The semigroups package

[Tags: bsd3, library]

Haskell 98 semigroups

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.


[Skip to ReadMe]

Properties

Versions0.1.0, 0.2.0, 0.3.0, 0.3.1, 0.3.2, 0.3.3, 0.3.4, 0.3.4.1, 0.3.4.2, 0.4.0, 0.5.0, 0.5.0.1, 0.5.0.2, 0.6, 0.6.1, 0.7.0, 0.7.1, 0.7.1.1, 0.7.1.2, 0.8, 0.8.0.1, 0.8.2, 0.8.3, 0.8.3.1, 0.8.3.2, 0.8.4, 0.8.4.1, 0.8.5, 0.9, 0.9.1, 0.9.2, 0.10, 0.11, 0.12, 0.12.0.1, 0.12.1, 0.12.2, 0.13, 0.13.0.1, 0.14, 0.15, 0.15.1, 0.15.2, 0.15.3, 0.15.4, 0.16, 0.16.0.1, 0.16.1, 0.16.2, 0.16.2.1, 0.16.2.2
Change logNone available
Dependenciesbase (>=2 && <5), containers (>=0.3 && <0.6), nats (>=0.1 && <0.3) [details]
LicenseBSD3
CopyrightCopyright (C) 2011 Edward A. Kmett
AuthorEdward A. Kmett
MaintainerEdward A. Kmett <ekmett@gmail.com>
Stabilityprovisional
CategoryAlgebra, Data, Data Structures, Math
Home pagehttp://github.com/ekmett/semigroups/
Bug trackerhttp://github.com/ekmett/semigroups/issues
Source repositoryhead: git clone git://github.com/ekmett/semigroups.git
UploadedTue Apr 16 15:17:07 UTC 2013 by EdwardKmett
UpdatedMon Dec 29 18:03:48 UTC 2014 by HerbertValerioRiedel to revision 1
DistributionsDebian:0.16.2.2, Fedora:0.16.0.1, FreeBSD:0.16.2.2, LTSHaskell:0.16.2.2, NixOS:0.16.2.2, Stackage:0.16.2.2
Downloads229259 total (1113 in last 30 days)
Votes
3 []
StatusDocs uploaded by user
Build status unknown [no reports yet]

Modules

[Index]

Flags

NameDescriptionDefaultType
base2DisabledAutomatic

Use -f <flag> to enable a flag, or -f -<flag> to disable that flag. More info

Downloads

Maintainers' corner

For package maintainers and hackage trustees

Readme for semigroups-0.9.1

semigroups

Build Status

In mathematics, a semigroup is an algebraic structure consisting of a set together with an associative binary operation. A semigroup generalizes a monoid in that there might not exist an identity element. It also (originally) generalized a group (a monoid with all inverses) to a type where every element did not have to have an inverse, thus the name semigroup.

Semigroups appear all over the place, except in the Haskell Prelude, so they are packaged here.

Contact Information

Contributions and bug reports are welcome!

Please feel free to contact me through github or on the #haskell IRC channel on irc.freenode.net.

-Edward Kmett