522 in the last 30 days) 2.75 (votes: 8) [estimated by rule of succession] λ λ λ Docs uploaded by userBuild status unknown Hackage Matrix CI

[Index]

• Data

Flags

NameDescriptionDefaultType
base2DisabledAutomatic

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Maintainer's Corner

For package maintainers and hackage trustees

[back to package description]

semigroups

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.

Semigroups appear all over the place, except in the Haskell Prelude, so they are packaged here.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett