The semigroups package

[Tags: bsd3, library]

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.


[Skip to ReadMe]

Properties

Versions0.1.0, 0.2.0, 0.3.0, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.4.2, 0.4.0, 0.5.0, 0.5.0.1, 0.5.0.2, 0.6, 0.6.1, 0.7.0, 0.7.1, 0.7.1.1, 0.7.1.2, 0.8, 0.8.0.1, 0.8.2, 0.8.3, 0.8.3.1, 0.8.3.2, 0.8.4, 0.8.4.1, 0.8.5, 0.9, 0.9.1, 0.9.2, 0.10, 0.11, 0.12, 0.12.0.1, 0.12.1, 0.12.2, 0.13, 0.13.0.1, 0.14, 0.15, 0.15.1, 0.15.2, 0.15.3, 0.15.4, 0.16, 0.16.0.1, 0.16.1, 0.16.2, 0.16.2.1, 0.16.2.2
Change logNone available
Dependenciesbase (>=2 && <5), bytestring (>=0.9 && <0.11), containers (>=0.3 && <0.6), hashable (>=1.1 && <1.3), nats (>=0.1 && <1), text (>=0.10 && <1.1), unordered-containers (==0.2.*) [details]
LicenseBSD3
CopyrightCopyright (C) 2011-2013 Edward A. Kmett
AuthorEdward A. Kmett
MaintainerEdward A. Kmett <ekmett@gmail.com>
Stabilityprovisional
CategoryAlgebra, Data, Data Structures, Math
Home pagehttp://github.com/ekmett/semigroups/
Bug trackerhttp://github.com/ekmett/semigroups/issues
Source repositoryhead: git clone git://github.com/ekmett/semigroups.git
UploadedMon Dec 9 04:53:01 UTC 2013 by EdwardKmett
DistributionsDebian:0.16.2.2, Fedora:0.16.0.1, FreeBSD:0.16.2.2, LTSHaskell:0.16.2.2, NixOS:0.16.2.2, Stackage:0.16.2.2
Downloads229325 total (1103 in last 30 days)
Votes
3 []
StatusDocs available [build log]
Successful builds reported [all 1 reports]

Modules

[Index]

Flags

NameDescriptionDefaultType
base2DisabledAutomatic

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainers' corner

For package maintainers and hackage trustees

Readme for semigroups-0.12.0.1

semigroups

Build Status

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.

Semigroups appear all over the place, except in the Haskell Prelude, so they are packaged here.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett